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Abstract
Sundarbans is the largest mangrove wetland ecosystem of the world with rich biodiversity suffering from deteriorated water 
quality due to excessive fertilization that leads to an uncontrolled increase in phytoplankton. Such eutrophication also changes 
the community structure and increases the harmful algal blooms (HABs). In this work, we propose an interacting population 
model for phytoplankton–zooplankton system in which the density of zooplankton is influenced by non-toxic phytoplankton 
(NTP) and toxin-producing phytoplankton (TPP) followed by Holling type II and Monod–Haldane (MH)-type functional 
response. The growth of zooplankton species is assumed to reduce due to toxic chemicals released by TPP population. The 
mathematical model of the proposed system includes the competition terms between TPP and NTP. System dynamics is 
studied in both cases, i.e., system with diffusion and without diffusion. For the non-diffusive system, we have investigated 
the condition for boundedness along with the existing criteria of all feasible equilibrium point. Stability analysis of the model 
system is carried out in detail for each equilibrium point. Forward and backward bifurcation diagrams are obtained for the 
temporal system in order to understand the behavior of different parameters that control the system dynamics. Theoretically, 
stability criteria and Turing instability of diffusive system are derived. In this study, we have taken a case of Sundarban 
mangrove wetland which is suffering from algal blooms due to the presence of toxic Dinoflagellates and Cyanophyceae. 
Our numerical investigation shows that the lower value of intraspecific interference of zooplankton promotes the complex 
spatiotemporal dynamics for the population of non-toxic, toxic phytoplankton and zooplankton. The higher value of inter-
specific competition coefficient of NTP leads to reduction in zooplankton density that may cause bad health of the wetland 
system. This investigation renders the importance of diffusion in algal blooms by the occurrence of different Turing patterns 
and the role of time delay in destabilization of stationary points through the creation of limit cycles. We observed that the 
increasing value of diffusion coefficient of zooplankton and time allows the algal blooms to settle down from spot-strip 
mixture to spot patterns.
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Introduction

Wetland ecosystems, the area of marsh or fen, whether natu-
ral or artificial, fresh or salty, play an important role and 
provide support to millions of peoples who live surrounding 

it. Wetland is the primary habitat for a range of various spe-
cies, fish, birds and sustains a variety of flora and fauna. The 
Sundarbans is located in the Bay of Bengal on the Ganges, 
the Brahmaputra and Meghna Delta (Ghosh et al. 2015). 
The Sundarbans (21◦ 32′ to 22◦ 40′  N and 88◦ 05′ to 89◦ 51′ 
E) covers the area 10,000 km2 approximately, lies between 
Bangladesh (62%) and India (38%) and is the largest man-
grove on the earth (Spalding et al. 2010). Mangroves at 
land–sea interface are a highly diverse and productive eco-
system that protect the coastal areas from cyclones and tsu-
namis (Dahdouh-Guebas et al. 2005). It provides nutrients 
recycle, growth of coral reefs, reef fish, provides food for 
the countless organism and collectively has great economic 
value (Nagelkerken et al. 2008). Indian Sundarbans with 
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varying freshwater inputs has 24 mangrove taxa of 9 differ-
ent families (Barik and Chowdhury 2014). The biodiversity 
of Sundarbans has more than 200 other plant species, birds, 
fish, reptiles, mammals and a number of phytoplankton, zoo-
plankton, benthic invertebrates, bacteria, fungi, etc. (Gopal 
and Chauhan 2006). A total of 46 taxa of phytoplankton 
belonging to six major classes algal groups Bacillariophy-
ceae (Diatoms), Chlorophyceae (Green algae), Cyanophy-
ceae ( Blue-green algae), Pyrrophyceae (Dinoflagellates) 
and Chrysophyceae are recorded in the estuarine water of 
Sundarbans (Manna et al. (2010). Sundarbans mangrove 
is suffering from toxic algal bloom dominated by diatoms 
(Bacillariophyceae) followed by Dinoflagellates and Cyano-
phyceae. Excessive growth of HAB is a severe threat for the 
wetland ecosystem and in large for the aquatic ecosystem. 
Study shows that toxic Dinoflagellates and Cyanophyceae 
have deteriorated the water quality of Sundarbans estuary. 
This kind of occurrence puts the survival of mangroves into 
question. Control of such blooms is important for the con-
servation of the Sundarbans ecosystem.

In the past few decades, HABs have become increasingly 
prevalent worldwide concern. There are several TPP spe-
cies, including Pseudo-nitzschia sp., Gambierdiscus toxicus, 
Prorocentrum sp., Ostrepsis sp., Coolie monotis, Gymnod-
inium breve, Chrysochromulina polylepis, P. parvum, etc. 
that have become major threat for aquatic ecosystem due to 
the excessive growth (Hallegraeff 1993). Such TPP can con-
taminate fish or destroy higher trophic species. Therefore, 
it is very important to understand the causes and possible 
impacts of toxic phytoplankton on algae blooms and also 
their potential control mechanisms in the area of aquatic 
and marine ecology. Several papers based on HABs reflect 
the growing interest in biological stoichiometry strategies 
and management (Zingone and Enevoldsen 2000; Ander-
son and Garrison 1997; Blaxter and Southward 1997; Elser 
et al. 2012; Franks 1997; Truscott and Brindley 1994; Wyatt 
1988). Chattopadhyay et al. (2000) have investigated the 
mechanism of explaining the cyclical behavior of bloom 
system using different kinds of toxin release processes in 
plankton interaction. The effect of toxic substances and time 
delay on the dynamics of diffusive plankton system mod-
eling the HABs was studied by Zhao and Wei (2015). The 
space-time structure for promoting plankton distribution due 
to the existence of TPP was studied by Roy et al. (2007), 
(2006), Roy (2008) with the ease of field observations. They 
addressed the role of toxic phytoplankton in determining 
and preserving the composition of the total phytoplankton 
and zooplankton community in Bengal Bay. Yang and Fu 
(2008) have explored a tri-trophic food chain model with 
functional form II and the existence of global solutions of 
cross-diffusion-type model is examined when the spatial 
dimension is less than six. A tool for monitoring, preventing 
and regulating HABs has been studied by Anderson (2009). 

Chakraborty et al. (2012) clarified the role of zooplankton 
prevention in the sustainability and prevailing of poisonous 
phytoplankton and noted that high prevention contributes to 
the coexistence of TPP, NTP and zooplankton. Scotti et al. 
(2015) identified the characteristic of toxicity and zooplank-
ton predation in toxic prey persistence and found that toxic 
prey could destabilize coexistence spatially homogeneous 
and spatial patterns. Bairagi et al. (2008) have proposed 
interacting nutrient-plankton dynamics and suggested that 
interactions among these species are very complex and 
situation-specific. Model for interacting TPP, NTP and zoo-
plankton recognized that the populations are independent in 
the magnitude of the steady-state component (Banerjee and 
Venturino 2011). Chakraborty and Das (2015) studied two 
zooplankton and one phytoplankton toxicity-based model 
and found that the toxin coefficient plays a significant role 
in the existence of Hopf bifurcation around the interior equi-
librium. Chatterjee and Pal (2016) investigated the effect of 
toxin in nutrient-plankton model and observed that toxic 
phytoplankton may change the steady-state behavior. De 
Silva and Jang (2017) observed that the mutual interference 
of zooplankton diminishing HABs.

Many researchers have employed the predator–prey inter-
action models to study the spatiotemporal dynamics in 
plankton system (Dhar and Baghel 2016; Malchow et al. 
2002; Pascual 1993; Petrovskii and Malchow 1999, 2001; 
Thakur et al. 2016). Spatiotemporal patterns in plankton 
dynamics with the sequence of chaotic spiral, strip and spot 
patterns are studied by Rao (2013). Wang et al. (2016) exam-
ined a spatial model with self and cross-diffusion and 
observed that direction of cross-diffusion influence the spa-
tial distribution as well as population density. Thakur et al. 
(2017) have proposed a diffusive three species plankton 
model with toxic effect for the wetland ecosystem. Chaud-
huri et al. (2012) studied toxic phytoplankton-induced spa-
tiotemporal patterns and observed that the populations 
become inhomogeneous in presence of toxin-producing 
phytoplankton. Chakraborty et al. (2015) observed the spa-
tiotemporal oscillation for certain toxicity level through a 
diffusive nutrient-plankton model system. In the current 
manuscript, we have considered a three-species system com-
posed of NTP, TPP and zooplankton and tried to identify the 
parameters that are responsible for the good health of Sunda-
rban mangrove wetland. We assume that toxic phytoplank-
tons are capable of defending their predators. For this pur-
pose, a basic functional response of MH type in the form of 
�(x) =

mx

(a + bx + x2)
 is considered which is suggested by 

Andrews (1968). Later, a revised MH functional response 
established by Sokol and Howell (1981) in the form of 
�(x) =

mx

(a + ix2)
 to give the better description of defense 

phenomenon. Thakur and Ojha (2020a) have modeled a phy-
toplankton–zooplankton interaction under the influence of 
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toxicity and adaptation. They have obtained the complex 
spatiotemporal pattern of the plankton system by using MH 
functional response. Pal et al. (2009a) have analyzed a model 
using a simplified form of MH function and studied the 
inhibitory effect in toxic phytoplankton–zooplankton 
dynamics. Han and Dai (2019) proposed a model with Allee 
effect and cross-diffusion in a toxic-phytoplankton and zoo-
plankton system and explored the impact of Allee effect and 
toxin liberation rate on pattern via simplified MH functional 
response.

A well-known truth is that time delays exist in every bio-
logical process and influence the dynamics of the aquatic 
as well as marine ecosystem and its whole community. The 
time delay consequences for plankton system have also been 
successfully deliberated by several authors by using different 
functional responses (Mondal et al. 2020; Roy et al. 2016; 
Thakur and Ojha 2020b; Thakur et al. 2020). Recently, 
Thakur et al. (2020) have established the plankton–fish 
model with multiple gestation delay and demonstrated that 
the two equal gestation delay may promote the chaotic phe-
nomenon in the plankton system. Mondal et al. (2020) noted 
that increment in gestation delays can lead to stationary 
points destabilization by creating limit cycles. The effect of 
time delay in top predator gestation has been studied by Ojha 
and Thakur (2020). For that purpose, they have considered a 
simple three species system in which phytoplankton acts as a 
prey species and equipped with toxicity whereas zooplank-
ton and fish act as middle and top predators, respectively. 
Misra and Raveendra Babu (2016) proposed a mathemati-
cal model to study the effect of toxicant in a three-species 
food chain system incorporating delay in toxicant uptake 
process by prey population. Kumar et al. (2018) analyzed 
stability and Hopf-bifurcation dynamics of a food chain sys-
tem for both pest and the natural enemy with dual gestation 
delay and observed that the natural enemy free steady state 
is stable if the gestation delay for the pest is sufficiently 
low otherwise system observed oscillating behavior. Sharma 
et al. (2016) studied a mathematical model for plankton–fish 
interaction in the context of obtaining the impact of quad-
ratic harvesting and time delay. Further, they conclude that 
induction of stability by harvesting of a top predator in the 
plankton food chain can be destabilized by digestion delay.

Most modeling methods were focused on wastewater 
treatment and assumed the spatial structure of the wetland 
did not influence temporal dynamics (Rahman et al. 2018). 
This study offers an important insight into local welfare ser-
vices and the values of mangroves, enabling them to inform 
policies on protection and better exploitation of mangrove 
resources. With this motivation, we consider three interact-
ing components consisting of NTP, TPP and zooplankton in 
our model system and incorporating competition between 
TPP and NTP and observe its consequences on the dynami-
cal system. We assume that the local growth of the prey is 

logistic and that the predator shows the Holling type II func-
tional response for NTP and MH-type functional for TPP. 
Because some zooplanktons have the ability to discriminate 
between toxic and non-toxic phytoplankton and first feed on 
non-toxic phytoplankton but gradually move to the toxic one 
if non-toxic resources become limited (Chakraborty et al. 
2012). The principal objective of this paper is the analy-
sis of spatial–temporal interactions and patterns. Also, the 
role of dual delay on NTP, TPP and zooplankton system is 
well established numerically. The paper is organized into 
eight sections as follows:  "The mathematical model" sec-
tion addresses the system model and parameter description. 
In the absence and the presence of diffusion, the model 
system is analyzed in "Analytical methodologies" section. 
The conditions for Turing instabilities have been presented 
in  "Turing instability" section. In  "Numerical results" sec-
tion, we have exhibited the numerical simulation results. 
In  "The mathematical model with time delay" section, we 
have discussed the population dynamics with time delay. In 
"Discussion" section, the results are discussed. Finally, in  
"Conclusion" section conclusions of the work are presented.

The mathematical model

In this section, we have proposed a mathematical model 
for structuring diffusion-induced plankton system that 
deals with a combination of NTP, TPP with a zooplank-
ton population for an aquatic ecosystem. Zooplankton is 
considered as a single predator in our study that predates 
NTP and TPP both, where the predation of TPP indirectly 
affects the population of zooplankton. We have discussed 
the situation that arises when the prey population shows 
the competing effect, and this competition is described 
as the adverse consequences on one species to another 
together with spatial interaction. Kretzschmar et al.  (1993) 
have studied a basic two prey (i.e., NTP and TPP) one 
predator (i.e., zooplankton) model based on Lotka–Vol-
terra equations in which both the preys are modeled as 
Holling type II functional response and competing for the 
same resource. Several experimental outcomes reveal that 
whenever NTP abundance is high, zooplankton prefer to 
graze on NTP and avoid ingesting toxic species (Pal et al. 
2010; Schultz and Kiørboe 2009). It has also observed 
that, zooplankton graze on TPP only when NTP abundance 
becomes very low or nil. Therefore, zooplankton shows 
an avoidance tendency to graze on TPP in the presence of 
NTP. Moreover, TPP has no significant influence on the 
predation of NTP, but NTP abundance greatly reduces the 
ingestion of TPP (Schultz and Kiørboe 2009). Therefore, 
consumption of NTP population by zooplankton gives the 
gain in zooplankton growth but the consumption of TPP 
population gives a reduction in zooplankton growth due to 
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the ingestion of toxic substances together with TPP popu-
lation. Although it is well known that TPP has a nega-
tive effect in zooplankton dynamics, there is still not an 
exact functional form describe to explain decrease in zoo-
plankton grazing due to TPP biomass. However, different 
authors modeled NTP-TPP phenomenon by different func-
tional forms (Chakraborty et al. 2012; Roy 2008; Thakur 
et al. 2016). We have considered two different types of 
response functions for NTP and TPP population. Holling 
type II functional response is used as a grazing function 
for NTP whereas MH-type functional response is used for 
TPP population. One more important factor that has been 
considered in our study is the interspecific competition 
coefficients of zooplankton that express the self-limitation 
of zooplankton (Thakur et al. 2017). For the model for-
mulation, NTP population is represented by P1(t) , TPP 
population is represented by P2(t) and zooplankton is rep-
resented by Z(t). We would like to impose a brief descrip-
tion of the model system which is based on the following 
ecological assumptions: 

(i)	 The dynamics of entire community arises due to the 
coupling of three interacting populations: NTP P1(t) , 
TPP P2(t) and zooplankton Z(t).

(ii)	 In the absence of zooplankton Z(t), the population of 
NTP P1(t) and TPP P2(t) increases logistically with 
the intrinsic growth rate r1 , r2 ( r1, r2 > 0 ) and carrying 
capacity K1 , K2 ( K1,K2 > 0).

(iii)	 The relationship between ( P1, Z ) is defined by Hol-
ling type II functional response, and the relationship 
between ( P2, Z  ) is defined by MH-type functional 
response.

(iv)	 Zooplankton predates its favorite food NTP at a rate 
of w1 with the maximum conversion rate �1 and pre-
dates its unfavorite food TPP at a rate of w2 with the 
reduction rate �2 . In the absence of their favorite food, 
zooplankton will die out as their natural death rate m.

(v)	 For the spatial distribution, we have incorporated 
the diffusion coefficient with each species where at 
any point (x, y) and time t, the dynamics of NTP is 
denoted by P1(x, y, t) , the dynamics of TPP is denoted 
by P2(x, y, t) and the dynamics of zooplankton denoted 
by Z(x, y, t).

With the above assumption, we have proposed a reaction-
diffusion model system for plankton–zooplankton interac-
tion as follows:

with initial conditions and zero-flux boundary conditions

where D1, D2 and D3 are the diffusion coefficients of NTP, 
TPP and zooplankton populations, respectively, n is the out-
ward normal to �� . ∇2 =

�2

�x2
 denotes the 1D Laplacian 

operator whereas ∇2 =
�2

�x2
+

�2

�y2
 denotes the 2D Laplacian 

operator. A brief description of parameters presented in 
Table 1.

 Analytical methodologies

Non‑spatial model system

In this subsection, we have discussed the nonnegative equilib-
rium points and their stability properties of the model system 
in absence of diffusion and the reduced system of ordinary 
differential equations is as follows:

with

Boundedness solution

Lemma 1  Assume that u(x, t) is defined by (Hale and Walt-
man 1989)

(2.1)

�P1

�t
= r1P1

(
1 −

P1 + �1P2

K1

)
−

w1P1Z

d1 + P1

+ D1∇
2P1,

�P2

�t
= r2P2

(
1 −

P2 + �2P1

K2

)
−

w2P2Z

d2 + b1P
2
2

+ D2∇
2P2,

�Z

�t
=

�1P1Z

d1 + P1

−
�2P2Z

d2 + b1P
2
2

− mZ − m1Z
2 + D3∇

2Z,

(2.2)
P1(x, y, 0) > 0, P2(x, y, 0) > 0, Z(x, y, 0) > 0, for (x, y) ∈ 𝛺,

(2.3)
𝜕P1

𝜕n
=

𝜕P2

𝜕n
=

𝜕Z

𝜕n
= 0, for (x, y) ∈ 𝜕𝛺, t > 0,

(3.1)

dP1

dt
= r1P1

(
1 −

P1 + �1P2

K1

)
−

w1P1Z

d1 + P1

,

dP2

dt
= r2P2

(
1 −

P2 + �2P1

K2

)
−

w2P2Z

d2 + b1P
2
2

,

dZ

dt
=

�1P1Z

d1 + P1

−
�2P2Z

d2 + b1P
2
2

− mZ − m1Z
2,

(3.2)P1(0) > 0,P2(0) > 0, Z(0) > 0.
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Theorem 1  All the solutions of model system (2.1) are non-
negative and defined for all t > 0 . Furthermore, the non-
negative solution (P1(x, t),P2(x, t), Z(x, t)) of (2.1) satisfies, 
lim
t→∞

supmaxP1(x, t) ≤ K1 , lim
t→∞

supmaxP2(x, t) ≤ K2   , 
lim
t→∞

supmaxZ(x, t) ≤ �1P1

m1(d1+P1)
.

Proof  From the first equation of model system (2.1), we 
obtain

By using comparison principle, for any arbitrary 𝜀1 > 0 , 
there exists T1 > 0 such that t > T1 , we have

Thus,

From second equation of model system (2.1), we have

Thus,

Similarly from third equation of model system (2.1), we have

(3.3)

𝜕u

𝜕t
=D1𝛥u + ru(1 −

u

K
), x ∈ 𝛺, t > 0,

𝜕u

𝜕v
=0, x ∈ 𝜕𝛺, t > 0,

u(x, 0) =u0(x) > 0, x ∈ 𝛺.

Then, lim
t→∞

u(x, t) = K.

(3.4)
�P1

�t
≤ D1�P1 + r1P1

(
1 −

P1

K1

)
.

(3.5)P1(x, t) ≤ K1 + �1.

(3.6)lim
t→∞

supmax
x𝜖𝛺̄

P1(x, t) ≤ K1.

(3.7)P2(x, t) ≤ K2 + �2.

(3.8)lim
t→∞

supmax
x𝜖𝛺̄

P2(x, t) ≤ K2.

Therefore,

This implies,

	�  ◻

Stability properties with equilibria analysis

The non-spatial model system (3.1) has six nonnega-
tive equilibrium state, namely E0(0, 0, 0) , E1(K1, 0, 0) , 
E2(0,K2, 0) , E3(P̃1, P̃2, 0) , E4(P̄1, 0, Z̄) and E5(P

∗
1
,P∗

2
, Z∗) , 

as follows: 

	 (i)	 The trivial equilibrium point E0 = (0, 0, 0) always 
exists.

	 (ii)	 The axial equilibrium point E1 = (K1, 0, 0) exists on 
the boundary of the first octant.

	 (iii)	 The axial equilibrium point E2 = (0,K2, 0) exists on 
the boundary of the first octant.

	 (iv)	 The planar equilibrium point E3 = (P̃1, P̃2, 0) exists 
on the P1P2-plane, where P̃1 =

(K1 − 𝛼1K2)

(1 − 𝛼1𝛼2)
 , 

P̃2 =
(K2 − 𝛼1K1)

(1 − 𝛼1𝛼2)
 , if 𝛼1 <

K1

K2

<
1

𝛼2
.

(3.9)
�Z

�t
≤ D3�Z + Z

(
�1P1

(d1 + P1)
− m1Z

)
.

(3.10)Z(x, t) ≤ �1P1

m1(d1 + P1)
+ �.

(3.11)lim
t→∞

supmax
x𝜖𝛺̄

Z(x, t) ≤ 𝛾1P1

m1(d1 + P1)
.

Table 1   Definition of the 
parameters used in the model 
system (2.1)

Parameters Description

r1 Intrinsic growth rate constant of NTP
r2 Intrinsic growth rate constant of TPP
K1 Carrying capacity of environment for NTP
K2 Carrying capacity of environment for TPP
�1 Inter-specific competition coefficients for NTP
�2 Inter-specific competition coefficients for TPP
w1, w2 Maximum value which per capita reduction rate of NTP and TPP can attain
d1, d2 Half saturation constant of NTP and TPP
b1 Inhibitory effect of TPP
�1 Conversion coefficient from individuals of NTP into individuals zooplankton
�2 Reduction rate in the growth of zooplankton due to predation of TPP
m Normal death rate of zooplankton
m1 intraspecific interference coefficient of zooplankton
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	 (v)	 The planar equilibrium point E4 = (P̄1, 0, Z̄) exists 
on the P1Z-plane, where P̄1 and Z̄ are the positive 
solution of the following equations: 

 From Eq. (3.12), we have 

 Putting the value of Z̄  from Eq. (3.14) into Eq. 
(3.13), we get 

 According to Descartes rule of sign, Eq. (3.15) has 
a unique positive real root if 

 And Z̄ is exists, If 

 This shows that E4 = (P̄1, 0, Z̄) exists under the con-
dition of (3.16) and (3.17).

	 (vi)	 The interior equilibrium point E5 = (P∗
1
,P∗

2
, Z∗) exists 

by following (Dubey and Upadhyay 2004). In this 
case, P∗

1
,P∗

2
 and Z∗ are the positive solutions of fol-

lowing equations: 

 From Eq. (3.18), we obtain 

Z∗ > 0 if P∗
1
+ 𝛼1P

∗
2
< K1. . Putting the value of Z∗ 

from Eq. (3.21) in Eqs. (3.19) and  (3.20), we obtain 

(3.12)r1

(
1 −

P̄1

K1

)
−

w1Z̄

d1 + P̄1

= 0,

(3.13)
𝛾1P̄1

d1 + P̄1

− m − m1Z̄ = 0.

(3.14)Z̄ =
r1

w1

(
1 −

P̄1

K1

)
(d1 + P̄1).

(3.15)
m1r1P̄1

3
+ m1r1(2d1 − K1)P̄1

2
+ {w1K1(𝛾1 − m)

+ m1r1d1(d1 − 2K1)}P̄1 − d1K1(m1r1d1 + mw1) = 0.

(3.16)K1 < 2d1.

(3.17)P̄1 < K1.

(3.18)r1

(
1 −

P∗
1
+ �1P

∗
2

K1

)
−

w1Z
∗

d1 + P∗
1

= 0,

(3.19)r2

(
1 −

P∗
2
+ �2P

∗
1

K2

)
−

w2Z
∗

d2 + b1P
∗2
2

= 0,

(3.20)
�1P

∗
1

d1 + P∗
1

−
�2P

∗
2

d2 + b1P
∗2
2

− m − m1Z
∗ = 0.

(3.21)Z∗ =
r1

w1

(
1 −

P∗
1
+ �1P

∗
2

K1

)
(d1 + P∗

1
),

 From Eq. (3.22) when P∗
2
= 0 , then P∗

1
= P1a where 

 Putting P∗
1
= 0 in Eq. (3.22), we note that 

G1(0,P
∗
2
) = 0 has a unique root P2a , which is solu-

tion of the following equation: 

 It may be noted here that Eq. (3.25) has one or three 
positive roots. Eq. (3.25) can be rewritten as 

 where 

 Thus, Eq. (3.25) has a unique real positive root P2a 
(other two roots are complex conjugate) if 

 where 

 Also, we have 

 We noted that dP
∗
1

dP∗
2

< 0, if 

(3.22)

G1(P
∗
1
,P∗

2
) = r2

(
1 −

P∗
2
+ �2P

∗
1

K2

)
−

w2r1

w1(d2 + b1P
∗2
2
)(

1 −
P∗
1
+ �1P

∗
2

K1

)
(d1 + P∗

1
) = 0,

(3.23)

G2(P
∗
1
,P∗

2
) = −m −

m1r1

w1

(
1 −

P∗
1
+ �1P

∗
2

K1

)
(d1 + P∗

1
)

+
(�1P

∗
1
)

d1 + P∗
1

−
�2P

∗
2

d2 + b1P
∗2
2

= 0.

(3.24)P1a > 0 if r1d1w2 > r2d2w1.

(3.25)

r2b1P
∗3
2
− r2b1K2P

∗2
2
+

(
r2d2 −

w2r1d1�1K2

w1K1

)
P∗
2

−

(
r2d2 −

w2r1d1

w1

)
K2 = 0.

(3.26)P∗3
2
+ r1P

∗2
2
+ r2P

∗
2
+ r3 = 0,

r1 = −r2b1K2,

r2 =

(
r2d2 −

w2r1d1�1K2

w1K1

)
,

r3 = −

(
r2d2 −

w2r1d1

w1

)
K2.

(3.27)b2

4
+

a3

27
> 0,

a =
1

3
(3r2 − r2

1
), b =

1

27
(2r3

1
− 9r1r2 + 27r3).

dP∗
1

dP∗
2

= −
�G1

�P∗
2

∕
�G1

�P∗
1

.
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 holds. 
From Eq. (3.23) when P∗

2
= 0 , then G2(P

∗
1
, 0) = 0 

has a root P1b , which is solution of the following 
equation 

 Hence, P1b has a unique positive root of Eq. (3.29) if 

Also, we have dP
∗
1

dP∗
2

= −
�G2

�P∗
2

∕
�G2

�P∗
1

 .  
We noted that dP

∗
1

dP∗
2

> 0, if 

 holds. We noted that the two isocline Eqs. (3.22) 
and  (3.23) intersect at a unique point (P∗

1
,P∗

2
) if in 

(3.28)
either (i)

𝜕G1

𝜕P∗
1

> 0 and
𝜕G1

𝜕P∗
2

> 0,

or (ii)
𝜕G1

𝜕P∗
1

< 0 and
𝜕G1

𝜕P∗
2

< 0,

(3.29)

m1r1

w1K1

P∗3
1
−

m1r1

w1

(
1 −

2d1

K1

)
P∗2
1
−

{
m1r1d1

w1

(
2 −

d1

K1

)

+ (m − r1)

}
P∗
1
− d1

(
m +

m1r1d1

w1

)
= 0.

(3.30)K1 < 2d1.

(3.31)
either (i)

𝜕G2

𝜕P∗
1

> 0 and
𝜕G2

𝜕P∗
2

> 0,

or (ii)
𝜕G2

𝜕P∗
1

< 0 and
𝜕G2

𝜕P∗
2

< 0,

addition to the condition Eqs. (3.27),  (3.28),  (3.30) 
and (3.31), the inequality P1b < P1a holds.

The local stability of each equilibrium point is now dis-
cussed by deriving the variance matrices and using the 
Routh Hurwitz criterion. The findings were obtained 
below: 

	 (i)	 E0(0, 0, 0) is a saddle point. There is unstable mani-
fold along P1,P2-direction and stable manifold along 
Z-direction.

	 (ii)	 E1(K1, 0, 0) is locally asymptotically stable if 
K2

𝛼2
< K1 <

md1

(𝛾1 − m)
, 𝛾1 > m . It is a saddle point if 

the inequality opposes.
	 (iii)	 E2(0,K2, 0) is locally asymptotically stable if 

K1 < 𝛼1K2 . It is a saddle point if the inequality 
opposes.

	 (iv)	 E3(P̃1, P̃2, 0) is stable or unstable in the positive 
direction orthogonal to the P1P2-plane, i.e., Z-direc-
t i o n  d e p e n d i n g  o n  w h e t h e r 

𝜆3 =
𝛾1P̃1

d1 + P̃1

−
𝛾1P̃2

d2 + b1P̃2

2
− m is negative or posi-

tive, respectively.
	 (v)	 E4(P̄1, 0, Z̄) is stable or unstable in the positive direc-

tion orthogonal to the P1Z-plane, i.e., P2-direction 

depending on whether 𝜆3 = r2 −
𝛼2r2P̄1

K2

−
w2Z̄

d2
 is 

nega t ive  o r  pos i t i ve ,  r e spec t ive ly,  i f 
w1K1Z̄ < r1(d1 + P̄1)

2.
	 (vi)	 The variational matrix along E5(P

∗
1
,P∗

2
, Z∗) is given 

by 

M =

⎛
⎜⎜⎝

�11 �12 �13
�21 �22 �23
�31 �32 �33

⎞
⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

P∗
1

�
−

r1

K1

+
w1Z

∗

(d1 + P∗
1
)2

�
−

�1r1P
∗
1

K1

−w1P
∗
1

(d1 + P∗
1
)

−
�2r2P

∗
2

K2

P∗
2

�
−

r2

K2

+
2b1w2P

∗
2
Z∗

(d2 + b1P
∗2
2
)2

�
−w2P

∗
2

(d1 + b1P
∗2
2
)

�1d1Z
∗

(d1 + P∗
1
)2

−
(d2 − b1P

∗2
2
)�2Z

∗

(d2 + b1P
∗2
2
)2

− m1Z
∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



562	 Modeling Earth Systems and Environment (2022) 8:555–577

1 3

 The characteristic equation for the above matrix M 
is given by 

 where 

Theorem 2  Assume that the E5(P
∗
1
,P∗

2
, Z∗) is positive equi-

librium point of the system (3.1). Therefore, the equilibrium 
point E5(P

∗
1
,P∗

2
, Z∗) is locally asymptotically stable when 

A1 > 0, A3 > 0 and A1A2 − A3 > 0 is satisfied.

The proof of the theorem follows from the Routh–Hurwitz 
criterion, hence omitted.

Theorem 3  If the following inequalities hold

Then, the positive equilibria E5 is globally asymptotically 
stable with regard to the all solutions within the positive 
octant.

Proof  We take into account the positive definite function of 
the positive equilibrium E5(P

∗
1
,P∗

2
, Z∗) as

�3 + A1�
2 + A2� + A3 = 0,

A1 = −(�11 + �22 + �33),

A2 = �22�33 − �23�32 + �11�33 − �13�31 + �11�22

− �12�21,

A3 = −�11�22�33 + �11�23�32 + �12�21�33 − �12�23�31

− �13�21�32 + �13�22�31.

(3.32)w1K1Z
∗ < r1d1(d1 + P∗

1
),

(3.33)w2b1K2P
∗
2
Z∗ < r2d2(d2 + b1P

∗2
2
),

(3.34)

(
𝛼1r1

K1

+
𝛼2r2

K2

)2

<

(
r1

K1

−
w1Z

∗

d1(d1 + P∗
1
)

)

×

(
r2

K2

−
w2b1P

∗
2
Z∗

d2(d2 + b1P
∗2
2
)

)
,

(3.35)

(
w2

d2
+

w1𝛾2(d1 + P∗
1
)(d2 − b1P

∗
2
)

𝛾1d1d2(d2 + b1P
∗2
2
)

)2

<

(
r2

K2

−
w2b1P

∗
2
Z∗

d2(d2 + b1P
∗2
2
)

)

×

(
w1m1(d1 + P∗

1
)

𝛾1d1

)
.

(3.36)

V(P1,P2, Z) =

(
P1 − P∗

1
− P∗

1
ln

P1

P∗
1

)
+

(
P2 − P∗

2
− P∗

2
ln

P2

P∗
2

)

+ c

(
Z − Z∗ − Z∗ ln

Z

Z∗

)
,

where the positive constant c to be selected appropriately. 
Differentiating Eq. (3.36) with respect to time t along the 
solution of the model system (3.1), after some algebraic 
manipulations, we get

where

Sufficient condition for dV
dt

 to be negative is that the following 
inequalities hold:

By choosing c = w1(d1+P
∗
1
)

�1d1
 , we note that m13 = 0 , and thus 

condition (3.41) is automatically satisfied. It is easy to see 
that (3.32) ⇒ (3.38), (3.33) ⇒ (3.39), (3.34) ⇒ (3.40) and 
(3.35) ⇒ (3.42). 	�  ◻

Spatial model system

In this section, we discuss the stability of interior equi-
librium of the diffusive model system. In order to derive 

(3.37)

dV

dt
= −

1

2
m11(P1 − P∗

1
)2 + m12(P1 − P∗

1
)(P2 − P∗

2
)

−
1

2
m11(P1 − P∗

1
)2 + m13(P1 − P∗

1
)(Z − Z∗)

−
1

2
m22(P2 − P∗

2
)2 + m23(P2 − P∗

2
)(Z − Z∗)

−
1

2
m22(P2 − P∗

2
)2 −

1

2
m33(Z − Z∗)2 −

1

2
m33(Z − Z∗)2,

m11 =
r1

K1

−
w1Z

∗

(d1 + P∗
1
)(d1 + P1)

,

m22 =
r2

K2

−
w2b1Z

∗(P2 + P∗
2
)

(d2 + b1P
2
2
)(d2 + b1P

∗2
2
)
,

m33 = cm1,

m12 = −

(
�1r1

K1

+
�2r2

K2

)
,

m13 = −
w1

(d1 + P1)
+

c�1d1

(d1 + P∗
1
)(d1 + P1)

,

m23 = −
w2

(d2 + b1P
2
2
)
−

c�2(d2 − b1P2P
∗
2
)

(d2 + b1P
2
2
)(d2 + b1P

∗2
2
)
.

(3.38)m11 > 0,

(3.39)m22 > 0,

(3.40)m2
12

< m11m22,

(3.41)m2
13

< m11m33,

(3.42)m2
23

< m22m33.
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the condition of stability, we linearized the model sys-
tem (2.1) about the equilibrium point E5(P

∗
1
,P∗

2
, Z∗) 

with small perturbation X̄(x, t), Ȳ(x, t) and Z̄(x, t) as 
P1 = P∗

1
+ X̄(x, t),P2 = P∗

2
+ Ȳ(x, t) and Z = Z∗ + Z̄(x, t) . 

The linearized form of model system is obtained as:

Suppose that the solution of system (3.43) is

where �ix and �iy are the components of wave number along 
x- and y-directions, respectively, and p, q and r are suffi-
ciently small constants. R∕n� is the critical wavelength and √
�i = n�∕R is wave number, R is the length of the system, 

2�∕n is the period of cosine and � is the frequency, respec-
tively. The characteristic equation of the linearized system 
is given by

where

Theorem 4  The positive equilibrium point E5(P
∗
1
,P∗

2
,Z∗) is 

locally asymptotically stable in the presence of diffusion if 
and only if:

	 (i)	 𝜌1 > 0,
	 (ii)	 𝜌3 > 0,
	 (iii)	 𝜌1𝜌2 − 𝜌3 > 0.

From Eq. (3.45) and using the Routh–Hurwitz criterion, 
the above theorem follows immediately.

(3.43)

𝜕X̄

𝜕t
= a11X̄ + a12Ȳ + a13Z̄ + D1

(
𝜕2

𝜕x2
+

𝜕2

𝜕y2

)
X̄,

𝜕Ȳ

𝜕t
= a21X̄ + a22Ȳ + a23Z̄ + D2

(
𝜕2

𝜕x2
+

𝜕2

𝜕y2

)
Ȳ ,

𝜕Z̄

𝜕t
= a31X̄ + a32Ȳ + a33Z̄ + D3

(
𝜕2

𝜕x2
+

𝜕2

𝜕y2

)
Z̄.

(3.44)
⎛
⎜⎜⎝

X̄

Ȳ

Z̄

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

p

q

r

⎞
⎟⎟⎠
exp(𝜏t) cos(

√
𝜆ixx) cos(

�
𝜆iyy),

(3.45)�3 + �1�
2 + �2� + �3 = 0,

(3.46)

�1 = (D1 + D2 + D3)�i + A1,

�2 = A2 − ((a22 + a33)D1 + (a11 + a33) + (a11 + a22))�i

+ (D1D2 + D2D3 + D3D1)�
2

i
,

�3 = A3 + ((a22a33 − a23a32)D1 + (a11a33 − a13a31)D2

+ (a11a22 − a12a21)D3)�i − (a33D1D3 + a22D1D3

+ a11D2D3)�
2

i
+ D1D2D3�

3

i
.

Theorem 5  If the positive equilibrium point E5 of the model 
system (3.1) is globally asymptotically stable, then corre-
sponding uniform steady state of model system (2.1) remains 
globally asymptotically stable.

Proof  For stability behavior of the system (2.1), we define a 
positive definite function V1(t) given by

Calculating the derivative of V1(t) along the solution of 
model system (2.1), we get

where

Using Green’s first identity in the plane

Using similar study as in ( Upadhyay et al. 2010), we have

This shows that I2 ≤ 0. From above analysis, we note that if 
I1 ≤ 0, then dV1

dt
< 0. 	�  ◻

(3.47)V1(t) = ∬
�

V(P1,P2, Z)dA.

(3.48)

dV1

dt
= ∬

�

dV

dt
dA +∬

�

(
D1

�V

�P1

∇2
P1 + D2

�V

�P2

∇2
P2

+ D3

�V

�Z
∇2

Z

)
dA,

dV1

dt
= I1 + I2,

I1 = ∬
�

dV

dt
dA,

I2 = ∬
�

(
D1

�V

�P1

∇2P1 + D2

�V

�P2

∇2P2 + D3

�V

�Z
∇2Z

)
dA.

(3.49)∬
�

F∇2GdA = ∫
��

�G

��
dS −∬

�

(∇F.∇G)dA.

�
�

�V

�P1

∇2P1dA = −�
�

�2V

�P2

1

((
�P1

�x

)2

+

(
�P1

�y

)2)
dA

≤ 0,

�
�

�V

�P2

∇2P2dA = −�
�

�2V

�P2

2

((
�P2

�x

)2

+

(
�P2

�y

)2)
dA

≤ 0,

�
�

�V

�Z
∇2ZdA = −�

�

�2V

�Z2

((
�Z

�x

)2

+

(
�Z

�y

)2)
dA

≤ 0.
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Turing instability

In this section, we have derived the required conditions for 
the existence of Turing instability of the spatial phytoplank-
ton–zooplankton system (2.1). Due to spatial diffusion, the 
occurrence of Turing instability changes the stable equilib-
rium to the unstable one. Mathematically, Turing instability 
requires at least one of the roots of the characteristic Eq. 
(3.45) has a non-negative real part or in the other hands, 
Re(𝜏) > 0 for some 𝜆i > 0.

Theorem 6  If the following conditions

	 (i)	 b1 > 0 , b12 > 3b0b2,

	 (ii)	 𝜌3(𝜆i(cr)) =
2b3

1
−9b0b1b2−2(b

2
1
−3b0b2)

3
2 +27A3b

2
0

27b3
0

< 0,

	 (iii)	 𝜓(𝜆i(cr)) =
2c3

1
−9c0c1c2−2(c

2
1
−3c0c2)

3
2 +27c4c

2
0

27c3
0

< 0,

satisfy. Then, Turing instability takes place around interior 
equilibrium E5 of spatial system (2.1).
Proof  For diffusion driven instability, it is necessary to 
satisfy at least one of following conditions, which is given 
below:

where �1, �2, �3 are defined in Eq. (3.46). Since D1, D2, D3 
and �i are positive. Therefore, diffusion-driven instability 
cannot satisfy the condition 𝜌1(𝜆i) < 0 . Hence, we look out 
for the conditions 𝜌3(𝜆i) < 0, 𝜌1(𝜆i)𝜌2(𝜆i) − 𝜌3(𝜆i) < 0 . We 
have

where

If P(�i) has a minimum, then one can find by simple manipu-
lations that

where d
2P

d𝜆2
i

> 0. Hence b1 > 0 and b12 > 3b0b2, then one can 

clearly observe occurrence of Turing instability if

𝜌1(𝜆i) < 0, 𝜌3(𝜆i) < 0, 𝜌1(𝜆i)𝜌2(𝜆i) − 𝜌3(𝜆i) < 0,

(4.1)P(�i) = �3(�i) = b0�
3
i
+ b1�

2
i
+ b2�i + A3,

b0 = D1D2D3,

b1 = −a11D2D3 − a22D1D3 − a33D1D2,

b2 = D1(a22a33 − a23a32) + D2(a11a33 − a13a31)

+ D3(a11a22 − a12a21).

dP

d�i
= 3b0�

2
i
+ 2b1�i + b2 = 0, gives �i(cr) =

−b1 ±
√

b2
1
− 3b0b2

3b0
,

Again from Eq. (3.45), we have �(�i) = �1(�i)�2(�i) − �3(�i) . 
Some algebraic calculations lead us

where

If �(�i) has a minimum, then

where 
d2𝜓

d𝜆2
i

> 0. This minimum is reached for the solution at

If we choose c1 < 0 and c2 < 0 , then straightforward calcula-
tions show that Turing instability occur if

	�  ◻

Now, consider the following set of parameter values for 
which above mentioned conditions for Turing instability 
hold:

For this set of parameter values, we have obtained 
the positive equilibr ium point (P∗

1
,P∗

2
, Z∗) .  For 

D1 = D2 = 0.01,D3 = 10 and using the above set of param-
eter values, we have obtained the critical values �i(cr) as 
(35.7149,−8.7742) and corresponding value of P(�i(cr)) as 
(−39.5637, 4.4509) (c.f., Fig. 1a). The graph of P(�i) vs. �i 

P(𝜆i(cr)) =
2b3

1
− 9b0b1b2 − 2(b2

1
− 3b0b2)

3

2 + 27A3b
2
0

27b3
0

< 0.

(4.2)�(�i) = c0�
3
i
+ c1�

2
i
+ c2�i + c3,

c0 = (D2 + D3)(D1D1 + D1D2 + D2D3 + D1D3),

c1 = −a11(D2 + D3)(2D1 + D2 + D3) − a22(D1 + D3)

× (D1 + 2D2 + D3) − a33(D1 + D2)(D1 + D2 + 2D3),

c2 = D1(a22a22 − a33a33) + D2(a11a11 − a33a33)

+ D3(a11a11 − a22a22) + 2(a11a22 + a11a33 + 2a22a33)

× (D1 + D2 + D3),

c3 = A1A2 − A3 > 0.

d�

d�i
= 3c0�

2
i
+ 2c1�i + c2 = 0,

(4.3)�i(cr) =
−c1 ±

√
c2
1
− 3c0c2

3c0
.

𝜓(𝜆i(cr)) =
2c3

1
− 9c0c1c2 − 2(c2

1
− 3c0c2)

3

2 + 27c3c
2
0

27c3
0

< 0.

(4.4)

r1 = 0.4632, r2 = 0.4425, K1 = 505, K2 = 505,

w1 = 0.6625, w2 = 0.435, �1 = 0.002, �2 = 0.001,

d1 = 45, d2 = 30, �1 = 0.516, �2 = 0.45, m = 0.309,

m1 = 0.001, b1 = 0.49.
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has been plotted for different values of D3 in Fig. 1b. The 
positive values of �i for which 𝜌3 = P(𝜆i) < 0 , the plankton 
system (2.1) is unstable.

 Numerical results

In this section, model system (2.1) with and without diffu-
sion is investigated numerically to validate our theoretical 
findings. The system without diffusion is studied to under-
stand the behavior of some control parameters that affect 
the plankton dynamics. Model system with diffusion is 
investigated for both one- and two-dimensional cases. For 
one-dimensional case, the complex spatiotemporal pat-
tern is plotted for different values of time and space. The 

spatiotemporal dynamics is analyzed by observing the effect 
of time, space vs. density plot of plankton populations. For 
two-dimensional cases, spatial distribution of plankton pop-
ulation is presented by snapshots. All the numerical results 
are plotted by using MATLAB. The snapshots of the model 
system (2.1) are plotted by semi-implicit (in time) finite dif-
ference method (Garvie 2007). The step lengths �x and �y 
of the numerical grid are chosen sufficiently small so that the 
results are numerically stable. Application of the finite dif-
ference method gives rise to a sparse, banded linear system 
of algebraic equations. The resulting linear system is solved 
by using the GMRES algorithm for the two-dimensional 
case.

For the non-spatial model system (3.1), we have plotted 
the time series, phase space diagram along with bifurcation 
representation for a different range of parametric values. 
For this simulations, we have considered the following set 
of parameter values as mentioned in Eq. (4.4) at which the 
system (3.1) is locally asymptotically stable (c.f., Fig. 2a). 
As we decrease the value of intraspecific interference param-
eter m1 from 0.001 to 0.0001, the system loses its stability 
and becomes unstable (c.f., Fig. 2b). Time series in Fig. 2 
clearly show that intraspecific interference of zooplankton 
strongly affected the system dynamics. It reveals that the low 
value of intraspecific interference m1 destabilizes the dynam-
ics of the plankton system. In Fig. 2c, we have generated 
the bifurcation diagram between intraspecific interference 
parameter m1 in the range [0.0001, 0.002] and population 
of Z. The population of P1 and P2 with respect to m1 are 
not plotted here, yet they are similar. Later, we have gener-
ated the bifurcation diagram for intraspecific competition 
coefficients �1 and �2 . For this, we have chosen a window 
�1 ∈ [0, 0.6] for fixed �2 = 0.2 and generated the bifurcation 
diagram for �1 vs. population of P1 , P2 and Z, respectively 
(c.f., Fig. 3). For this range of �1 , it has been observed that 
the increasing value of �1 makes the system stable to unsta-
ble but after a certain range, it regains stability. Similarly, 
we have chosen a window �2 ∈ [0, 0.6] for fixed �1 = 0.5 and 
generated the bifurcation diagram for �2 vs. population of 
P1 , P2 and Z, respectively (c.f., Fig. 4). For this range of �2 , 
it has been observed that the increasing value of �1 makes 
the system stable to unstable. If we compare the bifurca-
tion diagram 3 and 4, one can clearly observe the low value 
of �1 gives rise to zooplankton density whereas low value 
of �2 slightly decreases the zooplankton density. In addi-
tion, a high value of �2 tends to the extinction of zooplank-
ton stable equilibrium. Further, we have also observed the 
impact of inhibitory effect b1 on system dynamics. For fixed 
�1 = 0.5, �2 = 0.2 , we have drawn phase space diagram at 
b1 = 0.49 and b1 = 2 . A stable limit cycle has appeared after 
a stable focus with an increasing value of b1 (c.f., Fig. 5a, 
b), since the inhibitory effect of TPP mainly affected the 
dynamics of zooplankton. Hence, a bifurcation diagram is 

Fig. 1   The graph of the function P(�
i
) for the set of parameter val-

ues given in Eq. (4.4) with D1 = D2 = 0.01 and a D3 = 10 b 
D3 = 10, 20, 30
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Fig. 2   a, b Time series for the non-spatial model system (3.1) at m1 = 0.001 , m1 = 0.0001. c Bifurcation diagram of the non-spatial model sys-
tem (3.1) for m1 vs. Max(Z)

Fig. 3   Bifurcation diagram of the non-spatial model system (3.1) for �1 vs. Max(P1 ), Max(P2 ) and Max(Z) at fixed �2 = 0.2
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plotted between b1 and the population of Z in Fig. 5c. We 
see that the populations of Z are oscillating as b1 crosses its 
threshold value.

For the spatial model system (2.1), we have chosen the 
same set of parameters value as given in Eq. (4.4) and plot-
ted the spatiotemporal pattern with the following diffusion 
coefficients D1 = D2 = 10−4 and D3 = 10−3 . The considered 

Fig. 4   Bifurcation diagram of the non-spatial model system (3.1) for �2 vs. Max(P1 ), Max(P2 ) and Max(Z) at fixed �2 = 0.5

Fig. 5   a, b Phase space diagram for the non-spatial model system (3.1) at b1 = 0.49 , b1 = 2. c Bifurcation diagram of the non-spatial model sys-
tem (3.1) for b1 vs. Max(Z)
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Fig. 6   Spatiotemporal pattern of NTP, TPP and zooplankton of the model system (2.1) for fixed x = 100 and a t = 200, b t = 300 at m1 = 0.0001

Fig. 7   Spatiotemporal pattern of NTP, TPP and zooplankton of the model system (2.1) for fixed t = 100 and a x = 200, b x = 300 at m1 = 0.0001
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initial conditions for the spatial dynamics are as mentioned 
below:

w h e r e  �1 = 5 × 10−4, x0 = 0.1, S = 0.2  a n d 
(P∗

1
,P∗

2
, Z∗) = (72.1687, 504.6492, 70.0499).

Now, we have presented the pattern formation for 
the one-dimensional case in Figs. 6, 7, 8 with the above 
introduced initial conditions and parameters value of Eq. 
(4.4). Further, we decrease the value of zooplankton’s 
intraspecific interference coefficient from m1 = 0.001 to 
m1 = 0.0001 and observe the significant changes in the 
dynamics of NTP, TPP and zooplankton. Firstly, we have 
checked the effect of space, time, and then space-time in 
both of the proposed reaction-diffusion systems (2.1). To 
elaborate the effect of space with varying time, we fixed 
space in the interval 0 ≤ x ≤ 100 and increase the value 
of time from t = 200 to t = 300 (c.f., Fig. 6). In Fig. 6a, 
we observed that at t = 200 , all the species (NTP, TPP 

(5.1)

P1(x, 0) = P∗
1
+ �1 sin

(
2�(x − x0)

S

)
,

P2(x, 0) = P∗
2
+ �1 sin

(
2�(x − x0)

S

)
,

Z(x, 0) = Z∗ + �1 sin

(
2�(x − x0)

S

)
,

and zooplankton) shows chaotic oscillation in space only. 
In Fig. 6b, we observed that at t = 300 , NTP and zoo-
plankton reduce its complexity whereas TPP remains in its 
old stage. Now, to elaborate the effect of time with vary-
ing space, we fixed time in the interval 0 ≤ t ≤ 100 and 
increase the value of space from x = 200 to x = 300 (c.f., 
Fig. 7). In this case, NTP and zooplankton show chaotic 
oscillations in space and time both whereas TPP shows 
complex spatiotemporal patterns in space only. Further, 
we observed that increasing the value of space increases 
the complexity in all the species. To elaborate the effect of 
space-time both, first we fixed 0 ≤ x ≤ 100 and 0 ≤ t ≤ 100 
then we fixed 0 ≤ x ≤ 200 and 0 ≤ t ≤ 200 (c.f., Fig. 8). 
If we compare Fig. 8a to b, we observed that the density 
of NTP and zooplankton slightly stabilize with respect 
to time but increase the complexity with respect to space 
whereas the density of TPP increases the complexity with 
respect to space only.

After substantiating the appearance of Turing instability 
and plotting different spatiotemporal patterns with respect to 
time and space, now, we have investigated the various Turing 
patterns of the two-dimensional spatial systems to know how 
the different diffusion coefficients and time intervals affect 
the spatial distribution of plankton system (2.1). To explore 
the formation of the patterns, firstly, we have presented the 

Fig. 8   Spatiotemporal pattern of NTP, TPP and zooplankton of the model system (2.1) for a x = 100, t = 100, b x = 200, t = 200 at 
m1 = 0.0001
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snapshot for NTP, TPP and zooplankton for different diffu-
sion coefficients in Fig. 9. During the formation of patterns, 
different types of dynamical outcomes such as mixture, 
stripes and spots have been seen and it also is found that 

the density distribution of NTP, TPP and zooplankton are 
always followed the same type of distribution. Initially, in 
the examination of diffusion coefficient, we fixed the diffu-
sion coefficient of NTP and TPP at D1 = D2 = 0.1 and do 

Fig. 9   Snapshots NTP, TPP and Zooplankton of model system (2.1) for D1 = D2 = 0.1 with a D3 = 0.3, b D3 = 1.36, c D3 = 1.361, d D3 = 1.6
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a variation in diffusion coefficient of zooplankton D3 where 
the other parameters are mentioned in Eq. (4.4) and initial 
distribution of population is taken as P1(x, y, 0) = P∗

1
+ 0.1

randn, P2(x, y, 0) = P∗
2
+ 0.1randn and Z(x, y, 0) = Z∗ + 0.1

randn. We observed from Fig. 9a, when D3 = 0.3 , a stable 
pattern has appeared for the NTP population whereas an 
irregular patchy pattern has appeared for TPP and zooplank-
ton density. Now, as we strengthen the value of diffusion 
coefficient of zooplankton from D3 = 0.3 to D3 = 1.36 , it is 
very fascinating to see that the whole square domain of NTP 
changes into yellow color and the whole square domain of 
TPP changes into blue color, which ensures that TPP popula-
tion less than the population of NTP as D3 increased. Fur-
ther, the interconnected stripe and spot patterns for NTP, 
TPP and Zooplankton population are appeared at D3 = 1.36 

(c.f., Fig. 9b). Now, as we slightly increase the value of D3 
from D3 = 1.36 to D3 = 1.361 , the population of TPP and 
zooplankton shows minor changes in their distribution from 
the previous patterns but the population of NTP shows major 
changes since the color of the whole square domain of NTP 
changes into a mixture of yellow and blue color which indi-
cates the reduction in the density of NTP. In this case, we 
have found the plankton domain emergence with a mixture 
of stripe and spot patterns (c.f., Fig. 9c). At the large dif-
fusion coefficient of D3 = 1.6 , the model system depicts a 
transition from the stripe–spot mixture to spot replication 
(c.f., Fig. 9d). In this spot pattern, we have found that the 
NTP and zooplankton populations are in the isolated zone 
with low density whereas TPP is in the isolated zone with 
high density. Therefore, in this simulation, increasing the 

Fig. 10   Snapshots NTP, TPP and Zooplankton of model system (2.1) for D1 = D2 = 0.1, D3 = 1.6 with a t = 100, b t = 150, c t = 1000
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value of diffusion coefficient D3 leads to a sequence of pat-
tern “irregular patchy pattern ⟶ stripe–spot mixture ⟶ 
spot.” Now, we have examined the consequences of time 
intervals on the density of NTP, TPP and zooplankton 
population by keeping all diffusion coefficient constant as 
D1 = D2 = 0.1, D3 = 1.6 . Initially, at t = 100 , the spatial 
distribution consists of an irregular patchy pattern where 
t = 150 spatial distribution consists of a mixture of stripes 
and spots (c.f., Fig. 10a, b). It is remarkable that a minor 
change in time interval clears the occurrence of spots with 
strips. As we increase the value of time from t = 150 to 
t = 1000 , we have observed the mixture of spots and stripes 
goes into a clear spot pattern and finally, the spatial distri-
bution consists of spots only (c.f., Fig. 10c). The density 
distribution consequences for the parameter b1 is also studied 
under the Turing domain of the system (2.1). In Fig. 11, a 
mixture of stripe–spot pattern switches to spot pattern only 
when the value of inhibitory effect takes from b1 = 0.49 to 
b1 = 0.69.

 The mathematical model with time delay

In order to generalize the proposed non-spatial model sys-
tem (3.1), we have introduced two constant delay param-
eters �1 and �2 . Since the interaction among NTP, TPP and 

zooplankton are not an immediate process. During the con-
version process of food (i.e., NTP), a time lag is required for 
the reproduction by the zooplankton gestation. Therefore, 
we have introduced discrete time delay �1 in zooplanktons 
growth term. Further, we have assumed that the zooplank-
tons death due to predation of TPP needs some time lag. For 
this assumption, we have introduced discrete time delay �2 in 
the extra morality term in the zooplankton dynamics. Hence 
the corresponding delayed phytoplankton–zooplankton sys-
tem takes the following form:

For this system, we have validated all the possible combi-
nation of �1 − �2 in five different cases by using the same 
parameter set given in Eq. (4.4), as follows: 

(i)	 Case I, when both �1 = �2 = 0 : In this case, the system 
is LAS (locally asymptotically stable) about the coex-

(6.1)

dP1

dt
= r1P1

(
1 −

P1 + �1P2

K1

)
−

w1P1Z

d1 + P1

,

dP2

dt
= r2P2

(
1 −

P2 + �2P1

K2

)
−

w2P2Z

d2 + b1P
2
2

,

dZ

dt
=

�1P1(t − �1)Z(t − �1)

d1 + P1(t − �1)
−

�2P2(t − �2)Z(t − �2)

d2 + b1P
2
2
(t − �2)

− mZ − m1Z
2.

Fig. 11   Snapshots NTP, TPP and Zooplankton of model system (2.1) for D1 = D2 = 0.1, D3 = 1.36 with a b1 = 0.49, b b1 = 0.69
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isting equilibria E∗(P∗
1
,P∗

2
, Z∗) = (210.2, 504.4, 103.8) 

(c.f., Fig. 12 (Case I: �1 = �2 = 0)).
(ii)	 Case II, when 𝜏1 > 0, 𝜏2 = 0 : In this case, the system 

is LAS for �1 = 1.5 and unstable for �1 = 3 . There-
fore, the system experiences the Hopf-bifurcation sce-
nario around �1 = �∗

1
= 1.791 (c.f., Fig. 12 (Case II: 

𝜏1 > 0, 𝜏2 = 0)).
(iii)	 Case III, when 𝜏1 = 0, 𝜏2 > 0 : In this case, the system 

is LAS for all 𝜏2 > 0 . Therefore, the system does not 
experience the Hopf bifurcation for any value of �2 (c.f., 
Fig. 12 (Case III: 𝜏1 = 0, 𝜏2 > 0)).

(iv)	 Case IV, when 𝜏1 ∈ (0, 𝜏∗
1
), 𝜏2 > 0 : In this case, we 

have chosen an arbitrary value of �1 within its stabil-
ity region (0,1.791) for the free parameter �2 . We have 
taken �1 = 1 and observed, the system is LAS for all 
𝜏2 > 0 (c.f., Fig. 12 (Case IV: 𝜏1 = 1, 𝜏2 > 0)).

(v)	 Case V, when 𝜏1 > 0, 𝜏2 ∈ (0, 𝜏∗
2
) : In this case, we have 

chosen an arbitrary value of �2 within its stability region 

(0,10) for the free parameter �1 . We have taken �1 = 2 
and observed, the system is LAS for �1 = 1.25 and 
unstable �1 = 3.5 . Therefore, the system experiences 
the Hopf-bifurcation scenario around 𝜏1 = 𝜏1

∗ = 2.256 
(c.f., Fig. 12 (Case V: 𝜏1 > 0, 𝜏2 = 2)).

Discussion

Eutrophication and the presence of toxic phytoplankton 
in Sundarbans estuary have deteriorated the water quality. 
The structure of mangrove is unique and driven by marine 
and terrestrial. Most of the study focused on the treatment 
of wastewater, and very little attention has been given to 
disturbance occurred by toxin-producing phytoplankton 
and the presence of pollutant chemicals in the sediments 
of Sundarbans. Bio invasion in the world heritage Sund-
arbans ecosystem dynamics has put a question mark on 

Fig. 12   Time series for the model system (6.1) for different cases of �1 and �2
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their sustainability. Fresh and marine water HABs have 
a significant concern toward the aquatic food chains and 
population of humans. Therefore, a considerable investiga-
tion into all aspects is needed to verify essential blooming 
factors. Many researchers have focused on the study of 
plankton dynamics with different assumptions in which the 
role of HABs has been widely recognized. Chattopadhyay 
et al. (2004) had proposed a mathematical model for a 
three-dimensional plankton system that shows the interac-
tion among NTP, TPP and zooplankton population. They 
incorporated two types of predation form, one describes 
the predation rate for NTP population which follows the 
simple law of mass action whereas another describes the 
predation rate for TPP population which follows the Hol-
ling type II functional form. Further, they assume NTP and 
TPP share the same carrying capacity. Roy et al. (2006) 
incorporated competing effects between NTP and TPP 
population by using Holling type II functional response 
for both groups of phytoplankton and studied some bio-
logical factors that regulate the overall dynamical behav-
ior. Roy (2008) further studied this model with spatial 
movements in the subsurface water and described how a 
non-homogeneous biomass distribution of competing phy-
toplankton and grazer zooplankton emerges over space and 
time in the presence of toxic species. Pal et al. (2009b) 
modify the above study by assuming different carrying 
capacity for NTP and TPP and considering Beddington 
functional response as predation form rather than Holling 
type I or type II functional response. Recently, Thakur 
et al. (2016) investigated the role of HABs in three inter-
acting species model (i.e., NTP, TPP and zooplankton) 
over the space and time. This study is further extended 
by Thakur et al. (2017) by taking one crucial parameter, 
the intraspecific interference coefficient between zoo-
plankton populations for Sundarban mangrove wetland. 
In this paper, a mathematical model with three interacting 
components, NTP, TPP and zooplankton with spatial dif-
fusion is established to study the dynamical complexity, 
where NTP and TPP both forms a prey and zooplankton 
forms a predator. The developed model system describes 
an ecosystem that contains a one-zooplankton two-phyto-
plankton population under the influence of toxicity which 
is released by the TPP population. Two different types of 
response functions are assumed to define the interaction 
among species. Holling type II functional form is used to 
express the mathematical structure of NTP and zooplank-
ton whereas MH-type functional form is used to express 
the mathematical structure of TPP and zooplankton. 
Here, the MH-type response function is used to explain 
the phytoplankton toxicity over the range of zooplankton 
density. Additionally, the assumption of some important 
parameters such as competing and intraspecific interfer-
ence coefficient together with spatial diffusion in the same 

model fascinates the plankton system. Further, analytical 
and numerical solution is well presented for the study of 
temporal and spatial properties of the model system, and 
some reasonable findings are obtained.

Firstly, a detailed study of stability analysis along with 
all feasible equilibria for the model system (2.1) has been 
done in the presence as well as in the absence of diffusion. 
Then, to substantiate our analytical findings, numerical vali-
dation is presented with the help of MATLAB. Numerical 
results indicate that the behavior of the non-spatial system 
is affected by the control parameters such as intraspecific 
interference coefficient m1 , intraspecific competition coef-
ficient �1, �2 and inhibitory effect b1 . Since a low value ofm1 
may arise the oscillatory behavior in a non-spatial model 
system (3.1) and changed the stable state to an unstable 
state. This can be seen in the time series and bifurcation 
diagram presented in Fig. 2. The bifurcation diagram 3 
reveals that a low intraspecific competition coefficient of 
NTP (i.e., �1 ) stabilizes the dynamics and after the first criti-
cal value of �1 , the system losses its stability, and periodic 
oscillation appears. Further, at the second critical value of 
�1 , the system regains its stability. It is also observed that a 
low value of �1 increases the density of NTP and zooplank-
ton and decreases the density of TPP but a high value of �1 
decreases the density of NTP and zooplankton and increases 
the density of TPP. Hence, increasing intraspecific competi-
tion of NTP implies a similar kind of behavior for NTP and 
zooplankton but the opposite kind of behavior is obtained 
for TPP. A destabilization effect of intraspecific competition 
coefficient of TPP (i.e., �2 ) is observed in Fig. 4. It is also 
noticed that �2 is mainly affected by the population of TPP 
since the increasing value of �2 decreases the density of TPP. 
Fig. 5 depicts the occurrence of the limit cycle after a stable 
state as we increase the value of b1 . From a biological sense, 
this result is very reasonable that a high inhibitory effect 
bifurcates the population at the critical value of b1 = b1c . 
Additionally, we have explored the spatial distribution in 
one dimensional as well as two dimensional along with a 
different diffusion coefficient. In the case of a diffusive sys-
tem (2.1), our observation reveals that the low diffusion of 
NTP and TPP and high diffusion of zooplankton result in 
the existence of Turing instability, and this instability sup-
ports the patchiness in the aquatic ecosystem (c.f., Fig.1). 
Biologically, Turing instability indicates that the diffusion 
coefficient supports the violation of sustainability conditions 
in spatial distribution. Pattern formation for the 1D case, 
we mainly study the effect of mechanisms like intraspecific 
interference coefficient m1 . For a particular set of parameter 
values, we have plotted the spatiotemporal pattern to under-
stand the effect of space, time and space-time both evolution 
for a small value of m1 . In Figs. 6, 7, we have considered m1 
= 0.0001 and noticed that on increasing the value of time 
and space from 200 to 300, the system exhibits irregular 
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chaotic oscillation in space only and irregular chaotic oscil-
lation in space and time both. Whereas on increasing the 
value of time-space together, we found chaotic dynamics 
with respect to space and time both for NTP and zooplank-
ton and chaotic dynamics with respect to space only for 
TPP (c.f., Fig. 8). The overall observation of Figs. 6, 7, 8 is 
that increasing time decreases the complexity but increas-
ing space increases the complexity. It is remarkable that the 
low value of m1 helps all the species to show a significant 
dynamical behavior with chaotic fluctuation in spatiotempo-
ral patterns. Finally, snapshots for the 2D case are presented 
to explore the different Turing patterns of the reaction-dif-
fusion system (2.1). Irregular patchy pattern, a mixture of 
stripe–spot and spot patterns is observed for different diffu-
sion coefficients of zooplankton (c.f., Fig. 9) and stripe–spot 
and spot patterns are observed for different time intervals 
(c.f., Fig. 10). Mixture of stripe–spot and spot patterns are 
observed for intensity of inhibitory effect b1  (c.f., Fig. 11). 
The two-dimensional simulation result suggests that the pat-
terns are diffusion and time-dependent and become a patchy 
reason for the aquatic ecosystem. Also, the transformation 
of stripes into spots shows the high and low density of the 
plankton species. For more realistic outcomes, we have stud-
ied the effect of two feedback delays on the system dynamics 
numerically. From Fig. 12, destabilization effect is observed 
with respect to gestation delay �1 of zooplankton (see Case 
II & IV). Further, the incorporation of �2 does not affect the 
system’s stability, and the system remains stable with vary-
ing �2 (see Case III & V). Hence, �1 strongly affects the sys-
tem dynamics as compared to �2 . Since one can clearly see a 
bifurcation point corresponding to �1 whereas no bifurcation 
point is observed corresponding to �2.

Conclusion

In this paper, we have proposed a three species interact-
ing model with spatial interaction and competing effects 
for Sundarban mangrove wetland. Phytoplankton groups 
mainly Dinoflagellates and Cyanophyceae produces neuro-
toxin which is toxic to the zooplankton. Sundarban man-
grove wetland is suffering from algal bloom due to the 
presence of such toxics. Toxin produced by phytoplankton 
depletes the quality of water, and cause problems to fishes 
and invertebrates. Our analytical results show under certain 
conditions the plankton dynamics is stable and maintain 
the steady state. Diffusion stabilizes the system dynamics 
and solution converges to its equilibrium faster than the 
non-spatial system. Our numerical findings show that the 
increasing value of inter-specific competition coefficient of 
NTP leads to increase in TPP density and reduction in zoo-
plankton density that may cause algal blooms and bad health 
of the wetland system (c.f., Fig. 3). Spatiotemporal patterns 

show the spatially periodic patterns with high density of 
TPP, irrespective of increase in time or space (c.f., Figs. 6, 
7, 8). The spatial distribution of plankton system is explored 
by plotting the snapshot for increasing value of time and dif-
fusion coefficient of zooplankton and observed that the den-
sity distribution of NTP, TPP and zooplankton. The system 
shows sequence of irregular patchy to stripe–spot mixture 
to spot patterns (c.f., Figs. 9, 10). Some other parameters 
such as intraspecific interference of zooplankton, inhibitory 
effect of TPP and gestation delay are also responsible algal 
bloom and bad health of wetland in Sundarban region. Our 
study suggests that controlling such parameters may reduce 
the algal blooms and can be maintained the good health of 
Sundarban mangrove wetland.
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