
Vol.:(0123456789)1 3

Modeling Earth Systems and Environment (2022) 8:625–637 
https://doi.org/10.1007/s40808-021-01114-7

ORIGINAL ARTICLE

A sustainable generalization of inverse Lindley distribution for wind 
speed analysis in certain regions of Pakistan

Muhammad Shoaib1 · Irum Sajjad Dar1 · Muhammad Ahsan‑ul‑Haq1,2   · Rana Muhammad Usman1

Received: 11 December 2020 / Accepted: 9 January 2021 / Published online: 1 February 2021 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021

Abstract
Information on wind speed and wind power distribution is significant for a few reasons, for example, surveying wind assets, 
arranging wind cultivates, and limiting the liabilities for wind power improvement. This study provided an application of a new 
generalization of two-parameter generalized inverse Lindley distribution using the Marshall–Olkin family for analyzing wind 
speed and wind power characteristics. Some mathematical properties of the new distribution were studied. We had observed 
the suitability of new distribution as compared to the other well-known wind speed distributions such as Weibull, inverse 
exponential, inverted Kumaraswamy, inverse Weibull, inverse Lindley, and generalized inverse Lindley distribution. For this 
purpose, the time-based wind speed data is taken from the four stations of Pakistan as a case study. We conclude based on 
certain goodness of fit criteria that the newly developed distribution has a better fit as compared to the other wind speed distri-
butions. Therefore, the new model can be used as an alternative distribution for the assessment of wind speed energy potential.

Keywords  Marshall-olkin family · Generalized inverse lindley · Weibull · Wind speed analysis · Goodness-of-fit tests

Introduction

Energy is an essential aspect of every single human action 
and supportable enhancements of the nations. The finan-
cial development and social success of any nation typically 
rely upon the non-sustainable power sources of that nation. 
Enhanced use of energy and its applications will be the key 
problem of the real world (Valasai et al. 2017). Among all 
renewable energy sources, the most dominant, rapidly creat-
ing, and extensively utilized wellspring of sustainable power 
source is wind energy, which is perfect and practical for 
the ecosystem (Alavi et al. 2016). Wind energy is considered 

an environment-friendly source all over the world and an 
increase in its use has been most important in late years (Kan-
tar et al. 2018). In contrast with petroleum derivatives, the 
breeze vitality has not unfriendly impact on the environment. 
In recent years, in both public and private sectors, the invest-
ment and research on wind resources are increased (Arslan 
et al. 2017). Two basic segments to use the wind energy suc-
cessfully given as (i) the decision of the zone for setting up 
a wind energy farm and (ii) For better modeling execution, 
the determination of the best statistical model. In determin-
ing districts, wind energy potential is checked by modeling 
the wind speed information. In this way, wind speed data is a 
fundamental parameter for the advancement of wind energy.

The usage of probabilistic models for the classification 
of wind speed is common in literature. Numerous authors 
had recent work on the wind speed analysis with different 
composite and mixture models such as Abbas et al. (2012), 
Arslan et al. (2017), Jung et al. (2017), Muhammandi et al. 
(2017), Kantar et al. (2018), Dey et al. (2019), Khan et al. 
(2019), Haq et al. (2020a), Kaseem et al. (2020), and Haq 
et al. (2020b). According to the previous studies, Weibull 
distribution (WD) is considered the best probabilistic dis-
tribution for wind speed modeling (Soukissian 2013). How-
ever, in some situations, WD does not provide sufficient 
information about the modeling of wind speed (Akgul et al. 
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2016). In other words, WD has inadequate proficiency to 
deal with bimodal, multimodal, and highly skewed wind 
speed data. Therefore, it is need of the hour to develop new 
extensions of probabilistic models for the betterment of wind 
speed analysis.

Lindley (1958) had suggested a model in the context of 
the Bayes theorem and named it Lindley distribution (LD). 
Various applications of Lindley distribution were described 
by Ghitny et al. (2008). Inverse Lindley (IL) distribution was 
developed by Sharma et al. (2015) for survival analysis and 
stress-strength reliability analysis of cancer patients. The 
density function (pdf) and distribution function (cdf) of IL 
distribution was given as f (x) = �2
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 respectively, where x > 0 and 
𝛽 > 0 is the only scale parameter. The generalization and 
applications of IL distribution were discussed by numerous 
authors especially in hydrology such as Alkarni (2015), 
Sharma et al. (2016), and Eltehiwy (2020). Here, Barco et al. 
(2017) proposed an Inverse Lindley (IL) distribution and its 
generalized form called generalized inverse Lindley (GIL) 
by using the power transformation y = z

−
1

� with the pdf and 
the cdf is given as, respectively.

It is found that the GIL distribution is more skewed 
to right than that of WD. Let Y follows the GIL distri-
bution and X follows the Weibull distribution, then the 
upper tail probabilities at similar parameter combinations 
for both models is computed at � = 3.5 and � = 1 . As 
P(Y > 2.5) = 0.02023 and P(X > 2.5) = 1.86 × 10−11 , while 
P(Y > 2.11) = 0.03661 and P(X > 2.11) = 1.18 × 10−6 . 
Therefore, it is justified now from the above probabilities at 
considered percentiles that the GIL distribution has longer 
tails than that of the Weibull distribution. Therefore, GIL 
distribution and its generalizations are useful for the analysis 
of wind speed and these right-tailed probabilities can help 
the researchers who work in this area.

The main aim of this paper is to develop a new extension 
of GIL distribution as a wind speed distribution. Therefore, 
“Development of new model” represented the development 
of the new model and studied its failure and survival curves. 
“Mathematical properties of MOGIL distribution” inves-
tigated some mathematical properties of the new model. 
“Wind speed data” had explored the wind speed data and 
some descriptive measures of data sets. “Results” provided 
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the results and discussion about wind speed analysis and the 
next section concluded the study.

Methodology

Development of new model

Marshall and Olkin (1997) proposed a new family named 
as Marshall–Olkin G (MO–G) family of distribution with 
an additional shape parameter 𝜓 > 0 . Let G(z) = 1 − G(z) 
be an arbitrary baseline survival function for a continuous 
random variable X, then the MO-G family has survival func-
tion given as

where  � = 1 − � is a tilt parameter. The cdf and the pdf of 
the MO-G family are given as

respectively. By substituting (2) in (4), the cdf of Mar-
shall–Olkin generalized inverse Lindley (MOGIL) distribu-
tion is obtained as

The corresponding pdf of Eq. (6) is defined as

The reliability of any system is checked by the survival 
function. For MOGIL, the survival rate function is

Hazard rate or failure rate function has many demograph-
ics uses in many research areas such as actuarial sciences 
and reliability analysis. The hazard rate function of MOGIL 
distribution from Eq. (7) is defined as
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The shapes of MOGIL distribution

The density curves of MOGIL distribution have unimodal 
behavior and the tails of the distribution curves become 
heavier by an increase in shape parameters as represented 
in Fig. 1.

Mathematical properties of MOGIL distribution

Some mathematical properties are derived in this sec-
tion those are essential to explain a distribution and use-
ful to explain real-life applications. The rth moment of the 
MOGIL distribution is formulated as

The moment generating function of the MOGIL distribu-
tion is given as
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The explicit expression for the incomplete moment of the 
MOGIL distribution is given as

The stress-strength reliability of the MOGIL distribution 
is given as

The density of rth order statistics for the MOGIL distri-
bution is:

Let X1,X2,X3,… ,Xn is a random sample that follows 
MOGIL distribution, and then the log-likelihood function 
of the distribution is
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Fig. 1   pdf curves for MOGIL distribution
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The components of the score vectors can be obtained by 
taking the partial derivatives of n(L) for ψ , � and β , and 
equate them to zero. The observed likelihood equations are

(15)
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Since the derived equations have complex structures, 
therefore, it is hard to get a closed-form of the estimated 
parameters. Therefore, we use these equations by iterative 
procedures such as the Newton–Raphson algorithm for the 
estimation of parameters during wind speed analysis.

Fig. 2   Considered wind stations 
of Pakistan
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Wind speed data

Pakistan is the second biggest nation in South Asia and it is 
the 33rd biggest nation on the planet. Geographically, Paki-
stan is separated into three unique regions, for example, the 
Northern Mountains, the Indus River plain, and Baluchistan 
level.

For this study, data of wind speed measured at 20 m 
height with the 10-min interval from four distinct stations 
(Bahawalpur. Gwadar, Peshawar and Quetta) from different 
geographical locations in Pakistan. The data is taken online 
from the world bank data catalog. The map of Pakistan 

shows the locations of selected distinct stations in Fig. 2. 
Station A (Bahawalpur) is situated between the Indus River 
plains and south of the Sutlej River. It has 214 m altitude and 
is situated at 29.3544° N and 71.6911° E. Station B (Gwa-
dar) has a hot desert climate and it also has a high variation 
between summer and winter temperatures. It has 15 m alti-
tude and situated at 25.2460° N and 62.2861° E. Station C 
(Peshawar) lies in the Northern Highlands region.

Peshawar has the same behavior as that of the previ-
ous two stations and it has 331 m altitude and situated at 
34.0151° N and 71.5249° E. In the last, Station D (Quetta) 
has diversity in its climate with respect to summer and 

Table 1   Descriptive statistics 
for the wind speed data at four 
stations in Pakistan

Stations Seasons Min (m/s) Max (m/s) Mean (m/s) Variance Skewness Kurtosis N

A Winter 0.0044 8.8079 2.9498 1.5282 0.4122 0.1661 12,960
Spring 0.0894 12.217 3.2619 2.4940 0.5271 0.1012 13,248
Summer 0.0008 20.073 4.2019 5.1913 0.6745 1.0370 13,248
Autumn 0.0102 11.716 3.0383 1.9783 1.2542 3.5138 13,403

B Winter 0.0072 13.563 3.5878 5.1344 0.9851 0.7174 12,960
Spring 0.0410 13.784 4.5162 7.7266 0.7800 0.1905 13,248
Summer 0.0320 12.274 4.1283 4.7592 0.5813 0.3315 13,248
Autumn 0.0059 12.170 3.3974 4.5938 1.0051 0.4050 13,099

C Winter 0.0284 8.5428 2.4011 1.3139 0.6072 0.0983 12,960
Spring 0.1021 17.909 3.0853 2.0942 1.4791 5.3696 13,248
Summer 0.0353 16.148 3.1825 3.3970 1.4299 3.3970 13,248
Autumn 0.0102 13.418 2.6400 1.4803 1.1029 4.0095 13,104

D Winter 0.0072 13.527 3.0612 3.8841 1.2789 2.1836 12,960
Spring 0.0518 12.845 3.4861 4.3396 0.8352 0.1544 13,248
Summer 0.0588 15.930 3.7796 3.3832 0.6157 0.6792 13,245
Autumn 0.0025 10.220 2.7589 2.2337 0.9534 0.9860 13,104

Table 2   The pdf and cdf of the 
corresponding distributions
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Table 3   The formulas of criteria 
for model evolution Akaike information criteria AIC = −2 log (L) + 2k

Bayesian information criteria BIC = −2 log (L) + k log (n)

Kolmogorov–Smirnov test KS = max1≤i≤N
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winter temperatures. It has 1679 m altitude and situated at 
30.1798° N and 66.9750° E.

The results of Table 1 showed the maximum and mini-
mum wind speed for all stations in different seasons. Moreo-
ver, variance, skewness and kurtosis are also calculated for 
all seasons of all selected stations. As a matter of fact, that 
all the stations at all seasons have positively skewed behav-
ior, therefore, a positively skewed distribution can signifi-
cantly explore the aspects.

Table 2 enlightened the pdf and cdf of the existing wind 
speed models such as Weibull, inverse exponential, inverted 
Kumaraswamy, inverse Weibull, inverse Lindley, and gener-
alized inverse Lindley distribution.

We have estimated the parameters by using MOGIL 
distribution and considered wind speed distributions using 
the maximum likelihood estimation method. We have fit-
ted the observed data sets of wind speed season wise for 
four stations of Pakistan. The performance and enactment 
of the models are evaluated based on certain criteria such as 
Akaike Information Criteria (AIC), Bayesian Information 

Criteria (BIC) and Kolmogorov–Smirnov test (KS) given 
in Table 3.

Results

Table 4 showed the estimated parameters, −2 lnL , AIC, BIC 
and KS statistic for the MOGIL distribution and the other 
well-known wind speed distributions for the different sea-
sons at station A.

Since the MOGIL model has minimum values of −2 lnL , 
AIC, BIC, and KS values for all four seasons of Bahawal-
pur while IL and IW distributions have maximum values 
for these goodness-of-fit criteria. Therefore, the MOGIL is 
considered as the best-fitted model for station A. Figure 3 
represented the fitted curves of the pdf and it is also could 
easily be seen that the MOGIL distribution has the best fit 
for the heavy-tailed data sets.

See Fig. 4, it could be seen from the histogram of the 
wind speed data at Gwadar station that the data is more 

Table 4   ML estimates with the 
goodness of fit measures for 
Station A

Seasons Model � � � −2 log L AIC BIC KS

Winter W 2.54 3.32 – 46,638.6 46,644.6 50,832.9 0.1181
IE 2.12 – – 56,980.3 56,982.3 56,989.8 0.2394
IK 2.57 12.1 – 47,387.2 47,391.1 47,406.1 0.1122
IW 2.03 1.07 – 56,701.1 56,705.1 56,720.0 0.2610
IL – 2.69 – 56,984.2 56,986.2 289,154 0.2695
GIL 1.03 2.70 – 56,933.6 56,937.6 56,952.5 0.2649
MOGIL 0.43 11.0 0.001 41,841.9 41,845.9 41,860.9 0.0148

Spring W 2.42 4.30 – 52,437.8 52,443.8 52,466.2 0.0973
IE 2.37 – – 58,987.5 58,989.5 58,997.0 0.2912
IK 2.44 16.9 – 52,067.5 52,071.4 52,086.4 0.1003
IW 2.71 1.35 – 60,182.3 60,186.3 60,201.2 0.2026
IL – 3.64 – 63,053.9 63,055.9 63,063.4 0.2992
GIL 1.32 4.50 – 60,466.8 60,470.8 60,485.8 0.2073
MOGIL 0.50 12.8 0.002 49,893.8 49,897.8 49,912.8 0.0642

Summer W 1.77 4.67 – 71,601.9 71,607.8 71,630.3 0.2095
IE 2.52 – – 134,535 134,537 134,545 0.8020
IK 1.23 3.54 – 71,033.7 71,037.7 71,052.6 0.2168
IW 1.69 0.49 – 84,636.1 84,640.1 84,655.1 0.3267
IL – 3.02 – 86,088.4 86,092.4 86,107.3 0.4337
GIL 0.45 1.80 – 85,088.4 85,092.4 85,107.3 0.3337
MOGIL 0.21 9.15 0.002 59,182.2 59,186.2 59,201.2 0.0693

Autumn W 2.29 3.33 – 60,280.3 60,286.3 60,309.5 0.1122
IE 2.22 – – 72,339.9 72,341.9 72,349.7 0.3014
IK 2.65 19.7 – 61,034.4 61,038.4 61,053.9 0.1068
IW 2.08 1.22 – 70,573.7 52,577.7 52,592.6 0.2231
IL – 2.81 – 71,889.5 71,891.5 71,899.2 0.2879
GIL 1.17 3.03 – 69,842.1 52,846.2 52,861.0 0.2277
MOGIL 0.48 11.4 0.002 56,481.7 56,485.7 56,501.2 0.0532
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Fig. 3   Graphs for fitted pdf for all seasons at Station A

Fig. 4   Graphs for fitted pdf for all seasons at Station B
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skewed and have a long tail towards the right. Therefore, 
graphically it is feasible to fit MOGIL distribution.

Table 5 justified the betterment of the MOGIL distribu-
tion as compared to existing wind speed models for Gwadar 
station. Based on all goodness of fit criteria such as −2 lnL , 
AIC, BIC, and KS we could see that MOGIL distribution 
has minimum values. Moreover, it seems a good competitor 
of Weibull distribution to deal with heavy-tailed data. The 
goodness of fit measures shows that the new proposed model 
has the best fit for all seasons of Gwadar station.

On the same lines, Table 6 showed the estimated param-
eters as well as the goodness of fit measures for MOGIL and 
other wind speed distributions for all seasons of Peshawar 
station. The minimum values for all goodness of fit measures 

demonstrated that the MOGIL distribution has the least 
values for all goodness of fit measures. Therefore, MOGIL 
distribution seems the best competitor of all existing wind 
speed distributions for heavy-tailed data sets at station C.

We justified these measures graphically in Fig. 5 and pro-
vided evidence about the superiority of MOGIL distribution.

Table 7 shows that the developed model has a better fit 
as compared to considered inverse models for all seasons at 
Quetta station. Based on all goodness of fit criteria, MOGIL 
distribution seems a good competitor of Weibull and other 
wind speed distributions to deal with heavy-tailed data. It 
is justified from Fig. 6 that the new proposed model is best 
fitted than other considered inverted distributions for Sta-
tion D.

Table 5   ML estimates with the 
goodness of fit measures for the 
Station B

Seasons Model � � � −2 log L AIC BIC KS

Winter W 1.6581 4.0266 – 57,399.4 57,405.4 50,832.8 0.0804
IE 2.0246 – – 62,360 62,362.6 62,370.1 0.1738
IK 1.9423 7.5394 – 59,222.1 59,226.1 59,241.1 0.1144
IW 1.9877 1.0324 – 62,319.5 62,323.5 62,338.4 0.1619
IL – 2.5888 – 62,626.8 62,628.8 62,636.3 0.1621
GIL 0.9836 2.5826 – 62,615.6 62,619.6 62,634.6 0.1679
MOGIL 0.3195 9.1419 0.0031 54,664.4 54,668.6 54,683.5 0.0216

Spring W 1.7000 5.0783 – 63,136.9 63,142.9 63,165.4 0.0605
IE 2.7223 – – 68,485.6 68,487.6 68,495.1 0.1979
IK 1.8664 8.7921 – 67,431.2 67,435.2 67,450.2 0.1098
IW 2.5324 1.1925 – 67,594.4 67,598.4 67,613.4 0.1387
IL – 3.3486 – 68,434.8 68,436.8 68,444.3 0.1896
GIL 1.1527 3.6155 – 67,862.2 67,866.2 67,881.2 0.1438
MOGIL 0.3518 10.0393 0.0032 61,640.4 61,644.4 61,659.4 0.0399

Summer W 1.9997 4.6691 – 60,792.0 59,123.5 59,146.0 0.0641
IE 2.7866 – – 65,899.8 65,901.8 65,909.3 0.2469
IK 2.1082 11.9557 – 63,166.8 63,170.8 63,185.8 0.1006
IW 2.5571 1.2524 – 64,333.5 64,337.5 64,352.5 0.1670
IL – 3.4175 – 65,749.9 65,751.9 65,759.5 0.2377
GIL 1.2131 3.8376 – 64,613.3 64,617.3 64,632.3 0.1722
MOGIL 0.4978 9.8793 0.0073 56,519.1 56,523.1 56,538.1 0.0422

Autumn W 1.6764 3.8214 – 55,798.4 55,804.4 55,826.9 0.0825
IE 1.9949 – – 61,185.7 60,798.0 60,820.5 0.1085
IK 2.0822 6.7032 – 59,322.5 59,326.5 59,341.4 0.1134
IW 1.9456 1.0446 – 61,106.7 61,121.6 61,121.6 0.1692
IL – 2.5559 – 61,377 61,379 61,386.5 0.1735
GIL 0.9962 2.5546 – 61,376.4 61,380.4 61,395.3 0.1748
MOGIL 0.3682 9.4971 0.0022 53,588.5 53,592.5 53,607.5 0.0531
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Conclusion

It is justified in the study that the well-known Weibull dis-
tribution is not always be used as a wind speed distribution 
to deal with heavy-tailed data sets. In this research, we pro-
pose MOGIL distribution as a new heavy-tailed distribution 
for the modeling of wind speed for all seasons at selected 
stations of Pakistan. However, some mathematical proper-
ties of new models are also evaluated theoretically for a 
better understanding of the model. We had estimated the 

parameters by using the ML approach and evaluated some 
goodness of fit criteria such as −2 lnL , AIC, BIC, and KS 
test. The MLE method is used for the estimation of param-
eters. We compare the performance of the given model with 
well-known wind speed models such as Weibull, inverse 
exponential, inverted Kumaraswamy, inverse Weibull, 
inverse Lindley, and generalized inverse Lindley distribu-
tion. It is justified that the MOGIL distribution has favorable 
performance for all four regions of Pakistan as compared 
to other heavy-tailed distributions. It could also be noted 
that the addition of one shape parameter can increase the 
flexibility of existing models and improve the potentiality.

Table 6   ML estimates with the 
goodness of fit measures for the 
Station C

Seasons Model � � � −2 log L AIC BIC KS

Winter W 2.2279 2.7159 – 42,278.9 42,284.9 42,307.4 0.1021
IE 1.7675 – – 49,864.1 49,866.1 49,873.5 0.2805
IK 2.7786 12.823 – 48,092.9 48,096.9 48,111.9 0.1394
IW 1.5908 1.4076 – 46,714.8 46,718.8 46,733.7 0.1631
IL – 2.6943 – 56,984.2 56,986.2 56,993.6 0.2765
GIL 1.3354 2.4645 – 47,044.4 47,048.4 47,063.3 0.1698
MOGIL 0.4131 9.7857 0.0013 39,089.7 39,093.7 39,108.6 0.0224

Spring W 2.2263 3.4842 – 47,448.2 47,454.2 47,476.6 0.0919
IE 2.4173 – – 57,023.7 57,025.7 57,033.2 0.3083
IK 2.7975 25.954 – 50,742.9 50,746.9 50,761.9 0.1181
IW 2.1454 1.6650 – 51,152.5 51,156.5 51,171.5 0.1413
IL – 3.0188 – 56,506.4 56,508.4 56,515.9 0.2961
GIL 1.6176 4.1683 – 51,419.1 51,423.1 51,438.1 0.1461
MOGIL 0.5422 11.959 0.0029 45,863.6 45,867.6 45,882.5 0.0505

Summer W 1.8876 3.5991 – 51,404.6 51,410.7 51,433.1 0.0675
IE 2.2183 – – 58,467.6 58,469.6 58,477.1 0.2389
IK 2.4126 14.962 – 54,631.8 54,635.8 54,650.8 0.0901
IW 2.0163 1.3155 – 56,242.7 56,246.7 56,261.6 0.1420
IL – 2.8018 – 58,149.4 58,151.4 58,158.9 0.2260
GIL 1.2617 3.0857 – 56,559.9 56,563.9 56,578.9 0.1481
MOGIL 0.3977 10.678 0.0012 50,157.2 50,161.3 50,176.3 0.0478

Autumn W 2.2706 2.9788 – 44,726.2 44,732.2 44,754.7 0.1023
IE 1.9649 – – 53,300.9 53,302.9 53,310.4 0.2984
IK 2.7271 17.282 – 47,600.5 47,604.5 47,619.5 0.1165
IW 1.8023 1.2543 – 51,396.6 51,400.6 51,415.6 0.2163
IL – 2.5227 – 52,906.9 52,908.9 52,916.4 0.2830
GIL 1.1997 2.6515 – 51,670.8 51,674.7 51,689.7 0.2208
MOGIL 0.4818 12.488 0.0011 41,207.7 41,211.7 41,226.7 0.0260
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Fig. 5   Graphs for fitted pdf for all seasons at Station C
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Table 7   ML estimates with the 
goodness of fit measures for the 
Station D

Seasons Model � � � −2 log L AIC BIC KS

Winter W 1.6388 3.4342 – 53,545.3 53,551.3 53,573.7 0.0912
IE 1.7293 – – 58,303.9 58,305.9 58,313.3 0.1745
IK 2.0364 7.7248 – 56,433.8 56,437.8 56,452.8 0.0689
IW 1.6910 1.0409 – 58,242.9 58,246.9 58,261.9 0.1592
IL - 2.2598 – 58,590.3 58,592.3 58,599.8 0.1597
GIL 0.9826 2.2588 – 58,578.4 58,582.4 58,597.3 0.1658
MOGIL 0.3559 8.9197 0.0026 50,629.7 50,633.7 50,648.6 0.0303

Spring W 1.7615 3.9301 – 56,904.9 56,910.9 56,933.4 0.0873
IE 2.2169 – – 61,103.5 61,105.5 61,112.9 0.2104
IK 2.1069 8.6389 – 59,433.8 59,437.8 59,452.8 0.1089
IW 2.0217 1.2987 – 59,368.2 59,372.2 59,387.1 0.1234
IL – 2.8003 – 60,871.2 60,873.2 60,880.7 0.1989
GIL 1.2458 3.0599 – 59,658.3 59,662.3 59,677.2 0.1292
MOGIL 0.3569 9.8092 0.0022 54,159.1 54,163.1 54,178.0 0.0444

Summer W 2.1739 4.2717 – 56,504.7 56,510.7 56,533.2 0.1092
IE 2.7126 – – 63,119.0 63,121.0 63,128.5 0.2775
IK 2.2707 17.146 – 58,727.9 58,731.9 58,746.9 0.1183
IW 2.4360 1.4217 – 59,997.8 60,001.8 60,016.7 0.1562
IL – 3.3381 – 62,827.9 62,829.9 62,837.5 0.2673
GIL 1.3822 4.1514 – 60,253.6 60,257.6 60,272.5 0.1607
MOGIL 0.4098 11.227 0.0016 52,521.8 52,525.8 59,201.2 0.0157

Autumn W 1.9441 3.1173 – 48,930.9 48,936.9 48,959.4 0.0915
IE 1.6392 – – 57,927.8 57,929.8 57,937.2 0.2032
IK 2.3408 7.6323 – 51,759.9 51,774.9 51,774.9 0.1127
IW 1.7059 0.9518 – 57,774.3 57,778.3 57,793.2 0.2248
IL – – – 58,727.9 58,731.9 58,746.9 0.1183
GIL 0.9047 2.1949 – 57,963.2 57,967.2 57,982.2 0.2281
MOGIL 0.3662 9.7007 0.0016 45,620.7 45,624.7 45,639.7 0.0405
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