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Abstract
Many regions and urban areas are becoming more engaged in selecting the optimum future clean energy technology mix 
to best fit their local power requirements. At the feasibility stage, such analysis is difficult to perform quantitatively due to 
the substantial uncertainties associated with many of the key influencing criteria. Moreover, changing climate means the 
renewable energy mix most suited to many regions is also changing as local climates progressively change. A protocol is 
proposed and evaluated for conducting qualitative multi-criteria decision analysis (MCDA) of multiple clean energy alterna-
tives, suitable for specific regional conditions, using the TOPSIS method. This begins with linguistic assessments of a large 
number of pertinent criteria (50 or more) taking into account the diverse preferences of the many stakeholders involved. The 
linguistic assessments are inverted to integer number, fuzzy and intuitionistic fuzzy scoring (IFS) systems. The IFS method 
is shown to integrate uncertainty in a more flexible way. The fuzzy and IFS TOPSIS methods adjust their impact matrices 
with three weight factors: (1) objective weights derived from calculated entropy for each criteria, (2) subjective weights 
associated with preferences expressed by individual representative stakeholders; (3) subjective weights applied to balance 
the preferences among stakeholder groups. The three methods are applied using regionally specific case studies to illustrate 
and compare the clean energy rankings they select for the conditions associated with the specific region evaluated. Fuzzy 
and IFS scoring systems generate slightly different rankings as they capture uncertainty in different ways.

Keywords Feasibility assessment protocol · Future energy mix · Multi-criteria decision analysis (MCDA) · Policy-maker 
preferences · Entropy weights · Subjective weights · Fuzzy/intuitionistic TOPSIS

List of symbols
A  Set of n alternative bidders
Aj  Sum of unweighted criteria scores x for each of n 

alternatives
∼

A
+

  Set of positive ideal solutions for each of n 
alternatives

∼

A
−

  Set of negative ideal solutions for each of n 
alternatives

C  Set of m criteria with which to assess alternatives
dj

−  Euclidian distance from negative ideal solution for 
each of n alternatives

dj
+  Euclidian distance from positive ideal solution for 

each of n alternatives
di  Degree of difference (i.e. 1 minus entropy)

ei  Entropy calculated for each of m criteria in the 
decision matrix

E  Set of entropy values e for m criteria
hi  Normalized entropy for each of m criteria
k  Constant in some entropy equations
μA  Degree of membership of intuitionistic fuzzy set A
�∼
a
  Membership function of triangular fuzzy number a

νA  Degree of non-membership of intuitionistic fuzzy 
set A

p  Weight-adjusted scores for m criteria for set of n 
alternatives

p+  Maximum of weight-adjusted criteria for set of n 
alternatives

p−  Maximum of weight-adjusted criteria for set of n 
alternatives

πA  Intuitionistic index (degree of hesitancy) of intui-
tionistic fuzzy set A

r  Normalized m criteria scores for each of n 
alternatives
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R  Normalized decision matrix (m criteria; n 
alternatives)

RCj  Relative closeness index for each of n alternatives 
for each decision maker

RCg  Integrated relative closeness index for each of n 
alternatives with Wg weights applied

Wc  Criteria weights (subjective) applied by each 
stakeholder

We  Entropy weights (objective) applied to each criteria
Wg  Importance weights applied (subjective) to each 

stakeholder by decision maker
x  Unweighted m criteria scores for n alternatives 

forming decision matrix D
∼
x  Entropy-weighted m criteria scores for n alterna-

tives forming IFS decision matrix D
Z  Weighted intuitionistic fuzzy decision matrix

Introduction

Multicriteria decision-making analysis (MCDA) offers a 
meaningful approach to integrate the multiple dimensions 
involved in sustainable renewable energy technology selec-
tion on various scales, and the policy making required to 
achieve that objective. It can consider the diverse positions 
of multiple stakeholder and balance their influences on 
selections taking into account technical, socio-economic, 
infrastructure and environmental factors (Stein 2013). There 
are particular benefits in applying this approach at the fea-
sibility or exploratory stage of technology selection before 
conducting detailed engineering and cost analysis (Baumann 
et al. 2019a).

MCDA facilitates decision making in the face of multiple 
alternatives, criteria and stakeholders with conflicting pref-
erences enabling selections and rankings to be made more 
transparently and systematically (Diakoulaki and Karangelis 
2007). MCDA techniques have been widely used for renew-
able energy planning and selection for some time (Pohekar 
and Ramachandran 2004) or focused specifically on individ-
ual renewable technologies (Cucchiella and D’Adamo 2015). 
It is well suited for addressing complex problems shrouded 
in uncertainty, with conflicting views on what is, and what 
is not, sustainable. It can also handle data and information 
available in a range of different qualitative and quantitative 
formats (Wang et al. 2009). MCDA can be configured to 
meaningfully evaluate potential future energy mixes (Hong 
et al. 2013; Robeiro et al. 2013), suitable combinations of 
renewable energy technologies for providing sustainable 
energy diversity for specific regions (Shmelev and van den 
Bergh 2016), and for urban energy system planning (Brown 
et al. 2010; Cajot et al. 2017).

MCDA techniques have evolved over the past 40 years 
(Figueira et al. 2005; Greco et al. 2016) with some methods 

integrating fuzzy logic to address uncertainty in their sus-
tainable energy assessments (Awasthi et al. 2011). Devel-
oping generic and hypothetical case studies is a useful 
approach for identifying which criteria should be consid-
ered in the early stages of renewable energy selection (Kurka 
and Blackwood 2013). MCDA techniques are now applied 
routinely for sustainable renewable energy development 
assessments (Kumar et al. 2017). However, a systematic 
protocol for applying MCDA in feasibility-stage assess-
ments of potential future, clean and sustainable energy mixes 
with only qualitative data available has not been previously 
proposed.

There are several MCDA techniques and assessment scor-
ing systems that are widely applied. These include:

• Simple additive weighting (SAW) applying scoring with 
compensation (Chen 2012);

• Analytic hierarchy process (AHP) applying pair-wise 
scoring with compensation (Junior et al. 2014);

• Simple Multi-Attribute Rating Technique (SMART) 
applying utility function scoring with compensation 
(Velasquez and Hester 2013)

• Measuring Attractiveness by a Categorical Based Eval-
uation Technique (MACBETH) applying scoring with 
compensation (Guarini et al. 2018);

• Complex Proportional Assessment (COPRAS) applying 
scoring with compensation (Yucenur et al. 2020)

• Elimination and choice expressing reality (ELECTRE) 
applying pair-wise preference outweighing without com-
pensation (Saracoglu 2015)

• Preference ranking organization method for enrich-
ment evaluations (PROMETHEE) applying pair-wise 
preference outweighing without compensation (Kumar 
et al. 2017); and,

• The order of preference by similarity to an ideal solu-
tion (TOPSIS) applying scoring and goal seeking with 
compensation (Taylan et al. 2014).

All of these MCDA systems are used to assess multi-
dimensional complex scenarios, subject to uncertain val-
ues for their discriminating criteria. The MCDA approach 
makes it possible to consider multiple perspectives of dif-
ferent stakeholder in a structured manner taking uncertainty, 
constraints and biases into account in a flexible manner com-
mencing with linguistic scoring systems (Wood 2016).

Many energy-related MCDA studies consider a relatively 
limited set of criteria and stakeholder groups that lack diver-
sity (Baumann et al. 2019b). Indeed, MCDA methods typi-
cally applied do not consider more than 15 criteria (Riley 
2020). However, the complexity of sustainability issues for 
energy selection at the local and regional level is considered 
sufficient to justify considering a large number of criteria. 
By do so, it facilitates more comprehensive comparisons of 
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the clean energies available that should lead to better con-
sidered energy mix selections taking into account a wider 
range of pertinent issues.

The need for energy mix evaluations and selections is 
not a one-off exercise for any region. In a world experienc-
ing rapidly changing climatic conditions that are impacting 
many regions, precipitation levels are oscillating (Berhail 
et al. 2021), sunlight hours fluctuating (Mega and Medjerab 
2021), wind conditions changing (Puri and Kumar 2021), 
incidents of wildfires increasing (Wood 2021a), and ecosys-
tem impacts accelerating (Wood 2021b) year to year. Conse-
quently, appropriate energy mixes now have to be frequently 
re-evaluated in most regions. In addition, urban expansions 
associated with many cities and towns, particularly in the 
developing world (Elhamdouni et al. 2021) are continu-
ing, alongside changes in the local weather conditions, in a 
highly non-linear manner (Karimuzzaman and Moyazzem 
Hossain 2020). This means that many regions have to scale 
up energy supply to meet growing and changing seasonal 
energy demands, and their prevailing energy mixes cease 
to become fit-for-purpose, forcing them to consider new 
alternatives.

This study is novel in that it develops a fuzzy MCDA tool 
considering 50 criteria across seven distinct categories in its 
assessments, taking into account the preference of 15 diverse 
stakeholders to evaluate 16 renewable energy alternatives. 
The protocol used to assess, weight and compare the alter-
natives is also novel, developed as part of this study, as it 
focuses specifically on the highly uncertain feasibility stage 
of evaluating potential future sustainable energy mixes.

Methods

The method proposed involves a 15-step protocol for effec-
tive and rigorous feasibility assessment of clean energy tech-
nologies devised by the author (“Feasibility assessment of 
clean energy technologies” and “MCDA protocol applied 
and recommended for provisional clean energy technol-
ogy selections”). It applies multi-criteria decision analysis 
(MCDA) assessing multiple technologies (“Multi-criteria 
decision analysis (MCDA) methods”) in terms of a large 
number of criteria, disparate views of a substantial number 
of stakeholders, with different importance weighting applied 
to individual or groups of stakeholders by the decision mak-
ers. To incorporate uncertainty in a transparent way and 
to facilitate calculations in standard spreadsheet software 
the TOPSIS MCDA method is employed configured with 
the ability to apply fuzzy and intuitionistic fuzzy analysis 
based on linguistic scoring assessments applying objective 
and subjective weight adjustments (“TOPSIS configurations 
applied”).

Feasibility assessment of clean energy technologies

Feasibility stage assessment and comparison of the attrib-
utes of clean energy technology alternatives is necessary for 
several purposes. The term “clean” is used to refer to power 
generation technologies with low or zero greenhouse gas 
emissions. As the performance of these technologies varies 
between different regions, what technology works well in 
one area may not be viable in another area.

To prioritize industry assessments and refine long-term 
energy policy and plans, it is necessary for policy makers 
to understand these differences. By doing so, they are able 
to target incentives at specific technologies in specific geo-
graphic areas. Industry also requires such assessments to 
determine what kind of equipment and support services are 
likely to be in demand related to the energy technologies 
deployed based on a range of technical and non-technical 
criteria. This needs to be conducted on a feasibility basis 
before engaging in expensive and time-consuming front-
end engineering and design (FEED) or detailed design for 
specific technologies that may or may not form part of long-
term energy strategy of a region.

Feasibility assessment of clean energy technology is 
a multi-dimensional challenge. It requires the integrated 
consideration of a range of criteria by diverse stakeholder 
groups for the significant number of technology alterna-
tives available, and some combinations of those alternatives 
(Fig. 1), while taking substantial uncertainty into account. 
This benefits from the application of multi-criteria decision-
making methods, particularly those that are transparent and 
relatively easy to calculate and interpret.

In addition to the multi-dimensional considerations sum-
marized in Fig. 1, policy-maker/decision-maker preferences, 
perhaps partly imposed by political and/or commercial con-
siderations for example, also influence such assessments. 
Moreover, taking into account the varying degrees of uncer-
tainty in such assessments makes it essential to apply math-
ematical techniques, such as fuzzy scoring systems, that can 
be meaningfully applied to simple linguistic (qualitative) 
assessments of each criteria relating to each alternative. Fig-
ure 2 illustrates conceptually these additional assessment 
needs.

MCDA protocol applied and recommended 
for provisional clean energy technology selections

The protocol developed and recommended for such fea-
sibility-stage analysis is developed for generic applica-
tion and to exploit a linguistic (qualitative) assessment 
scoring system. Prior to the front-end engineering and 
design (FEED) and/or detailed engineering design and 
costing of specific energy supply development projects the 
uncertainties regarding costs and attainable efficiency are 
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considered too great to accommodate quantitative com-
parisons. The following 15 steps of the adopted protocol 
incorporate fuzzy MCDA.

 1. Specify geographic, technology and energy market 
constraints, goals and objectives;

 2. Identify the clean/low-emission energy supply tech-
nologies as alternatives to include;

 3. Define the pros and cons of each alternative with multi-
discipline expert inputs;

 4. Identify the criteria to evaluate all areas of potential 
impact relating to technology uptake;

 5. Independent multi-disciplined team appraise alterna-
tives with relevant criteria in an impact matrix based 
on linguistic scores;

 6. Determine the stakeholder groups impacted by the 
energy supply alternatives;

 7. Invite stakeholder to indicate their preferences (in the 
form of subjective weights) with respect to each crite-

ria considered (high weights assign more significance 
to certain criteria);

 8. Conduct preliminary qualitative MCDA using integer 
number and fuzzy scoring to translate linguistic assess-
ments using transparent calculations run by easy to 
implement software.

 9. Apply various weightings to the MCDA assessments in 
a sequence (A) objective (entropy-derived) weights for 
some methods; (B) subjective stakeholder weights; and 
(C) subjective decision-maker (or assessment facili-
tator/policy maker) weights assigning relative impor-
tance adjustments to each group of stakeholders;

 10. Restrict the application of maximum threshold values 
and/or vetoes for specific criteria to the decision mak-
ers; preventing individual stakeholders from manipu-
lating these;

 11. Establish a provisional ranking order of suitability for 
those alternatives from the decision-makers’ perspec-
tives. This is likely to be useful for policy makers and 

Fig. 1  Multi-dimensional 
factors involved in feasibility-
stage clean energy assessments 
conducted in this study

Fig. 2  Structural requirements 
of multi-criteria decision analy-
sis for feasibility-stage clean 
energy technology assessments
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potential investors for planning purposes. It is also 
likely to cull the low ranking technologies from further 
consideration in the medium term.

 12. At the FEED/detailed design phase capture more quan-
titative data on multiple criteria and refine the MCDA 
model to integrate both quantitative and qualitative 
scoring. Even in this phase, it is likely that several cri-
teria impacts cannot be quantitatively assessed.

 13. Certain quantitative thresholds and vetoes may be 
introduced for a more focused list of criteria by the 
decision makers from the FEED stage forward, perhaps 
driven by the prevailing regulatory guidelines and lim-
its.

 14. Establish a pre-FID (final investment decision/regula-
tory approval) ranking order of suitability for those 
short-listed alternatives from the decision-makers’ 
perspectives. Such analysis can be used to justify deci-
sions, allocation of incentives, investments and regula-
tory approvals.

 15. Revisit the feasibility stages of the analysis (steps 
1–11) as and when substantial technological break-
throughs, availability and cost reductions materialize 
for certain technologies.

The analysis presented in this study focuses on steps 
1–11 of the protocol described. The point of including steps 
12–15 is to emphasize that the feasibility-stage analysis can 
provide a useful benchmark from which to progress into 
the uptake and development of specific technologies. Those 
latter steps introduce more quantitative information, cap-
tured from Pre-FEED, FEED and detailed design for certain 
criteria assessed, thereby leading to a revised ranking of the 
alternatives.

Multi‑criteria decision analysis (MCDA) methods

MCDA methods are widely applied to problems using quali-
tative inputs (linguistic and/or non-monetary) with and with-
out some quantitative (monetary and/or numerical) inputs 
for some criteria depending on the levels of uncertainty 
involved and the maturity of the available knowledge.

MCDA technique selected

Some MCDA methods (specifically ELECTRE and 
PROMETHEE) establish an outranking order amongst 
the alternatives that avoids compensation and offsetting 
(trade-offs) among criteria scores; low scores in certain 
criteria do not directly offset high scores for other crite-
ria. Such non-compensatory methods can integrate sev-
eral distinct natural scoring/assessment scales without the 
need to normalize scores for each criteria. This provides an 
advantage when aggregating quantitative information for 

development projects of different scales (i.e., MW scales 
in the context of energy supply) to be integrated within 
one decision framework (Figueira et al. 2013). Most com-
pensatory methods can be configured to integrate qualita-
tive and quantitative scoring applied to the various criteria 
under consideration (Figueira et al. 2016). The compensa-
tory methods general achieve this by working with custom-
ized scoring systems and normalizing the scored ranges 
applied to each criteria considered.

The ELECTRE III and PROMETHEE methods can 
be configured to allow stakeholders to suggest and apply 
thresholds and vetoes their criteria preferences, i.e., move 
the right specified in step 10 of the protocol upstream to 
step 7 (“MCDA protocol applied and recommended for 
provisional clean energy technology selections”). This is 
not recommended as such power is almost always used 
inappropriately by certain stakeholders to exclude alterna-
tives that they are strongly opposed to. The compensatory 
MCDA methods that involve criteria trade-offs are difficult 
to configure to allow stakeholders, at an intermediate stage 
of the assessment, the ability to suggest and apply vari-
able thresholds and/or vetoes to specific criteria. For these 
reasons, the authority to apply thresholds and vetoes to 
specific criteria is restricted to the decision maker/policy 
maker to be introduced in the final stages of the assess-
ment in the recommended protocol (i.e., steps 10 and 13). 
This means that the proposed protocol is suitable for both 
compensatory and non-compensatory MCDA methods.

Whatever MCDA method is applied typically a set of 
n alternative scenarios (different development schemes) 
are assessed in terms of their performance using a set of 
m criteria each weighted objectively and/or subjectively. 
Sometimes, it is necessary to decide upon the exclusion 
of certain criteria from the analysis as provisional assess-
ment suggests that they have limited impact or relevance 
based on the opinion of all stakeholders. This enables the 
MCDA methods to focus on the most relevant criteria. 
Another approach is to retain all criteria irrespective of 
their perceived significance and to prioritize the criteria 
by apply objective adjustments to all criteria in the form 
of entropy weights. Entropy weighting avoids discarding 
criteria prematurely from the decision-making process 
and balances their respective contributions independently 
from the subjective weights applied by the stakeholders 
and decision makers.

Several preference ranking schemes have been proposed 
and applied to integrate subjective stakeholder preferences 
with respect to each criteria into MCDA analysis. These 
include:

1. Direct allocation of numerical weights, with the total 
value of all criteria weights assigned by an individual 
stakeholder summing to 1 or, in some cases, 100;
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2. Pairwise comparison of criteria is also widely applied 
and forms a key aspect of the AHP method (Saaty and 
Vargas 2012);

3. Swing weighting (Dieter and Schmidt 2009; Lopes and 
Almeida 2013) assumes that the alternative with the 
lowest criteria score is assigned a utility of 0 and the 
highest criteria score a utility of 1, and those weights are 
then applied in an additive multi-attribute utility func-
tion;

4. Calculating the hypothetical criteria weightings that 
would preferentially select each alternative considered 
(Miettinen and Salminen 1999); and,

5. The Simos and Revised Simos procedures (Simos and 
Maystre 1989; Figueira and Roy 2002), whereby each 
criteria is presented to each stakeholder as one card in a 
set of cards (one card for each criteria). The stakehold-
ers then arrange or rank the set of cards in order of their 
perceived (subjective) importance.

The swing and hypothetical weighting methods are 
criticized by some (Troffaes and Sahlin 2017) for in many 
cases generating extreme and unrealistic criteria weights. 
Such weighting approaches are unlikely to meaningfully 
discriminate between alternatives on a basis that reflects 
reasonable due consideration of each criteria. On the other 
hand, hypothetical cases and swing weights can sometimes 
provide insightful sensitivity cases identifying what degree 
of preference is needed for certain criteria for certain alter-
natives to become high-ranking contenders for selection. 
Stakeholder ranking scheme #1, from the above list, is 
used in the case MCDA analysis presented in this study.

TOPSIS (the order of preference by similarity to an ideal 
solution)

TOPSIS (Hwang and Yoon 1981) is one of the most 
diversely applied MCDA method (Huang et al. 2011). It 
offers the following advantages:

• Multiple criteria (m) and alternatives (n) and stakehold-
ers (l) can be considered;

• Useful results can be generated limited subjective 
inputs, if necessary;

• It is easily coded and readily applied in spreadsheets, 
with or without visual basic for applications (VBA) 
macros, to provide rapid assessments;

• Adaptable to work with combinations of linguistic, 
semi-quantitative and quantitative scoring systems

• Consistent and transparent alternative ranking schemes 
are generated (Khosravanian and Wood 2016; Taylan 
et al. 2014);

• Readily adapted to provide fuzzy assessments and flex-
ibly incorporate uncertainty with or without objective 
entropy weighting (Wood 2016); and

• Suitable for rapid sensitivity testing through by varying 
the subjective weighting assumptions.

The TOPSIS algorithm conducts distance-based uncer-
tainty calculations. To do so it identifies one of the alterna-
tive with the shortest geometric distance from a “positive 
ideal” solution and/or with the longest geometric distance 
from a “negative ideal” solution. Flexibility is introduced 
by the ability to apply objective weights and more than one 
level of subjective weights (Hyde et al. 2005). The method 
can also integrate assessments by multiple decision makers 
(Shih et al. 2007), if necessary, which is a common require-
ment in large complex projects or those owned and operated 
as joint ventures. Thor et al. (2013) suggest TOPSIS outper-
forms AHP, ELECTRE and SAW because of its consistent 
structure, rapid/easy calculation and suitability for handling 
datasets with many attributes. Junior et al. (2014) identified 
similar advantages for TOPSIS over AHP. It is for these 
recognized advantages that the TOPSIS method is applied 
to assess the clean energy technology alternatives.

The TOPSIS method is readily programmable (e.g., in 
Python, Yadav et al. 2019) and is also easy to run trans-
parently in Excel revealing useful intermediate calculation 
steps. For large numbers of criteria, alternatives and stake-
holders, Excel driven by VBA macros (Hyde and Maier 
2006; Wood 2016) executes the technique rapidly, and that 
is the approach employed in this study as it facilitates the 
assessment of multiple sensitivity cases.

TOPSIS determines differences between the scored 
assessments for each alternative. It identifies and incorpo-
rates best and worst scores for each criterion considered. 
Those differences are normalized, typically using a linear 
“square-root-sum-of-squares” formula (Eq. 1), although 
various non-linear vector formulas could be applied (Huang 
et al. 2011):

where xij is the score value assessed for the ith criteria for the 
jth alternative. This yields a normalized (dimensionless) but 
as yet unweighted m by n impact matrix R (Eq. 2):

The unweighted impact matrix can then be adjusted by 
weights or priorities applied to each criterion. This gen-
erates a weighted-normalized impact matrix. Subjective 
weights are commonly applied in one or more steps, for 
example, one step adjusting for stakeholder preferences 

(1)
rij

xij
�∑n

j=1
x2
ij

, with i = 1,… ,m; j = 1,… , n,

(2)R =
[
rij
]
with i = 1,… ,m; j = 1,… , n.
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and a second step adjusting for decision makers’ per-
ception of the relative importance of each stakeholder’s 
assessment. Such adjustments are expressed in the follow-
ing equation:

where pjk represents the summed weighted criteria scores for 
one alternative under consideration, Wcjk is the ith criteria 
weight for alternative j applied by stakeholder k, and Wgk is 
the stakeholder k importance weight applied by the policy 
maker.

In a real-number summation system, the total of the 
weighted criteria (m) scores for each of the alternatives (n) 
could be summed for all the l stakeholders (Eq. 4) to enable 
the overall scores of each alternative to be compared and 
ranked:

where 
∼

Pj is the weight-adjusted cumulative score of alter-
native j incorporating the preferences of all l stakeholders.

Rather than use Eq. 4, TOPSIS establishes the best case 
(Eq. 5) and the worst case (Eq. 6) values among the n alter-
natives for each of the m criteria:

where the A+ vector represents the positive ideal and the A− 
vector represents the negative ideal. p+

i
 is the maximum pij 

value from the j alternatives available for ith criteria, and 
p−
i
 is the minimum pij value from the j alternatives available 

for ith criteria.
Two geometric distance arrays are thereby generated with 

Euclidian distances for each normalized criterion element (i) 
from their respective positive-ideal and negative-ideal solu-
tions. These values are then are then summed to provide an 
assessment for each alternative (j).

A geometric distance separating each alternative from the 
best case for each criterion is established with the following 
equation:

where d+
j
 represents that distance for alternative j from its 

positive-ideal solution A+.

(3)
pjk =

m∑

i=1

xij ∗ Wcjk ∗ Wgk, with i = 1,… ,m;

j = 1,… , n; k = 1,… , l,

(4)
∼

Pj=

l∑

k=1

pjkwith j = 1, ..., n; k = 1, ..., l,

(5)A+ =
(
p+
1
, p+

2
,… , p+

n

)
,

(6)A− =
(
p−
1
, p−

2
,… , p−

n

)
,

(7)d+
j
=

√√√√
m∑

i=1

(
p+
i
− pij

)2
, i = 1,… ,m; j = 1,… , n,

Equation 8 calculates a similar geometric distance for 
each alternative and the worst case for each criterion:

where d−
j
 represents that distance from its negative-ideal 

solution A−.

These two “square-root-sum-of-squares” vectors are 
designed to avoid generating negative numbers and at 
the same time incorporate all criteria for each alternative 
(Eqs. 7, 8). These vectors are then meaningfully combined 
to generate a similarity scale from 0 to 1. That similarity 
scale is usefully expressed as a ratio between the distance 
(separation) from the least attractive (worst cases) and the 
sum of the distances from the best and worst cases (Eq. 9). 
That relationship is referred to as the relative closeness index 
 (RCj):

Equation 9 enables the n alternatives to be ranked accord-
ing to their relative RCj magnitudes. The rank #1 alternative 
has the highest RCg value, because it is located most distant 
from the negative-ideal solution A−.

Step-by-step TOPSIS computations to establish RCg are 
transparent and well documented (Krohling and Campan-
haro 2011; Ghazanfari et al. 2014). Sometimes it is instruc-
tive to calculate two distinct relative closeness indices: 
one that incorporates just the weight adjustments for the 
stakeholder weights Wcjk. This approach adjusts Eq. 3 to 
exclude the weights for stakeholder importance Wgk pro-
vided by the decision or policy maker, or it applies equal 
value Wgk weights to each criteria. This generates the RCj 
relative closeness index. Alternative ranking orders can are 
then established; one based on RCj (excluding stakeholder 
importance adjustments); the other on RCg (including stake-
holder importance adjustments). RCg is the same as RCj if 
weights Wgk are all set the same for each stakeholder.

There is a clear distinction between the TOPSIS rela-
tive closeness indices (Eq. 9) and simple summation scor-
ing (Eq. 4) for each alternative. It is useful to compare the 
results (ranking) obtained from integer number-scoring 
TOPSIS analysis with that derived from simple stake-
holder-weighted linear and non-linear summation scoring 
and ranking schemes, also involving integer numbers from 
simple deterministic numerical scoring scales. In the inte-
ger number analysis, each element of the xij matrix in Eq. 1 
is a single integer number not a fuzzy number. The analy-
sis using integer number-scoring systems do not capture 
any uncertainties in criteria assessments. They, therefore, 

(8)d−
j
=

√√√√
m∑

i=1

(
pij − p−

i

)2
, i = 1,… ,m; j = 1,… , n,

(9)RCg =
d−
j(

d+
j
− d−

j

) , j = 1, ..., n.



1054 Modeling Earth Systems and Environment (2022) 8:1047–1086

1 3

typically require extensive sensitivity analysis to evaluate 
the potential impacts of a range of possible criteria assess-
ment associated with specific alternatives. Applying linear 
and/or non-linear integer number-scoring systems to qualita-
tive linguistic assessments does not on its own capture the 
uncertainty that is inherent or implied using typical linguis-
tic assessments. Involving fuzzy number-scoring systems 
and objective weights broadens TOPSIS analysis to better 
account for inherent biases and assessment uncertainties.

Integer, fuzzy and intuitionistic fuzzy numerical scoring 
with TOPSIS

There are three distinct mathematical approaches typically 
applied for integrating uncertainty with MCDA method-
ologies: (1) applying sensitivity analysis to integer number 
assessments; (2) dealing with criteria scores as fuzzy sets 
(Hsu and Chen 1996); and (3) treating criteria distributions 
as intuitionistic fuzzy sets (IFS) (Atanassov 1986, 1999). 
Simple deterministic integer number scoring for invert-
ing initial linguistic assessments typically fails to take into 
account real-world uncertainties. Moreover, human judg-
ments often tend to be subjective, vague and to an extent 
systematically biased. This, in itself, introduces preferential 
prejudices and an additional degree of uncertainty to the 
MCDA. Such circumstances can be improved by involving 
“fuzziness” concepts.

TOPSIS is easily adapted to incorporate fuzzy logic to 
better account for uncertainty (Majd et al. 2014). Fuzzy logic 
is computed by applying the rules of fuzzy set theory (Zadeh 
1965, 1971) and applying the principles of fuzzy arithme-
tic (Keufmann and Gupta 1991; Zimmermann 1991). This 
approach can improve the representation of different degrees 
of uncertainty associated with TOPSIS criteria assessments 
(Deng 1999). Fuzzy TOPSIS (Shapiro and Koissi 2013) is 
particularly useful for the feasibility-stage analysis of clean 
energy technologies when implementation capital costs, 
plant operating costs and MWh generation capabilities of 
certain technologies deployed in specific locations at various 
scales are highly uncertain.

As an alternative to applying fuzzy set theory to better 
reflect uncertainty in criteria assessments, intuitionistic 
fuzzy set (IFS) concepts can also be integrated with TOPSIS 
analysis to consider uncertainty in a different manner. IFS 
approaches fuzziness (uncertainty) by considering degrees 
of indeterminacy and vagueness rather than defining specific 
overlapping fuzzy distributions.

Fuzzy and IFS methods derive their impact matrix input 
numerical values and calculate associated objective crite-
ria weights differently. Subjective criteria weights are used 
to reflect the preferences (biased judgments) of stakehold-
ers, or objective, calculated considering the distributions 
of impact matrix numerical input values for each criteria 

across all alternatives. The most meaningful analysis is typi-
cally generated by involving a combination of both objective 
and subjective weight adjustments to the impact matrix. It 
is often instructive to conduct fuzzy and IFS TOPSIS with 
and without objective weights and to compare the resulting 
rankings for the alternative considered.

Objective weights can be derived by exploiting “entropy” 
calculations (Chen and Li 2010), which can be determined 
using various methods. Entropy provides insight to the mag-
nitude of vagueness (Shannon 1948) displayed by the crite-
ria scores for different clean energy technology alternatives 
input to the impact matrix. “Fuzziness” expresses a situation 
where imperfect (not fully known) assessments exists within 
the impact matrix, because it is not possible with certainty 
to know whether individual elements of the matrix belong 
or not to a particular value or outcome. An entropy measure 
helps to express how far a set of fuzzy numbers is from a 
deterministic real value (Collan et al. 2015).

De Luca and Termini (1972) adapted probabilistic 
entropy calculations based on Shannon’s (1948) concept 
to suit fuzzy set calculations. Szmidt and Kacprzyk (2001) 
established an intuitionistic fuzzy entropy measure for calcu-
lating IFS entropy-based weights, which has since been fur-
ther developed (Vlachos and Sergiadis 2007). Such entropy-
based weights (Parkash et al. 2008) are used in this analysis 
to determine objective weight adjustments to the TOPSIS 
impact matrix using IFS or fuzzy inputs (Ye 2010; Wood 
2016). The entropy measure, in whatever way it is calcu-
lated, should distinguish between those criteria for which 
the alternative scores show a wide dispersion or uncertainty 
(high entropy) and those criteria for which the alternative 
scores show a lower dispersion or uncertainty (low entropy). 
Each time a criteria assessment score is changed the dis-
tribution of entropy values for the impact matrix will also 
change.

An inverse relationship is applied between the calcu-
lated entropy value and the entropy-based weight value 
used to adjust the impact matrix elements. Criteria with 
relatively low calculated entropy are, therefore, assigned 
high-value entropy weights; criteria with relatively high 
calculated entropy are assigned low-value entropy weights 
Applying a low-valued entropy weight to adjust a decision 
matrix element reduces the relative contribution that crite-
rion will make towards alternative rankings, and vice versa 
(Wang et al. 2007; Wang and Lee 2009). Applying objective 
entropy weights to the criteria values of an impact matrix 
tends to bring the relative contributions made by each cri-
teria to the alternative ranking into balance. Of course, the 
calculated entropy and the derived entropy weights applied 
will change each time the assessments (numerical score) 
assigned to each criteria/alternative changes.

Applying entropy weights to the TOPSIS method often 
result in different alternative rankings compared to integer 
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number-scoring or fuzzy TOPSIS analysis that does not 
apply entropy weighting. That is particularly the case where 
there is a highly variable dispersion of scores for the differ-
ent criteria considered. It is insightful to compare alterna-
tive rankings based on simple linear and non-linear assess-
ments with integer number-scoring TOPSIS, fuzzy TOPSIS 
and IFS TOPSIS methodologies, with and without entropy 
weightings applied to the latter three methods. Objective 
entropy weight adjustments to the impact matrix are typi-
cally complemented by adjustments related to the two sub-
jective weights, which are optionally applied, as they are 
in integer number-scoring TOPSIS analysis. These are the 
subjective criteria weights (Wc) applied by the stakeholders 
and the stakeholders’ importance weights (Wg) applied by 
the decision/policy makers.

Numerical scoring systems applied to invert linguistic 
assessments

Linguistic criteria assessments need to be inverted into 
numerical scales, suitable for integer number, fuzzy or IFS 
TOPSIS analysis. The values selected for those scales are 
themselves subjective. Hence, the values used can ultimately 
influence the derived TOPSIS alternative ranking outcomes 

and require sensitivity testing. Table 1 presents the base case 
linguistic scoring system (left side) and its numerical trans-
lation into integer number, fuzzy and IFS numerical scales.

Fuzzy TOPSIS calculations

Linguistic scores are translated into sets of triangular fuzzy 
numbers (Table 1; Fig. 3) for this study. Trapezoidal sets 
(defined by four input numbers) could be used, but trian-
gular sets are deemed adequate to illustrate the analysis. A 
triangular set (defined by three input numbers) offers a sim-
ple way of expressing uncertainty in fuzzy form (Kahraman 
et al. 2009). The linguistic assessments in the impact matrix 
(an element for each of m criteria and n alternatives) are 
replaced by triplet fuzzy numbers each consisting of a low, a 
central and a low value (Table 1). The individual component 
values of each fuzzy triplet are real numbers belonging to the 
fuzzy set ã [0,1]. Each linguistic assessment is equivalent to 
one triangular component of a set of overlapping triangles 
as illustrated in the right side of Fig. 3. Defined in this way 
the membership function �∼

a
(x) of that triangular function is 

easy to calculate (Fig. 3; left side).
A similar TOPSIS methodology to that described for 

integer number-scoring systems (Eqs.  1–9) is applied 

Table 1  Linguistic assessment terms used to assess the impact matrix together with numerical scoring systems applied to those terms to generate 
linear, non-linear, fuzzy and IFS scales suitable for TOPSIS analysis

Numerical scoring systems applied to linguistic assessments applied in MCDA

Linguistic variables Acronym Fuzzy low Fuzzy mid Fuzzy high Linear score Non-
linear 
score

IFS MU IFS Nu IFS PI hesitancy

No impact (bad) ZZ 0.000 0.000 0.050 0 0 0.025 0.950 0.025
Very poor VP 0.000 0.050 0.250 1 1 0.050 0.900 0.050
Poor P 0.000 0.250 0.500 2 2 0.150 0.750 0.100
Moderate M 0.250 0.500 0.750 3 5 0.425 0.425 0.150
Good G 0.500 0.750 1.000 4 8 0.750 0.150 0.100
Very good VG 0.750 0.950 1.000 5 9 0.900 0.050 0.050
No impact (good) AA 0.950 1.000 1.000 6 10 0.950 0.025 0.025

Fig. 3  Triplet fuzzy number ã 
comprised of three values (a–c). 
Its membership function �∼

a

(x) 
comprises seven overlapping tri-
plets constitute fuzzy set Ã, each 
representing a distinct linguistic 
term as defined in Table 1
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using fuzzy set scores. Fuzzy TOPSIS Euclidean distances 
from the positive-ideal and negative-ideal solutions can be 
derived by applying a vertex method (Eqs. 10 and 11) to 
replace Eqs. 7 and 8 used for integer number-scoring TOP-
SIS. Equations 10 and 11 establish these distances by cal-
culating squared differences between the three values of the 
triplet fuzzy numbers entered into the impact matrix and 
the maximum and minimum triplet values for each criteria 
across all alternatives:

where d+
j
 and d−

j
 are the Euclidian distances from the posi-

tive-ideal solution A+ and the negative-ideal solution A− , 
respectively. The other symbols are equivalent to those used 
in Eqs. 7 and 8 except that a, b, c represent the three values 
comprising triplet ∼a . Equations 10 and 11 are calculated for 
each of the n technology alternatives under consideration.

Fuzzy TOPSIS analysis is also usefully calculated in two 
steps applying separately two distinct subjective weights: 
Wcjk the ith criteria weight for alternative j applied by stake-
holder k; and Wgk the stakeholder k importance weight 
applied by the decision maker. This also leads to the cal-
culation of two distinct closeness ratios:  RCj applying just 
stakeholder preference weights; and RCg applying both 
stakeholder preference weights and stakeholder importance 
weights.

Fuzzy TOPSIS analysis applying objective entropy weights

The fuzzy-triangular sets (triplets) of each element in the 
fuzzy impact matrix is optionally adjusted by entropy 
weights prior to applying the subjective weights ( Wcjk and 
Wgk ). The “fuzzy-TOPSIS-with-entropy” analysis applied 
represents an adaption of that described by Wang et al. 
(2007). It calculates the entropy values by extracting crisp 
numbers from the fuzzy triplets representing each element 
in the unweighted fuzzy impact matrix (Eq. 12):

The crisp set is normalized for each criterion by applying 
the following equation:

(10)

d+
j
=

√√√√
m∑

i=1

(1∕3)
[(
pa+

i
− paij

)2
+
(
pb+

i
− pbij

)2
+
(
pc+

i
− pcij

)2]

(11)

d−
j
=

√√√√
m∑

i=1

(1∕3)
[(
paij − pa−

i

)2
+
(
pbij − pb−

i

)2
+
(
pcij − pc−

i

)2]

(12)xij =
aij + bij + cij

3
, i = 1, ...,m; j = 1, ..., n.

(13)rij = x_ij∕

n∑

j=1

xij, i = 1, ...,m; j = 1, ..., n.

Criterion entropy (e) is then be calculated by applying the 
following equation:

where the constant k = (ln(n))−1 , and n refers to the number 
of alternatives evaluated.

This establishes a set of m criteria entropy values E(Ci), 
which are then used to derive a set of entropy weights (We). 
To achieve this, an inverse criteria entropy relationship is 
expressed as one minus entropy and termed “degree of dif-
ference” (di) derived using (Eq. 15):

where di is inversely correlated to ei so it measures the 
inherent (1 – entropy) variations individually for each cri-
teria across the range of alternatives evaluated (Wang et al. 
2007). High values of di, generate high entropy weights, 
which balance out the relative criteria contributions to the 
impact matrix. The entropy weight wi for criterion i (Eq. 16) 
is one of a set of entropy weights (We), each with a real value 
between 0 and 1:

That set of criteria entropy weights is expressed as 
We =

(
w1,w2,…wi,wm

)
, where We is subject to the con-

straints: wi ≥ 0,
∑m

i=1
wi = 1.

The fuzzy triplets constituting the fuzzy TOPSIS 
unweighted impact matrix are multiplied by the entropy 
weights. These objectively weighted values are subsequently 
adjusted by the two subjective weights ( Wcjk and Wgk).

Intuitionistic fuzzy TOPSIS (IFT) method

The intuitionistic fuzzy sets (IFS) use three metrics (Table 1) 
to define the fuzziness of each element in the fuzzy impact 
matrix. These are: (1) degree of membership (μ); (2) degree 
of non-membership (ν); and, (3) an intuitionistic index, 
derived from a defined relationship between (1) and (2) and 
also referred to as “hesitancy” (π). IFS elements expressed 
in this way characterize the vagueness/uncertainty related to 
each linguistic assessments. It achieves this without the need 
to approximate fuzzy uncertainty distributions (e.g., fuzzy 
triangles or trapezoids).

Atanassov (1999) expressed IFS variable A existing 
within universe of discourse X using the following equation:

(14)ei = −k

n∑

j=1

(
rij ∗ lnrij

)
, i = 1, ...,m; j = 1, ..., n,

(15)di = 1 − E
(
Ci

)
i = 1, ...,m,

(16)wi =
di∑m

i=1
di
, i = 1, ...,m.

(17)A =
{[
x,�A(x), vA(x)

]
|x ∈ X

}
,
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where �A ∶ X → [0,1] and vA ∶ X → [0,1] with the additional 
constraints 0 ≤ �A(x) + �A(x) ≤ 1,∀x ∈ X.

A represents a crisp-number set when μA or νA are binary 
(0 or 1), in which case π = 0. Hung and Chen (2009) describe 
IFS relationships in more detail. As μA + νA for uncertain 
assessments is less than 1 (πA > 0), the intuitionistic index 
(πA or hesitancy) of x in A, represents the key uncertainty 
indicator. That index is calculated by the following equation:

where πA is proportional to uncertainty for each criterion 
assessment; it relates to the degree of membership of x in 
IFS A (which is uncertain). The μ, ν and π values assigned 
to specific linguistic assessments can be varied to suit the 
overall uncertainty levels of specific projects/criterion. 
Higher uncertainty is reflected in higher π values. On the 
other hand, if an outcome is known with certainty then it 
should be reflected by a crisp assessment value with π = 0.

Calculating and applying objective entropy weights is 
also possible in IFS TOPSIS analysis. The IFS entropy cal-
culation applied in this study is that adapted and made more 
flexible by Wood (2016) from a method suggested by Szmidt 
and Kacprzyk (2001) using the following equation:

The E
(
Ci

)
 set of IFS-calculated entropy values (Eq. 19) 

are then normalized, with the flexible adjustment factor S 
(Wood 2016) included in that normalization step, by apply-
ing the following equation:

The criterion normalized entropy ( hi ) in the IFS impact 
matrix will vary slightly depending on the value of S applied 
to either dampen or accentuate, as necessary, the normalized 
entropy range. It is useful to be able to vary the value of S 
as a sensitivity test. The value used for S is typically varied 
between about 0.01 and 0.5. If S is set to zero, then the 
criterion calculated with maximum unnormalized entropy 
value has a normalized entropy value of 1. S adjustment 
factors > 0 ensure that the highest entropy value is less than 
1 meaning that criterion will not be assigned a zero or close 
to zero entropy weight.

Alternative IFT entropy calculations have been suggested 
and applied (Ye 2010; Hung and Chen 2009). Equation 20 
is preferred because it is easy to calculate and flexibly vary 
by adjusting its S factor.

(18)�A(x) = 1 − �A(x) − vA(x),

(19)
E
(
Ci

)
=

1

n

n∑

j=1

min
[
�ij

(
Ci

)
, vij

(
Ci

)]
+ �ij

(
Ci

)

max
[
�ij

(
Ci

)
, vij

(
Ci

)]
+ �ij

(
Ci

) ,

i = 1, ...,m; j = 1, ..., n.

(20)hi =
E
(
Ci

)

max
[
E
(
Ci

)]
+ S

(
max

[
E
(
Ci

)]) , i = 1, ...,m.

The degree of difference (di) is established as 1 − hi 
(i.e., Eq. 15 applied with E(Ci) replaced by hi). The IFS 
entropy weight for each of the m criteria is then calculated 
with Eq. 16 in the same manner described for fuzzy TOP-
SIS. Matrix Z adjusts the impact matrix D with the entropy 
weight vector We, as expressed by the following equations:

with

Equation 22 applies the entropy weights as exponents to 
the IFS elements as suggested by Atanassov (1999). This 
is distinct from the application of entropy weights in fuzzy 
TOPSIS, in which the impact matrix triplet values are mul-
tiplied by We.

The distances from the ideal solutions are then derived for 
each criterion. Equation 23 calculates the geometric distance 
between each alternative and the best case for each criterion:

where d+
j
 is equivalent to the TOPSIS value calculated in 

Eq. 7. μ and v are from the IFS impact matrix, where symbol 
p means the values are entropy weighted.

p�+
i
 and pv+

i
 are the maximum μ and v values for criteria 

i.
Equation 24 calculates the geometric distance between 

each alternative and the worst case for each criterion:

where d−
j
 is equivalent to the TOPSIS value calculated in 

Eq. 8. p�−
i
 and pv−

i
 are the minimum μ and v values for cri-

teria i.
The entropy-weighted impact matrix is then ready for 

adjustment by the subjective weights ( Wcjk and Wgk ) to yield 
RCj and RCg closeness ratios, respectively, using Eq. 9 as 
applied for integer number-scoring TOPSIS analysis.

TOPSIS configurations applied

The TOPSIS MCDA analysis applied in this study is con-
figured to specifically:

(21)Z = We × D =
[∼

Xij

]
, i = 1, ...,m; j = 1, ..., n,

(22)
∼
xij =

[
1 −

(
1 − �ij

)Wi , vij
Wi

]
, i = 1, ...,m;j = 1, ..., n.

(23)
d+
j
=
∑m

i=1

[(
p�+

i
− p�ij

)
+
(
1 −

(
pv+

i
− pvij

))]
∕2,

i = 1, ...,m; j = 1, ..., n,

(24)
d−
j
=
∑m

i=1

[(
p�ij − p�−

i

)
+
(
1 −

(
pv+

i
− pvij

))]
∕2,

i = 1, ...,m; j = 1, ..., n,
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1. Assess uncertainty more implicitly than relying on deter-
ministic analysis plus sensitivity cases

2. Convert the impact matrix into wholly linguistic (quali-
tative) assessments, on the basis that the information 
currently available (feasibility stage) for all criteria 
considered is too uncertain to be meaningfully assessed 
quantitatively;

3. Inhibit the ability of individual stakeholders to specify 
criteria thresholds or vetoes. This is done to avoid the 
likelihood of stakeholders manipulating that power to 
subvert the ability of MCDA to provide meaningful inte-
grated analysis;

4. Add the ability of decision makers to apply importance 
weights to the stakeholders contributions, i.e., a second/
higher level of subjective weighting. Ultimately, deci-
sion makers would also be granted the power to apply 
overriding thresholds and vetoes, however, that is not 
considered appropriate for the qualitative stage of anal-
ysis considered here. It would become appropriate at 
a later stage of analysis (pre-FEED to detailed design 
stage) when sufficient information is available on at 
least some economic, environmental criteria to conduct 
a meaningful semi-quantitative assessment.

5. Evaluate the impact of applying objective criteria 
weights using calculated entropy to improve the balance 
of the relative contributions to the alternative ranking.

Results

In this section, the model proposed in “Method” is applied 
to an assessment for a mid-latitude marine area conducted 
by the author. It is multi-dimensional in that it considers 16 
clean energy alternative technologies in terms of 50 criteria, 
grouped into 7 distinct categories, from the perspective 15 
different stakeholders with 5 cases assigning different impor-
tance weightings to those stakeholders (“Assessing alter-
natives in terms of criteria and stakeholder preferences”). 
Distinct integer number, fuzzy and IFS scoring systems are 
applied to the TOPSIS analysis. The clean energy alterna-
tives are then ranked according to each MCDA method 
applied (“Integer number-scoring, fuzzy and IFS TOPSIS 
evaluations of the case study clean energy impact matrix”). 
The entropy (objective) weights calculated for the fuzzy 
and IFS methods are presented and compared in “Integer 
number-scoring, fuzzy and IFS TOPSIS evaluations of the 
case study clean energy impact matrix”.

Assessing alternatives in terms of criteria 
and stakeholder preferences

The base MCDA case evaluated to demonstrate the pro-
posed method’s capabilities is set in a representative, but 

unspecified, mid-latitude maritime region based on an 
assessment conducted by the author. Sixteen clean energy 
alternatives are assessed using 50 criteria with preferences 
concerning the relative importance of those criteria indicated 
by 15 individual stakeholders. Various sensitivity cases mak-
ing adjustments to the base case are evaluated, together with 
assessments for other geographically distinct regions. Each 
clean energy alternative is assessed linguistically (Tables 2a 
and 2b), using the scoring systems of Table 1. In practice, 
it is more objective for such assessments to be provided by 
a multi-disciplined advisory team that is independent of the 
stakeholder’s providing their preferences.

The individual alternatives, criteria and stakeholders are 
drawn from the categories identified in Fig. 1. Specifically, 
the 16 clean energies evaluated are:

 1. Solar photovoltaic (PV) parks
 2. Solar thermal plants
 3. Offshore wind
 4. Onshore Wind
 5. Hybrid PV plus wind facility plus utility scale energy 

storage battery
 6. Biomass
 7. Run-of-river hydro
 8. Large-scale hydro with integrated pumped storage 

facility
 9. High-temperature geothermal
 10. Small-scale modular nuclear reactor
 11. Large-scale nuclear reactor
 12. Renewable (“green”) hydrogen energy plant
 13. Natural gas combined-cycle gas turbine (CCGT) with 

CCS
 14. Hybrid solar PV plus natural gas CCGT plus CCS
 15. Hybrid wind plus natural gas (CCGT) pus CCS
 16. Tidal wave energy

The 15 stakeholder preferences (Table 3a and 3b) taken 
into consideration are:

Environment category

1. Environmental regulator
2. Environmental non-governmental organization (NGO)

Community category

3. General community representative
4. Local community representative
5. Indigenous community representative

Academia category

6. Academic: social science expert
7. Academic: science/energy expert
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Table 2a  Clean energy technology impact matrix (50 criteria versus alternative 1–8 of 16) with linguistic assessments for a mid-latitude mari-
time region

Solar PV 
parks

Solar thermal Offshore 
wind

Onshore 
wind

PV + wind  + util-
ity scale battery

Biomass Run of 
river 
hydro

Large-scale 
hydro pumped 
storage

Criteria Sub-criteria Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 Alt 7 Alt 8
1 Resource 

availability
G G VG G G G M M

2 Intermittency 
issues/need 
for backup 
supply

G G VG G G G M M

3 Overall 
security and 
contribution 
to electric-
ity supply

P M M P G VG M G

4 Compatibility 
with small 
grids

M M G M G M P M

Resource features
5 Scope for 

technology 
improve-
ments

VG M VP G G G VG VP

6 Life expec-
tancy of 
equipment

VG G VG G G M M M

7 Vulnerability 
to global 
commodity 
markets

M G M G M VG VG VG

8 Dependency 
on complex/
imported 
technolo-
gies

G VG VG VG VG VG VG VG

9 Carbon 
capture 
required for 
zero emis-
sions

P G G VG VG VG VG VG

10 Diverse 
ownership 
competition 
opportuni-
ties

AA AA AA AA AA AA AA AA

11 Oligopoly 
(utility) 
domination 
risks

AA M M AA AA G AA P

12 New power 
transmis-
sion/conver-
sion needs

AA P VP AA AA VG VG ZZ
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Table 2a  (continued)

Solar PV 
parks

Solar thermal Offshore 
wind

Onshore 
wind

PV + wind  + util-
ity scale battery

Biomass Run of 
river 
hydro

Large-scale 
hydro pumped 
storage

Infrastructure
13 Distance 

to market 
(fuel sup-
ply chain 
length)

P G VP P P G M G

14 Pressurized 
containment 
needs

VG G VP G VG VG G M

15 Power or 
fuel storage 
infrastruc-
ture needs

AA G AA AA AA G AA AA

16 Flexibility 
(ability to 
stop/start 
quickly any 
time)

P P P P M P M M

17 Logistic/
operation 
complexity

M P G G VG VG VG VG

Operations
18 Maintenance 

and refur-
bishment 
require-
ments

G P M G M VG VG VG

19 Cooling/
cleaning 
require-
ments

P P VP M M VG VG VG

20 Energy effi-
ciency

P P VG VG M G VG VG

21 Power unit 
cost of sup-
ply

M G G M G P G VG

22 Ability to 
secure 
equity and 
debt finance

G M M G G M G VG

23 Profitable 
viability of 
projects

G G G G G G M G

Economic
24 Wholesale 

delivered 
electricity 
price

G M G G G M G G

25 Scope for 
substantial 
cost reduc-
tions

VG M G G G M G VG

26 Vulnerability 
to consum-
able costs 
(incl. fuels)

G G G M G P P P
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Table 2a  (continued)

Solar PV 
parks

Solar thermal Offshore 
wind

Onshore 
wind

PV + wind  + util-
ity scale battery

Biomass Run of 
river 
hydro

Large-scale 
hydro pumped 
storage

27 Tax revenue 
generated

M G M G G M VG VG

28 Tax incen-
tives/
subsidies 
required

G M M G G M M G

29 Exposure 
to high 
decom-
missioning 
costs

M P P M M M M VG

30 Employment 
created and 
sustained

G M M G G G G M

31 Potential 
negative 
impacts 
on public 
health

G G VG G G G P M

32 Safety 
(likelihood/
severity of 
accidents)

G G VG G G G VG VG

Social
33 Security (vul-

nerability to 
attack)

VG G G VG VG VG VG G

34 Proximity of 
supply to 
residential 
areas

VG M G VG G G VG G

35 Need for 
local supply 
support 
industries

P G VG P M G M G

36 Impacts on 
valued sites 
and land-
scapes

VG VG VG VG VG VG M M

37 Noise crea-
tion

M G VG P P G G P

38 Traffic move-
ments

VG G VG P M G VG VG

39 Local 
lifestyle 
impacts

M G VG M M M VG VG

40 Specialist 
legislation 
required

G M VG M M M VG M

Legal
41 Compatible 

with small-
scale power 
purchase

G VG M G M G VG G
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8. Academic: engineering expert

Government category

 9. Central government
 10. Regional/local government

Judiciary category

 11. Legislature/judiciary

Regulator category

 12. Power system regulator

Industry category

 13. Power grid operator
 14. Power generator (utility)
 15. Technical service provider to the power industry

Fifty criteria were selected by which to evaluate each 
clean energy alternatives with the 7-point linguistic assess-
ment defined in Table 1. These criteria belong to the seven 
categories distinguished in Fig. 1. Specifically, they are:

Resource category

 1. Resource availability.
 2. Intermittency issues and the need for backup power 

supply.
 3. Overall security and contribution to electricity supply.
 4. Compatibility with small-scale grids.
 5. Scope for technology improvements.
 6. Life expectancy of equipment.
 7. Vulnerability to global commodity markets.
 8. Dependency on complex and/or mainly imported tech-

nologies.
 9. Carbon capture and sequestration required to achieve 

low GHG emissions.
 10. Diverse ownership and competition opportunities.
 11. Oligopoly (utility) domination risks.

Table 2a  (continued)

Solar PV 
parks

Solar thermal Offshore 
wind

Onshore 
wind

PV + wind  + util-
ity scale battery

Biomass Run of 
river 
hydro

Large-scale 
hydro pumped 
storage

42 Carbon cap-
ture liability 
legislation 
needed

VG G VP VG G G VG VP

43 Associated 
life-cycle 
GHG emis-
sions

AA AA AA AA AA AA AA AA

44 Associated 
other pollu-
tion/waste 
products

G G G G G M VG M

45 Water usage M M VG VG M M VG VG
Environmental
46 Land usage G P AA AA G P G M
47 Waste heat 

emissions
P M VG P M P G VP

48 Consuming 
rare metals/
toxic mate-
rials

VG P VG VG G P VG VG

49 Negative 
ecosystem/
ecology 
impacts

P G VG VG P VG VG VG

50 Negative aes-
thetic/visual 
impacts

M M G M M P G P

This is used together with Table 2b as input for TOPSIS analysis
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Table 2b  Clean energy technology impact matrix (50 criteria versus alternative 9–16 of 16) with linguistic assessments for a mid-latitude mari-
time region

High-temp 
geothermal

Small 
modular 
reactors

Large-
scale 
nuclear

Renew-
able 
hydrogen

Gas 
CCGT 
with CCS

Hybrid 
solar PV 
gas + CCS

Hybrid 
wind 
gas + CCS

Tidal wave energy

Criteria Sub-criteria Alt 9 Alt 10 Alt 11 Alt 12 Alt 13 Alt 14 Alt 15 Alt 16
1 Resource availability P VG VG VP VG VG VG P
2 Intermittency issues/

need for backup 
supply

P VG VG VP VG VG VG P

3 Overall security and 
contribution to 
electricity supply

VG VG VG G VG VG VG M

4 Compatibility with 
small grids

P M G M VG VG VG VP

Resource features
5 Scope for technology 

improvements
P G VP G P P P M

6 Life expectancy of 
equipment

P VG P G G G G M

7 Vulnerability to 
global commodity 
markets

VG VG VG G VG VG VG P

8 Dependency on 
complex/imported 
technologies

VG G G VG M M M VG

9 Carbon capture 
required for zero 
emissions

VG P P G G G G VG

10 Diverse ownership 
competition oppor-
tunities

AA AA AA AA ZZ ZZ ZZ AA

11 Oligopoly (utility) 
domination risks

P P VP M P P P M

12 New power transmis-
sion/conversion 
needs

VP VP ZZ P P P P G

Infrastructure
13 Distance to market 

(fuel supply chain 
length)

G M VG G VG VG VG P

14 Pressurized contain-
ment needs

P G M G G G G P

15 Power or fuel storage 
infrastructure needs

P P P VP P P P AA

16 Flexibility (ability to 
stop/start quickly 
any time)

M G M VP G G G M

17 Logistic/operation 
complexity

G G P G VG G VG P

Operations
18 Maintenance and 

refurbishment 
requirements

M P VP P P P P M

19 Cooling/cleaning 
requirements

P M P M M P P P

20 Energy efficiency M M P M G M G VG
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Table 2b  (continued)

High-temp 
geothermal

Small 
modular 
reactors

Large-
scale 
nuclear

Renew-
able 
hydrogen

Gas 
CCGT 
with CCS

Hybrid 
solar PV 
gas + CCS

Hybrid 
wind 
gas + CCS

Tidal wave energy

21 Power unit cost of 
supply

ZZ G M M VG G G P

22 Ability to secure 
equity and debt 
finance

G VG VG G G G G P

23 Profitable viability of 
projects

P M VP G G G G VP

Economic
24 Wholesale delivered 

electricity price
P M P M G G G P

25 Scope for substantial 
cost reductions

M VG VG G G G G P

26 Vulnerability to con-
sumable costs (incl. 
fuels)

P G P G M M M G

27 Tax revenue gener-
ated

VG M P G M G G G

28 Tax incentives/subsi-
dies required

M G M M M M M P

29 Exposure to high 
decommissioning 
costs

M G M M G G G P

30 Employment created 
and sustained

M M VP M M M M M

31 Potential negative 
impacts on public 
health

M M G M G G G M

32 Safety (likelihood/
severity of acci-
dents)

G G P G G G G VG

Social
33 Security (vulnerabil-

ity to attack)
G VG M M G G G G

34 Proximity of supply 
to residential areas

G G M M G G G VG

35 Need for local supply 
support industries

G M G M G G G VG

36 Impacts on valued 
sites and landscapes

G G VG M G VG VG G

37 Noise creation M G P G G M M M
38 Traffic movements G G G VG G G M VG
39 Local lifestyle 

impacts
G G M G G M M G

40 Specialist legislation 
required

M G P M G M M M

Legal
41 Compatible with 

small-scale power 
purchase

G M ZZ G P P P G

42 Carbon capture 
liability legislation 
needed

M M VP G P G G VG

43 Associated life-cycle 
GHG emissions

AA AA AA AA ZZ ZZ ZZ AA
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Infrastructure category

 12. New power transmission and conversion needs.
 13. Distance to market (power and equipment supply chain 

lengths).
 14. Pressurized containment needs.
 15. Power or energy storage infrastructure needs.

Operations category

 16. Flexibility (ability to stop/start quickly at any time).
 17. Logistics and operational complexity.
 18. Maintenance and refurbishment requirements.
 19. Cooling and/or cleaning requirements.
 20. Energy generation and supply efficiency.

Economic category

 21. Power unit cost of supply.
 22. Ability to secure equity and debt finance for develop-

ment.
 23. Profitable viability of development projects.
 24. Wholesale delivered electricity price.
 25. Scope for substantial cost of supply reductions.
 26. Vulnerability to consumable costs (including fuels).
 27. Tax revenue generated.
 28. Tax incentives or subsidies required.
 29. Exposure to high decommissioning costs.

Social category

 30. Employment created and sustained.
 31. Potential negative impacts on public health.
 32. Safety: likelihood and/or severity of accidents.

 33. Security: vulnerability to attack.
 34. Proximity of power supply to residential areas.
 35. Need for local suppliers and/or support industries.
 36. Impacts on valued sites and landscapes.
 37. Noise creation.
 38. Traffic movements.
 39. Local lifestyle impacts.

Legal category

 40. Specialist legislation required.
 41. Compatible with small-scale power purchase agree-

ments.
 42. Carbon capture and sequestration liability legislation 

needed.

Environmental category

 43. Associated life-cycle GHG emissions.
 44. Associated other pollution risks and waste production.
 45. Water usage.
 46. Land usage.
 47. Waste heat emissions.
 48. Consuming rare metals and/or using toxic materials.
 49. Negative ecosystem/ecology impacts.
 50. Negative aesthetic/visual impacts.

Tables 3a and 3b reveal that the different stakeholder 
groups hold quite different views on the criteria prefer-
ences, as would be the case in all real-world examples. In 
the base case example, government and industry stakehold-
ers have high preferences for the resource, infrastructure, 
operations and economic criteria, whereas environmental 
and community stakeholders have high preferences for the 

Table 2b  (continued)

High-temp 
geothermal

Small 
modular 
reactors

Large-
scale 
nuclear

Renew-
able 
hydrogen

Gas 
CCGT 
with CCS

Hybrid 
solar PV 
gas + CCS

Hybrid 
wind 
gas + CCS

Tidal wave energy

44 Associated other 
pollution/waste 
products

G G G VG G G G VG

45 Water usage P P VP VG G M G VG
Environmental
46 Land usage P M VP VP ZZ ZZ ZZ ZZ
47 Waste heat emissions M G P G G M M VG
48 Consuming rare met-

als/toxic materials
P P VP M P M M VG

49 Negative ecosystem/
ecology impacts

VG M P VG VG M VG VG

50 Negative aesthetic/
visual impacts

M G P M M M M M

This is used together with Table 2a as input for TOPSIS analysis
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Table 3b  Individual stakeholder preferences, for stakeholders #1 to #8 expressed on scale of 0 (Low) to 10 (high) for all 50 criteria assessed in 
relation to the clean energy technologies considered

Sh9 Sh10 Sh11 Sh12 Sh13 Sh14 SH15

High level Criteria Sub-criteria (each  
scored 0–10)

Central 
govern-
ment

Regional 
govern-
ment

Legi- 
slature/
judiciary

Power 
system 
regulators

Power grid 
opera-
tors

Power 
generators

Technical 
service 
providers

1 Resource availability 10 8 5 7 10 10 5
2 Intermittency issues/need 

for backup supply
8 10 5 10 10 10 8

3 Overall security and 
contribution to electricity 
supply

8 8 8 10 10 10 7

4 Compatibility with small 
grids

8 10 6 8 8 10 7

Resource features 5 Scope for technology 
improvements

8 5 2 8 7 9 7

6 Life expectancy of equip-
ment

5 9 7 10 10 10 5

7 Vulnerability to global 
commodity markets

10 8 6 9 10 10 6

8 Dependency on complex/
imported technologies

8 8 5 9 8 9 5

9 Carbon capture required 
for zero emissions

9 7 8 8 10 10 5

10 Diverse ownership compe-
tition opportunities

8 9 5 10 8 10 5

11 Oligopoly (utility) domina-
tion risks

8 9 5 10 5 8 7

12 New power transmission/
conversion needs

7 7 5 10 5 10 7

Infrastructure 13 Distance to market (fuel 
supply chain length)

7 9 4 9 5 10 5

14 Pressurized containment 
needs

4 4 9 10 7 8 5

15 Power or fuel storage 
infrastructure needs

4 4 4 10 5 10 5

16 Flexibility (ability to stop/
start quickly any time)

7 9 5 10 10 10 6

17 Logistic/operation com-
plexity

5 7 5 9 8 10 6

Operations 18 Maintenance and refur-
bishment requirements

4 7 5 7 10 10 6

19 Cooling/cleaning require-
ments

4 6 5 7 8 9 5

20 Energy efficiency 9 10 5 10 8 10 5
21 Power unit cost of supply 10 10 7 10 8 10 7
22 Ability to secure equity 

and debt finance
9 9 7 8 9 10 8

23 Profitable viability of 
projects

8 6 7 8 9 10 8
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Table 3b  (continued)

Sh9 Sh10 Sh11 Sh12 Sh13 Sh14 SH15

Economic 24 Wholesale delivered elec-
tricity price

7 10 7 8 8 10 7

25 Scope for substantial cost 
reductions

8 8 5 7 8 8 5

26 Vulnerability to consum-
able costs (incl. fuels)

7 9 5 8 8 10 6

27 Tax revenue generated 10 9 8 7 5 4 6

28 Tax incentives/subsidies 
required

9 7 7 7 7 6 6

29 Exposure to high decom-
missioning costs

7 7 7 8 9 7 6

30 Employment created and 
sustained

10 10 7 7 6 6 10

31 Potential negative impacts 
on public health

10 10 8 8 9 9 9

32 Safety (likelihood/severity 
of accidents)

10 10 8 10 10 10 10

Social 33 Security (vulnerability to 
attack)

8 9 9 9 10 8 7

34 Proximity of supply to 
residential areas

5 8 9 8 7 6 6

35 Need for local supply sup-
port industries

7 10 5 7 7 8 10

36 Impacts on valued sites 
and landscapes

8 9 7 7 6 6 5

37 Noise creation 8 9 5 7 8 6 5

38 Traffic movements 8 9 5 7 5 5 5

39 Local lifestyle impacts 8 9 7 7 6 6 5

40 Specialist legislation 
required

8 7 10 7 9 7 5

Legal 41 Compatible with small-
scale power purchase

6 8 8 7 9 9 5

42 Carbon capture liability 
legislation needed

8 7 10 7 9 9 7

43 Associated life-cycle GHG 
emissions

8 8 7 7 6 6 5

44 Associated other pollution/
waste products

8 10 7 7 6 6 5

45 Water usage 8 10 7 9 8 8 5

Environmental 46 Land usage 8 10 7 9 7 8 5

47 Waste heat emissions 5 5 7 8 6 6 5

48 Consuming rare metals/
toxic materials

6 9 8 7 6 8 7

49 Negative ecosystem/ecol-
ogy impacts

9 10 8 8 8 8 8

50 Negative aesthetic/visual 
impacts

7 9 8 8 7 5 5

These 50 preference inputs are normalized to sum to 1 for each stakeholder to use as stakeholder weights in the TOPSIS models
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most of the higher ranking alternatives are selected from 
Alt1 to Alt8 (except for Alt2—solar thermal). On the other 
hand, most of the lower ranking alternatives are selected 
from Alt9 to Alt16. However, the detailed ranking order of 
alternatives varies from MCDA method to method. The two 
methods that include fuzzy scoring and objective weighting 
are considered to provide the most reliable rankings. Fuzzy 
TOPSIS with entropy weight selects the top-five alternatives 
as Alt7 > Alt4 > Alt5 > Alt1 > Alt6. This compares to the IFS 
TOPSIS with entropy selection of the top-five alternatives 
as Alt7 > Alt5 > Alt3 > Alt4 > Alt6. On the other hand, the 
bottom-five alternatives are Alt11 < Alt9 < Alt14 < Alt15 < 
Alt13 for Fuzzy TOPSIS with entropy and Alt11 < Alt9 < A
lt16 < Alt14 < Alt15 for IFS TOPSIS with entropy.

The entropy and entropy weight values calculated for the 
fuzzy TOPSIS and IFS TOPSIS methods are listed in Table 6 
for the base case assumptions and compared in Fig. 4. The 
entropy weights applied by both methods are quite distinct for 
base case assumptions due to their different scoring systems 
(Table 1) and allocation of uncertainty. The fuzzy TOPSIS 
entropy weights cover a range of 0.088 compared to a range 
of just 0.028 for IFS TOPSIS with S = 0.2 (Table 6).

It is apparent from Fig. 4 that the fuzzy TOPSIS method 
calculates particularly high entropy weights (low entropy) 
for two criteria: water use (Criteria #45) and oligopoly domi-
nation risks (Criteria #11). The other 48 criteria cover a 
weight range similar to that calculated by the IFS TOPSIS 
method (Fig. 4). The allocation of higher significance to 
these two criteria by the objective weights applied by the 
fuzzy method contributes to its different order of ranking 
compared to the IFS method. For the IFS method, it is car-
bon capture required (Criteria #9) and carbon capture leg-
islation required (Criteria #42) that are assigned the highest 

environmental and social criteria. Heatmap displays of 
Tables 3a and 3b (not shown due to the large number of cri-
teria considered) are readily able to visually highlight these 
differences.

Policy/decision makers initially assign equal stake-
holder importance weightings to each of the independent 
stakeholders in the base case evaluation. However, four 
additional cases were evaluated in which the stakeholder 
importance weights (Table 4) were varied, either to bal-
ance the contributions between the stakeholder category 
(Fig. 1), or to favor one or more stakeholder categories 
preferentially. This is highlighted by the heat-map shad-
ing in Table 4.

Integer number‑scoring, fuzzy and IFS TOPSIS 
evaluations of the case study clean energy impact 
matrix

The base case assumptions convert the linguistic scoring 
(Tables 2a, 2b) into numerical scores according to the scor-
ing scales used for eight distinct MCDA methods applied, 
as specified in Table 1. The 15 stakeholder weights derived 
from their preferences expressed in Tables 3a and 3b are 
then applied. In the base case, it is assumed that the deci-
sion maker’s importance weights are applied equally to 
each stakeholder (i.e., 1/15 = 0.06667 weight). The base 
case analysis results using eight different MCDA methods 
described in “Results”, are shown in Table 5 in terms of the 
ranking order derived for the 16 alternative clean energies 
considered (rank “1” is best; rank “16” is worst).

For all eight MCDA methods, the run of river hydro 
(Alt7) is ranked top (#1) and large-scale nuclear is ranked 
bottom (#16) for the base case. For all MCDA methods, 

Table 4  Stakeholder importance 
weight cases considered in the 
TOPSIS analysis

Case#1 is used as the base case in this analysis. Heat map highlights (in red/green)) the stakeholders given 
preferential importance weights in each case. Case #1 is the base case where all stakeholders are assigned 
equal importance



1071Modeling Earth Systems and Environment (2022) 8:1047–1086 

1 3

entropy weight of 0.0343. Applying an integer number score 
for assessments AA and ZZ rather than fuzzy scores does not 
change the entropy weights significantly (Table 6).

The rebalancing of the influence of the criteria by apply-
ing the entropy weights tends to redress the balance of the 
unweighted scores by increasing the influence of those criteria 
assigned the highest entropy weights at the expense of those 
criteria assigned the lowest entropy weights. Two points need 
to be born in mind: (1) the objectively weighted scores are sub-
sequently adjusted, firstly by the subjective weightings applied 
by the stakeholders, and then by the stakeholder importance 
weights applied by decision makers, if required; and, (2) as the 
linguistic assessments applied to any criteria for any alternative 
change, the entropy for that criteria is also likely to change, 
thereby influencing the entropy weights applied, and potentially 
the relative rankings of the alternatives.

The balance of uncertainty is relatively evenly distrib-
uted across the base case fuzzy distribution-scoring system 
applied (Table 1). On the other hand, for the IFS scoring sys-
tem (Table 1) uncertainty is greatest towards the middle of 
the scoring scale (score “M”) and decreases to the extremes 
of the scale (scores “AA” and “ZZ”). This is so because score 
“M” has the highest minimum to maximum ratio [(Mu + hesi-
tancy)/(Nu + hesitancy) = 1] for M scores in which Mu = Nu 
(Table 1). On the other hand, “AA” and “ZZ” have the lowest 
hesitancy and minimum to maximum ratio compared to the 
other linguistic assessments in the IFS scoring scheme applied 
(Table 1). It is this minimum to maximum ratio that has the 
greatest influence on the IFS entropy calculation. The criteria 
that have the least number of assessments close to the center 
of the scoring range tend to be associated with the lowest 
calculated IFS entropy values and vice versa.

Table 5  Results applying base case assumptions (see text) for eight MCDA methods: four methods applying integer number scoring to the lin-
guistic assessments; four methods (right-side columns) applying fuzzy and IFS scoring; six of the eight methods involve TOPSIS

MCDA method rankings derived by applying table 2 linguistic assessments for base case evaluation

Base case (1) mid-latitude 
maritime region

MCDA scoring methods

Clean energy alternatives Integer 
number lin-
ear scoring

Integer 
number 
non-linear 
scoring

Integer 
number lin-
ear scoring 
TOPSIS

Integer 
number 
non-linear 
scoring 
TOPSIS

Fuzzy TOP-
SIS without 
entropy 
weights

Fuzzy TOP-
SIS + entropy 
weights

IFS TOPSIS 
without 
entropy 
weights

IFS TOP-
SIS + entropy 
weights

Alt 1 Solar PV parks 5 6 6 6 5 4 6 6
Alt 2 Solar thermal 10 11 13 11 11 9 11 11
Alt 3 Offshore wind 3 4 2 3 3 6 3 3
Alt 4 Onshore wind 2 3 5 5 4 2 2 4
Alt 5 PV + wind + util-

ity scale battery
4 2 3 2 2 3 5 2

Alt 6 Biomass 6 5 7 7 6 5 7 5
Alt 7 Run of river 

hydro
1 1 1 1 1 1 1 1

Alt 8 Large-scale hydro 
pumped storage

7 8 9 9 7 7 4 7

Alt 9 High-temp geo-
thermal

15 15 15 15 15 15 15 15

Alt 10 Small modular 
reactors

8 7 4 4 8 8 9 8

Alt 11 Large-scale 
nuclear

16 16 16 16 16 16 16 16

Alt 12 Renewable 
hydrogen

9 10 11 10 10 11 10 10

Alt 13 Gas CCGT with 
CCS

11 9 8 8 9 12 12 9

Alt 14 Hybrid solar PV 
gas + CCS

14 13 12 13 13 14 14 13

Alt 15 Hybrid wind 
gas + CCS

13 12 10 12 12 13 13 12

Alt 16 Tidal wave 
energy

12 14 14 14 14 10 8 14
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Discussion: sensitivity analysis of MCDA 
for clean energy alternatives

Whereas the results presented in “Results” focus on the 
assessment of the proposed model to a specific mid-lati-
tude region with a certain set of assumptions, it is impor-
tant to test the impact of the assumptions on the clean 
energy alternative rankings derived using the different 
MCDA techniques applied. Sensitivity cases are presented 
that assess the impacts on the base case results of apply-
ing: (1) different scoring systems (“Impacts of apply-
ing different numerical inversions to linguistic assess-
ments”); (2) different stakeholder importance weighting 
(“Impacts of applying different stakeholder importance 
weightings”); (3) different entropy weightings (“Impacts 
of changing the S value in the IFS entropy-weighting 
method”). In addition to the base case mid-latitude mari-
time region (Table 5), MCDA analysis of clean energy 
alternatives for four other distinct geographic regions are 
assessed by the author and their summary results com-
pared (“Assessment of generic regional conditions dis-
tinct from the base case”; Tables 8, 9, 10, 11).

Impacts of applying different numerical inversions 
to linguistic assessments

A range of different numerical scoring systems were tested 
for each MCDA method. These involved changing the 
range of the non-linear scale, changing the fractional values 
and spreads of the fuzzy scoring systems, and for the IFS 
method changing the degree of hesitancy, while maintain-
ing all other base case assumptions. Reassuringly, these 
alternative numerical inversions had minimal impacts on 
the ranking order of alternatives for the base case linguis-
tic assessments. The most significant impact was changing 
assessments AA and ZZ from fuzzy to integer numbers, 1 
and 0, respectively. That change slightly altered the order of 
the top-five ranked alternatives selected by the IFS TOPSIS 
with entropy method to Alt4 > Alt5 > Alt1 > Alt7 > Alt3 (i.e., 
onshore wind ranked first). On the other hand, that alterna-
tive numerical inversion scheme left the top-five ranking for 
the fuzzy TOPSIS method with entropy unchanged at Alt7 
> Alt4 > Alt5 > Alt1 > Alt6.

Impacts of applying different stakeholder 
importance weightings

A set of five sensitivity cases, described in Fig. 4, were 
evaluated to assess the impacts of applying different stake-
holder importance weightings ( Wgk ) with all other base 
case assumptions retained. These alternative stakeholder 
importance allocations had very minor effects of the rank-
ing orders selected by the MCDA methods evaluated. For 
the IFS with entropy method Case 3 and Case 4 (Fig. 4; 
increased community emphasis) resulted in the positions of 
ranks #4 and #5 to reverse, Alt5 moving up to rank#4 and 
Al8 moving down rank#5. In that method, the positions of 
ranks #13, #14 and #15 also fluctuated from case to case. 
The other scoring methods showed one or two middle to 
lower ranking alternatives switching rankings, except for the 
fuzzy with and without entropy methods which remained 
completely unaffected by these stakeholder importance 
modifications. These findings such that the IFS methods are 
more sensitive to stakeholder importance weight variations 
than fuzzy MCDA methods.

Impacts of changing the S value in the IFS 
entropy‑weighting method

One of the advantages of the IFS entropy method used is that 
it enables the S factor in Eq. 20 to be varied testing the sen-
sitivity of the method to different scales of entropy weights. 
Table 7 lists the evaluations of the base case applying the 
IFS entropy method with 20 different S values varying from 
0.01 to 5.0.

Fig. 4  Entropy versus entropy weights for a fuzzy TOPSIS and b IFS 
TOPSIS; both graphics consider base case (1) assumptions for lin-
guistic scores (Tables 2a and 2b) in the impact matrix
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Although Alt #7 remains as rank#1 and Alt#11 remains 
as rank#20 for all 20 S-value cases, the ranked positions of 
other alternatives change progressively, some moving up the 
rankings (e.g., Alt#13), some moving down (e.g., Alt#2) as 
the S-value increase and range of entropy weights applied 
narrows. However, the overall ranking order is not dramati-
cally changed by minor changes in S value and it suggest 
that a base case value of S = 0.2 is providing a representative 
assessment.

Assessment of generic regional conditions distinct 
from the base case

In total, five distinct regional scenarios have been assessed 
and compared by the author. These are:

Scenario #1 (base case; with detailed results presented in 
“Results”). Marine mid-latitude conditions (Tables 2a and 
2b);

Scenario #2 Arid low-latitude region (Table 8);
Scenario #3 Landlocked mountainous low- to mid-lati-

tude region (Table 9);
Scenario #4 Sub-tropical low-lying region (Table 10); 

and,
Scenario #5 High-latitude harsh frozen winter conditions 

with spring melt waters (Table 11)
Impact matrix assessments similar to Tables 2a and 2b 

(Scenario#1; base case) are compiled for each of the sce-
narios #2 to #5. In the interest of space, these are not dis-
played as tables but the changes in linguistic assessments 
made to specific criteria from the base case assessments for 

Table 8  Results applying Scenario #2 assumptions (see text) for eight MCDA methods evaluated

MCDA method rankings derived by applying Scenario #2 linguistic assessments for base case evaluation

Indicative arid low-lati-
tude region

MCDA scoring methods

Clean energy alternatives Integer 
number lin-
ear scoring

Integer 
number 
non-linear 
scoring

Integer 
number lin-
ear scoring 
TOPSIS

Integer 
number 
non-linear 
scoring 
TOPSIS

Fuzzy TOP-
SIS without 
entropy 
weights

Fuzzy TOP-
SIS + entropy 
weights

IFS TOPSIS 
without 
entropy 
weights

IFS TOP-
SIS + entropy 
weights

Alt 1 Solar PV parks 4 4 5 5 4 3 4 4
Alt 2 Solar thermal 8 7 10 9 8 8 8 10
Alt 3 Offshore wind 3 3 1 3 2 4 2 2
Alt 4 Onshore wind 2 2 4 2 3 2 3 1
Alt 5 PV + wind + util-

ity scale battery
1 1 3 1 1 1 1 3

Alt 6 Biomass 7 10 8 10 7 7 10 6
Alt 7 Run of river 

hydro
5 5 2 6 5 5 5 5

Alt 8 Large-scale hydro 
pumped storage

13 13 14 14 13 14 13 9

Alt 9 High-temp geo-
thermal

15 15 15 15 15 15 15 15

Alt 10 Small modular 
reactors

6 6 6 4 6 6 6 8

Alt 11 Large-scale 
nuclear

16 16 16 16 16 16 16 16

Alt 12 Renewable 
hydrogen

9 9 9 8 10 9 9 11

Alt 13 Gas CCGT with 
CCS

10 8 7 7 9 11 7 12

Alt 14 Hybrid solar PV 
gas + CCS

14 12 12 12 12 13 12 14

Alt 15 Hybrid wind 
gas + CCS

12 11 11 11 11 12 11 13

Alt 16 Tidal wave 
energy

11 14 13 13 14 10 14 7
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each clean energy alternative are described in the follow-
ing paragraphs. These changes are indicative for the generic 
regions described and only minimal changes have been made 
to the base case assumptions to illustrate the impacts of such 
changes on the alternative rankings. In practice, each coun-
try and/or specific regions within countries would have dis-
tinct assessments applied to the multiple criteria for each 
technology alternative.

Scenario #2 linguistic assessment changes applied to the 
base case are:

Alt#1 Criteria (C) #1 is VG, C#3 is G;
Alt#2 C#1 is VG, C#3 is G;
Alt#5 C#1 is VG, C#3 is VG;
Alt#6 C#1 is P, C#2 is P, C#3 is P, C#10 is P;
Alt#7 C#1 is VP, C#2 is ZZ, C#3 is VP, C#4 is P, C#6 

is M, C#10 is VP, C#16 is M, C#17 is M, C#18 is M, C#20 
is M.

Alt#8 C#1 is VP, C#2 is ZZ, C#3 is VP, C#6 is M, C#10 
is P, C#16 is M, C#17 is M, C#18 is M, C#20 is M;

Scenario #3 linguistic assessment changes applied to the 
base case are:

Alt#3 C#1 is VP, C#2 is VP, C#3 is ZZ, C#4 is VP, C#5 
is M, C#10 is P, C#16 is VP, C#17 is VP, C#18 is VP, C#20 
is VP; and,

Alt#16 C#1 is VP, C#2 is VP, C#3 is ZZ, C#4 is VP, C#10 
is VP, C#16 is VP, C#17 is VP, C#18 is VP, C#20 is VP.

Scenario #4 linguistic assessment changes applied to the 
base case are:

Alt#1 C#1 is VG;
Alt#2 C#1 is VG;
Alt#6 C#1 is VG, C#2 is VG, C#3 is VG;
Alt#7 C#1 is G, C#2 is G, C#3 is M; and
Alt#8 C#1 is VP, C#2 is P, C#3 is VP, C#10 is VP.

Table 9  Results applying Scenario #3 assumptions (see text) for eight MCDA methods evaluated

MCDA method rankings derived by applying Scenario #3 linguistic assessments for base case evaluation

Landlocked mid-latitude 
mountainous region

MCDA scoring methods

Clean energy alternatives Integer 
number lin-
ear scoring

Integer 
number 
non-linear 
scoring

Integer 
number lin-
ear scoring 
TOPSIS

Integer 
number 
non-linear 
scoring 
TOPSIS

Fuzzy TOP-
SIS without 
entropy 
weights

Fuzzy TOP-
SIS + entropy 
weights

IFS TOPSIS 
without 
entropy 
weights

IFS TOP-
SIS + entropy 
weights

Alt 1 Solar PV parks 4 5 5 5 4 4 5 6
Alt 2 Solar thermal 9 10 12 10 10 8 10 11
Alt 3 Offshore wind 11 13 9 11 12 10 13 7
Alt 4 Onshore wind 2 3 4 4 3 2 3 2
Alt 5 PV + wind + util-

ity scale battery
3 2 2 2 2 3 2 3

Alt 6 Biomass 5 4 6 6 5 5 4 5
Alt 7 Run of river 

hydro
1 1 1 1 1 1 1 1

Alt 8 Large-scale hydro 
pumped storage

6 7 8 8 6 6 6 4

Alt 9 High-temp geo-
thermal

14 14 15 15 14 14 14 15

Alt 10 Small modular 
reactors

7 6 3 3 7 7 7 8

Alt 11 Large-scale 
nuclear

16 16 16 16 16 16 16 16

Alt 12 Renewable 
hydrogen

8 9 10 9 9 9 9 9

Alt 13 Gas CCGT with 
CCS

10 8 7 7 8 11 8 12

Alt 14 Hybrid solar PV 
gas + CCS

13 12 13 13 13 13 12 14

Alt 15 Hybrid wind 
gas + CCS

12 11 11 12 11 12 11 13

Alt 16 Tidal wave 
energy

15 15 14 14 15 15 15 10
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Scenario #5 linguistic assessment changes applied to the 
base case are:

Alt#1 C#1 is VP, C#2 is VP, C#3 is VP, C#4 is P, C#5 is 
M, C#6 is P C#10 is VP, C#16 is VP, C#17 is VP, C#18 is 
VP, C#20 is P;

Alt#2 C#1 is VP, C#2 is VP, C#3 is VP, C#4 is VP, C#5 
is M, C#6 is P, C#10 is ZZ, C#16 is VP, C#17 is VP, C#18 
is VP, C#20 is P;

Alt#5 C#1 is P, C#2 is P, C#3 is P, C#4 is M, C#5 is M, 
C#6 is P, C#16 is P;

Alt#7 C#2 is VP, C#3 is VP, C#6 is M, C#16 is M, C#17 
is M, C#18 is M, C#20 is M;

Alt#8 C#2 is VP, C#3 is P, C#6 is M, C#16 is M, C#17 is 
M, C#18 is M, C#20 is M; and,

Alt#16 C#2 is VP, C#16 is VP, C#17 is VP, C#18 is VP.

The ranked assessment results for Scenarios #2 to #5 are 
illustrated in Tables 8, 9, 10, and 11 and those results are 
summarized and assessed in the following paragraphs.

Scenario 2 (generic arid low-latitude region; Table 8) 
assessments leads to all MCDA methods selecting Alt5, 
Alt4, Alt#3 and Alt#1 (wind plus solar technologies) above 
Alt#7 (small-scale hydro) at the top of their rankings. On 
the other hand, Alt#11, Alt#9, Alt#8, Alt#14 and Alt#16 
are consistently in the bottom-five ranked technologies 
in this setting. IFS TOPSIS with entropy differs from the 
other methods in placing onshore wind (Alt#4) as the rank 
# 1 selection, and it ranks biomass (Alt#6) and tide/wave 
(Alt#16) much more highly than other methods. Other meth-
ods ran alt#5 (PV + Wind + Battery) as rank#1.

Scenario 3 (generic landlocked mountainous region; 
Table 9) assessments leads to all MCDA methods selecting 

Table 10  Results applying Scenario #4 assumptions (see text) for eight MCDA methods evaluated

MCDA method rankings derived by applying Scenario #4 linguistic assessments for base case evaluation

Sub-tropical low-lying 
region

MCDA scoring methods

Clean energy alternatives Integer 
number lin-
ear scoring

Integer 
number 
non-linear 
scoring

Integer 
number lin-
ear scoring 
TOPSIS

Integer 
number 
non-linear 
scoring 
TOPSIS

Fuzzy TOP-
SIS without 
entropy 
weights

Fuzzy TOP-
SIS + entropy 
weights

IFS TOPSIS 
without 
entropy 
weights

IFS TOP-
SIS + entropy 
weights

Alt 1 Solar PV parks 6 6 6 6 6 4 6 6
Alt 2 Solar thermal 9 10 12 10 11 8 11 11
Alt 3 Offshore wind 3 4 2 3 3 6 3 3
Alt 4 Onshore wind 2 3 5 5 4 2 4 2
Alt 5 PV + wind + util-

ity scale battery
4 2 3 2 2 3 2 5

Alt 6 Biomass 5 5 7 7 5 5 5 4
Alt 7 Run of river 

hydro
1 1 1 1 1 1 1 1

Alt 8 Large-scale 
hydro pumped 
Storage

8 11 9 13 8 9 10 7

Alt 9 High-temp geo-
thermal

15 15 15 15 15 15 15 15

Alt 10 Small modular 
reactors

7 7 4 4 7 7 7 8

Alt 11 Large-scale 
nuclear

16 16 16 16 16 16 16 16

Alt 12 Renewable 
hydrogen

10 9 11 9 10 11 9 10

Alt 13 Gas CCGT with 
CCS

11 8 8 8 9 12 8 12

Alt 14 Hybrid solar PV 
gas + CCS

14 13 13 12 13 14 13 14

Alt 15 Hybrid wind 
gas + CCS

13 12 10 11 12 13 12 13

Alt 16 Tidal wave 
energy

12 14 14 14 14 10 14 9
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Alt#7 (small-scale hydro) at the top of their rankings with 
Alt5, Alt4, Alt#1 and Alt#6 (wind/solar/biomass technolo-
gies) in the remaining top-five rankings. On the other hand, 
Alt#11, Alt#16, Alt#9, and Alt#14 are consistently in the 
bottom-five ranked technologies in this setting. IFS TOPSIS 
with entropy differs slightly from the other methods in plac-
ing offshore wind (Alt#3) and wave/tide (Alt#16) at higher 
middle ranked positions than the other methods. It is likely 
than when transmission costs are quantified in subsequent 
pre-FEED studies Alt#3 and Alt#16 would move towards 
the bottom of the rankings as they are for the other methods.

Scenario 4 (generic sub-tropical landlocked region; 
Table 10) calculates very similar ranking to Scenario 3 with 
Alt#7 ranked #1 by all MCDA methods.

Scenario 5 (generic high-latitude harsh winter region; 
Table 11) places Alt#7 (small-scale hydro) at the top of the 
rankings for all but one MCDA method. Alt#3, Al#4. Alt#10 

(small modular reactor) and Alt#6 (biomass) consistently 
make up the other top-five rankings, whereas solar tech-
nologies move down the rankings. The Fuzzy TOPSIS with 
entropy method differs from the other techniques by placing 
onshore wind (Alt#4) as rank#1.

Consideration of these different generic geographic/
climatic scenarios illustrates the benefit of comparing the 
rankings selected by the different methods. Bearing in mind 
just a few changes to the linguistic assessments for some of 
the resource and operational criteria categories are made 
to the base case to create these scenarios, it is reiterated 
that in the real world there would most likely also be some 
additional differences in the economic, social, judicial and 
environmental criteria assessments in moving from one of 
these scenarios to the other. In the interests of simplicity 
such variations have not be included.

Table 11  Results applying Scenario #5 assumptions (see text) for eight MCDA methods evaluated

MCDA method rankings derived by applying Scenario #5 linguistic assessments for base case evaluation

High-latitude harsh win-
ter region

MCDA scoring methods

Clean energy alternatives Integer 
number lin-
ear scoring

Integer 
number 
non-linear 
scoring

Integer 
number lin-
ear scoring 
TOPSIS

Integer 
number 
non-linear 
scoring 
TOPSIS

Fuzzy TOP-
SIS without 
entropy 
weights

Fuzzy TOP-
SIS + entropy 
weights

IFS TOPSIS 
without 
entropy 
weights

IFS TOP-
SIS + entropy 
weights

Alt 1 Solar PV parks 11 12 12 12 11 10 12 9
Alt 2 Solar thermal 15 14 15 15 15 15 15 14
Alt 3 Offshore wind 3 3 2 2 2 4 2 3
Alt 4 Onshore wind 2 2 4 4 3 1 3 2
Alt 5 PV + wind + util-

ity scale battery
6 6 7 7 6 5 7 5

Alt 6 Biomass 4 4 5 5 4 3 4 4
Alt 7 Run of river 

hydro
1 1 1 1 1 2 1 1

Alt 8 Large-scale hydro 
pumped storage

8 10 10 11 10 11 10 6

Alt 9 High-temp geo-
thermal

14 15 14 14 14 13 14 13

Alt 10 Small modular 
reactors

5 5 3 3 5 6 5 7

Alt 11 Large-scale 
nuclear

16 16 16 16 16 16 16 16

Alt 12 Renewable 
hydrogen

7 8 9 8 8 7 8 10

Alt 13 Gas CCGT with 
CCS

9 7 6 6 7 8 6 11

Alt 14 Hybrid solar PV 
gas + CCS

13 11 11 10 12 14 11 15

Alt 15 Hybrid wind 
gas + CCS

10 9 8 9 9 9 9 12

Alt 16 Tidal wave 
energy

12 13 13 13 13 12 13 8



1083Modeling Earth Systems and Environment (2022) 8:1047–1086 

1 3

Overall, the fuzzy TOPSIS with entropy and IFS TOPSIS 
with entropy methods are considered to be the most mean-
ingful. This is due to their numerical inversion approaches 
taking into account uncertainty, albeit in distinctive ways, 
and applying both objective and subjective weights. Moreo-
ver, these two methods are both conducive to conducting 
simulation analysis by varying the membership function for 
each fuzzy set or the hesitancy value for the IFS method. 
A study is underway to illustrate how such simulations can 
further discriminate between the pros and cons of technol-
ogy alternatives in specific regional settings. The feasibil-
ity assessment protocol described in this study (“MCDA 
protocol applied and recommended for provisional clean 
energy technology selections”) can also be readily adapted 
to pre-FEED and FEED analysis at which points for some 
of the economic, operations and resource criteria could be 
assessed quantitatively, albeit with high uncertainty mar-
gins. The analysis would then involve a mixture of linguistic 
assessment for some criteria and quantitative values for other 
criteria. Also, at that stage, the alternative considered would 
probably be narrowed down to about five or ten alternative, 
with the lower ranking alternative selections from the initial 
feasibility analysis, described here, eliminated from more 
detailed analysis at that pre-FEED stage.

Conclusions

Feasibility stage assessments of the best future mix of clean 
energy technologies for specific regions to adopt are ham-
pered by lack of quantitative information with which to 
compare alternatives. There is typically high uncertainty 
with respect to many economic, environmental and social 
impacts, and infrastructure requirements, particularly 
capital cost requirements and life-cycle emissions along 
the required supply chains. This makes it almost impossi-
ble to conduct quantitative comparisons at the feasibility 
stage. However, useful and transparent comparisons can be 
achieved with the qualitative data that is available for clean 
and sustainable energy alternatives. Such assessments can 
provide provisional guidance with respect to potential future 
energy mix configurations for specific local and regional set-
tings. This makes it possible to establish comparative rank-
ings of suitability, which are likely to change over time as 
local conditions evolve. particularly due to climate change 
and urban growth.

A 15-step protocol (“MCDA protocol applied and recom-
mended for provisional clean energy technology selections”) 
for such a qualitative clean energy feasibility assessment is 
proposed. It applies multi-criteria decision analysis (MCDA) 
the TOPSIS method based on integer number, fuzzy and 
intuitionistic fuzzy (IFS) scoring systems. These determin-
istic and fuzzy methods (described in detail in “Method”) 

initially assess linguistic assessments of a large number of 
criteria, which is appropriate for the high level of uncertainty 
associated with such feasibility-stage analysis. This protocol 
is designed for policy makers, regulators and investors as it 
is simple, flexible and transparent to implement.

A case is made for applying objective and subjective 
weights to fuzzy TOPSIS methods in a specific order. The 
impacts of two sets of subjective weights should be con-
sidered: the first pertaining to diverse stakeholder prefer-
ences; the second pertaining to the relative importance of 
the stakeholder weights relevant to policy makers. The latter 
subjective weight makes it possible for the policy maker 
to transparently redistribute emphasis among stakehold-
ers. For instance, if too many of the individual stakeholder 
assessments available come from specific interest groups, 
that can be compensated by the latter subjective weight. A 
recommendation is made to restrict the rights of veto with 
respect to specific alternatives for policy/decision makers 
to execute. It is considered more appropriate to focus upon 
potential vetoes as more quantitative data becomes available 
and/or regionally specific regulatory limits (e.g., pertaining 
to emissions) are applied. Granting veto rights to individual 
stakeholders potentially encourages them to manipulate 
their use and introduces unnecessary bias into the MCDA 
assessments.

All the MCDA methods are computed transparently 
using Excel workbooks driven by VBA coding that readily 
facilitate multiple sensitivity and scenario analysis. These 
models can provide step-by-step intermediate calculations 
before and after each set of objective and subjective weights 
are applied. The ultimate MCDA output is a suitability rank-
ing order of the clean energy technologies evaluated for a 
specific area.

Model results and analysis are presented in detail for 
an unspecified mid-latitude maritime region case study 
(“Results”) The combined analysis presented compares the 
results of integer number-scoring and fuzzy TOPSIS meth-
ods to provide ranking orders of the suitability of 16 clean 
energy technologies based on qualitative data assessments 
for the case study based on 50 criteria and the preferences 
of 15 diverse stakeholders. Analysis of the case study results 
(“Integer number-scoring, fuzzy and IFS TOPSIS evalua-
tions of the case study clean energy impact matrix”) reveal 
that for this mid-latitude maritime region the MCDA meth-
ods all select run-of-the-river hydro as the highest ranking 
energy alternative and large-scale nuclear and high-temper-
ature geothermal as the lowest ranking energy alternatives. 
However, the order of ranking of other energy alternatives 
varies according to the MCDA method used. The fuzzy 
and IFS TOPSIS methods best capture the uncertainties 
involved but do so with different emphasis. The top-five 
energy alternatives (listed in descending order) selected 
by the fuzzy TOPSIS method are Alt7 > Alt4 > Alt5 > Alt
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1 > Alt6 (Table 5) whereas those selected by IFS TOPSIS 
method are Alt7 > Alt5 > Alt3 > Alt4 > Alt6 (Table 5). These 
results suggest that it is worthwhile calculating both meth-
ods and comparing the results. It is instructive to calculate 
both fuzzy and intuitionistic fuzzy TOPSIS methods because 
they integrate uncertainty in slightly different ways, typically 
resulting in slightly different rankings of the clean energy 
alternatives assessed.

Sensitivity analysis is run for the mid-latitude maritime 
case study region to test different scoring systems (“Impacts 
of applying different numerical inversions to linguistic 
assessments”), stakeholder importance weights (“Impacts of 
applying different stakeholder importance weightings”), the 
benefits of flexible entropy weighting (“Impacts of changing 
the S value in the IFS entropy-weighting method”). Four 
additional scenarios were evaluated considering different 
geographic regions (“Assessment of generic regional con-
ditions distinct from the base case”) with assessments con-
ducted by the author. For each scenario, the energy alterna-
tives are scored linguistically and region-specific MCDA 
analysis conducted. For the arid low-latitude region, the 
MCDA methods selected solar and wind as the highest rank-
ing energy alternatives (Table 8). For the landlocked moun-
tainous region (Table 9) and the landlocked sub-tropical 
region (Table 10), the MCDA analysis select small-scale 
hydro, wind, solar and biomass as the high-ranking energy 
alternatives based on small-scale hydro, solar, wind and bio-
mass as the highest ranking energy alternatives based on the 
assumptions made. For the high-latitude harsh winter region 
(Table 11), small-scale hydro, wind (onshore and offshore), 
biomass and small modular nuclear reactors are selected as 
the highest ranking energy alternatives.

The results obtained for these scenarios depend heavily 
on the scoring assessments and stakeholder and decision-
maker assumptions. However, their analysis confirms that 
rigorous and transparent, feasibility-stage assessments of 
clean energy technology mixes can be achieved applying 
the detailed 15-step protocol adopted utilizing fuzzy and 
intuitionistic fuzzy TOPSIS analysis incorporating flexible 
entropy weights. It can effectively assimilate the perspec-
tives of stakeholders with widely differing views, evaluating 
a large number of different clean energy technologies, based 
on 50 or more multi-faceted criteria.
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