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Abstract
A hydraulic jump occurs when the supercritical flow transforms into subcritical nature along with the dissipation of energy. It 
occurs on a variety of horizontal and inclined channels. In this study, two types of jumps were classified, namely the B types 
that occur partially in the sloping and partially in the horizontal level of plane sections and the plane types that are typical 
hydraulic jumps occurring on beds with continuous slopes or horizontal beds. Froude numbers at inlet ranged from 2 to 6 
for the study and tests were performed at four different angles for B-type jumps. The profiles of the jumps and streamwise 
flow velocities at different sections of the jumps were determined. From these data, the nature of the rate of decay of stream 
wise velocity across the jumps was established for both B and plane jumps. To validate the experimental results, numerical 
simulation was done for both B and plane jumps using the de-Saint Venant hyperbolic equations as governing equations and 
an explicit scheme MacCormack technique for the second-order accuracy of time and space. A source code was written in 
Fortran language using the G-Fortran compiler to numerically determine post-jump profiles. Using the appropriate initial 
boundary conditions, accurate simulated profiles of the jumps were obtained by it. The numerically simulated jump profiles 
were compared with experimentally obtained jump profiles in current and previous research studies and were found to be 
consistent. Based on the accuracy achieved, a combined empirical relation was proposed to determine jump profiles that 
operate both plane and B jumps.
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Introduction

The phenomenon hydraulic jump is the flow transition from 
supercritical to subcritical positions with an increase in 
depth of water and dissipation of energy. Hydraulic jumps 
have several applications which include the dissipation of 
energy at the spillway-reservoir junction to avoid down-
stream scour, prevent flooding, mixing of chemicals in 
water, and its aeration in the city’s water supplies, and also 
to remove air packs from the water supply. In this regard, 
we need to determine certain characteristics and conditions 

governing the jump, such as the jump length, jump profile, 
and jump location, the amount of dissipated energy for 
designing hydraulic structures. Significance depends on the 
decay rate of maximum instantaneous velocity along with 
the flow as it shifts from supercritical to subcritical nature.

In the early days, extensive exploratory research was con-
ducted and several empirical relations were established to insti-
tute the theory of plane jump. The first experimental study was 
conducted by Bidone (1818). Thereafter extensive laboratory 
research was done to determine the plane jump characteris-
tics throughout the last century (Belanger 1828; Ellms 1932; 
Bakhmetef and Matzke 1936; Kindsvater 1944; Rouse 1950; 
Silvester 1964; Rajaratnam 1968; Garg and Sharma 1971; 
Leutheusser and Kartha 1972; Sarma and Newnham 1973; 
Andersen 1978; Peterka 1984; Hager 1985; Li 1995; Molls 
and Chaudhry 1995;  Gunal and Narayanan 1996; Gotoh et al. 
2005; Dey and Sarkar 2006; Chakraborty et al. 2014; Das et al. 
2014; Palermo and Pagliara 2018; Arjenaki and Sanayei 2020).

An in-depth study of jumps on inclined channels was car-
ried out where the conditions of B-type and D-type jumps were 
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evaluated (Ohtsu and Yasuda 1991). Also, two-dimensional 
velocity fields were observed with a B jump at 30° sloping 
(Kawagoshi and Hager 1990). The work on oblique jumps was 
further progressed (Adam et al. 1993) by introducing sequent-
depth proportion (H) (Beirami and Chamani 2006). Using pre-
vious experimental data, the accuracy of existing empirical 
relationships was assessed for what was used to measure the 
H value of the B jumps (Shokrian and Shafai Bejestan 2013). 
Analysis of magnitude and partial self-regulation was used and 
proposed an effective correlation of the successive depth of 
hydraulic jumps over horizontal smooth and rough beds (Car-
ollo et al. 2009). The B jumps experiments were performed 
at 8.5, 17.5, and 30 degrees (Carollo et al. 2011). An effort 
has been made to verify all aspects (especially the turbulent 
features) of the pre-jump and post-jump regions of jumps 
(Chakraborty et al. 2014). Subsequent jump experiments were 
conducted using a 72.68° slopping, with sidewall, trapezoidal 
channel (Cherhabil and Debabeche 2016). Other experimental 
studies focused solely on developing equations empirically to 
determine the H ratio independent of the jump length (Carollo 
et al. 2011; Bejestan and Shokrian 2014).

But with the advent of modern digital computers and 
advanced computer conversion techniques, computational 
fluid dynamics methods are now being applied to numeri-
cally simulate the jump profile and characteristics by solving 
the governing equations of flow numerically. To numerically 
determine jump locations, the jump profiles were computed, 
and the jumps are formed at locations where the key specific 
forces on both pre-jump and post-jump sides are alike (Chow 
1959). A finite-difference approach was used for numerically 
solving the de-Saint Venant’s partial-differential equations 
(Basco 1983; MacCowan 1985; Chaudhry 1993; Roohi et al. 
2020) and obtaining the flow profile (Abbot et al. 1969).

The strip-integral technique was employed for computing the 
jump lengths, jump profiles, and developing pressures near the 
bed (McCorquodale and Khalifa 1983). Subsequently, a finite-
element method was applied for computing the jump lengths 
(Katopodes 1984; Chippada et al. 1994). Three distinct explicit 
techniques, namely MacCormack, Lambda, and Gabutti, were 
used to numerically simulate open-channel unsteady shocks or 
bores (Fennema and Chaudhry 1990). Computational meth-
ods were proposed for the solution of 2-D equations applica-
ble for shallow water in supercritical steady flow (Jimenez and 
Chaudhry 1988). Boussinesq equations were compiled for sim-
ulating the profile of hydraulic jump on horizontal beds using 
the MacCormack technique and two-four schemes (Gharangik 
and Chaudhry 1991). Subsequently, several types of research 
were conducted for numerical simulations on plane hydraulic 
jumps (Terrence 1994; Javan and Eghbalzadeh 2013; Mortazavi 
et al. 2016; Valero et al. 2019; Hafnaoui and Debabeche 2020; 
Mirzaei and Tootoonchi 2020). The MacCormack process was 
recently used to determine hydraulic jump profiles at slopes 0°, 
1.25°, and 2.5° (Nandi et al. 2020).

It is clear from the literature that nearly no other stud-
ies regarding the simulation of the hydraulic jumps were 
conducted other than Gharangik and Chaudhry (1991) and 
Nandi et al. (2020) in which simulations were performed 
with plane hydraulic jumps on horizontal level beds and very 
low sloping beds (0°–2.5°).

This paper aims to study the decay rate of stream wise 
flow velocity for hydraulic jumps inclined beds (B type) with 
much higher sloping angles ranging from 8.5° to 25.7° and 
simultaneously in plane beds. It then compares the experi-
mental profiles obtained of both oblique B types and plane 
jumps with their numerically simulated profiles obtained 
in current and previous studies. Simultaneously, numeri-
cal simulations have been done by applying the de-Saint 
Venant’s quasi-linear hyperbolic equations as governing 
equations and using an explicit technique called the Mac-
Cormack technique with an accuracy of the second order for 
time and space. A source code of the simulation is written 
in the Fortran language using the GNU-Fortran or GFortran 
compiler in code blocks ide (integrated development envi-
ronment). Using the appropriate initial boundary conditions, 
simulated profiles of the B and plane jumps were obtained 
by it. The numerically simulated jump profiles were com-
pared with experimentally obtained jump profiles of current 
and previous research studies. It is considered whether they 
agree well or not. Finally, a new correlation was proposed 
between the jump length, pre-jump supercritical depth, 
post-jump subcritical depth, bottom slope, and inlet Froude 
number.

Theory

The phenomenon of unsteady flow like hydraulic jump 
forming in sloping channels are frequently modeled as a 
1-D flow that is expressed by quasi-linear-type equations of 
hyperbolic nature with partial differences, acknowledged as 
popularly de-Saint Venant hyperbolic Eqs. (1, 2). The 1-D 
de-Saint Venant partial-differential-type hyperbolic equa-
tions are:

where h symbolises channel transition flow-depth 
(instantaneous), t symbolises operating time, u stands for 
instantaneous velocity towards flow that is x-direction, x 
is distance changing towards the parallel of channel bot-
tom (taken positive towards downstream direction), g is 
gravity induced acceleration, Se is the slope of grade line 
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of energy and S is bed slope. Equation (3) of Manning is 
applied to determine friction slope Se.

where Mn is coefficient for roughness identified by Man-
ning, 2R is hydraulic diameter, Cf is correction factor; in 
SI units Cf = 1; and in English units Cf = 1.49. In the con-
servation and vector form, the equations can be written 
as in Eq. (4).

in which Υ1 =

[
h

uh

]
Υ2 =

[
uh

hu2 +
1

2
gh2

]
B =

[
0

gh(S − Se)

]
.

Here, Υ1 is the function of u, h; Υ2 , and B are the func-
tions of Υ1 . The product of the transition depth h, and 
transition velocity u symbolizes the x-direction flow.

Numerical simulation

For solving the 1-D de-Saint Venant hyperbolic equations, 
an explicit technique called the MacCormack technique 
was used. This method was developed by MacCormack 
(1969) and is a predictor–corrector technique with two 
steps (Anderson et al. 1984). In predictor steps, forward 
difference schemes are well used for spatial derivatives 
(Eq.  5) while in corrector steps, rearward difference 
schemes are judiciously applied for the same (Eq.  6). 
Referring to Fig. 1, the finite-difference Eqs. (5, 6) can be 
expressed as given in the Predictor Step.
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where Υk is a function of u, h; subscript k = 1 or 2; 
asterisks refer to the predicted value of variables; i is indi-
cating node for x-direction; ∆t is the minimum spacing 
between two consecutive time steps; n is indicating node 
for time direction, and ∆x is the minimum spatial gap 
between two consecutive grids.

With the help of the above finite-difference steps, we 
can obtain the predicted values of h∗

i
 and u∗

i
h∗
i
 from Eqs. (7) 

and (8):

From the Eqs. (3, 5, 6), given above, Eqs. (9, 10, 11) 
have been developed.

Corrector steps are shown by Eqs. (10, 11) for the vari-
ables Υ1 and Υ2.

where subscript k = 1 or 2. Based on the above two 
Eqs. (10 and 11), we can obtain the value of h∗∗

i
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Fig. 1  Configuration of the finite-difference grid for experiments
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Finally, the values of velocity ui
n+1 and depth hi

n+1 
at the next grid level of time n + 1 are obtained from 
corrected values of the same using Eqs. (15) and (16), 
respectively.

It should be noted that the entire flow channel is sub-
divided into N reaches equal to flow wise grid spacing 
∆x. The upstream-most end grids are numbered 1 for each 
simulation and subsequently, downstream end grids are 
numbered N + 1. The initial along with boundary condi-
tions are given as follows:

At the initial condition, the flow coming into the whole 
channel is considered as in a supercritical regime. The 
initial conditions at different sections of the stream are 
computed by numerically solving the GVF Eq. (17).

where the energy correction factor α is conceded unity 
as the entire flume cross section remains constant. The 
upstream height hu and velocity uu of supercritical water 
remain unchanged starting from initial conditions. Then, 
the downstream height hd is mentioned and the down-
stream velocity ud is thereby calculated applying charac-
teristic Eq. (18).

where the celerity of the wave uw is given as 
√
gh (Gha-

rangik and Chaudhry 1991). The MacCormack technique 
is found stable if following popular Courant (C), Friedrich, 
and Lewy (CFL) criterion (Eq. 19) is satisfied.

wherein C is Courant’s number which is set ≤ 1 for 
using the MacCormack technique. In this study, C = (2/3). 
To smooth out high-frequency oscillatory movements, 
artificial viscosity is added by the method shown by Jame-
son et al. (1981) in Eqs. (20, 21, 22).
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in which the dissipative term or artificial viscosity term κ 
is employed for regulating the measure of dissipation. Here, 
the terms εi

n, εi+(1/2)
n, and εi+1

n are the round-off errors 
at the close, open and close grids [i,n], [(i + ½), n], and 
[i + 1,n], respectively. The target was to smoothen the pro-
files by minimizing the round-off errors, thereby stabilizing 
the finite-difference MacCormack technique. In this study, 
after trial-and-error application, the value of κ is set equal 
to 3/100. Then, variables for computation like h, u, etc. are 
then adjusted using Eq. (22).

A source code for simulation, shown in Appendix, is 
written based on Eqs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18, 19, 20, 21, 22 in Fortran language 
using GNU-Fortran or GFortran compiler in code blocks 
ide (integrated development environment) for numerically 
determining the locations, profiles, and velocities of the post 
jump. Using proper initial boundary conditions, simulated 
profiles of the jumps were obtained accurately by it.

Experimental work

The plane and B-type jump laboratory experiments per-
formed out in a 5.0 m long rectangular sloping facilitated 
Perspex made flume of 0.355 m wide internally and 0.450 m 
high (refer to Fig. 2). The discharge to be measured was 
monitored by a digital-type flow metering device. The 
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Fig. 2  Experimental flume setup for θ = 17.6°
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sloping flume employed herein is equipped with a tailgate 
for controlling the desired inflow or pre-jump depth. This 
tailgate then was adjusted to control the jump location. The 
depths of water in both the upstream and downstream sec-
tions were accurately measured by a Vernier pointed gauge 
having 0.1 cm precision. There were incessant undulations 
observed in the flume water level located at the post-jump 
section of B type and plane jump. The average water depths 
(half of the maximum plus minimum) at a section down-
stream of jump were considered as the depth at that particu-
lar section. Pitot tubes were used to study the streamwise 
flow velocity at different sections of the flow especially dur-
ing transitions and from these data.

Two different types of flow set-up were arranged: (a) for 
B-type hydraulic jumps and (b) for plane hydraulic jumps. 
To set up B-type hydraulic jump, four different slopes were 
arranged, namely θ = 8.5°, 12.8°, 17.6° (Refer to Fig. 2), 
and 25.7°. The upstream section of the flume was given the 
abovementioned slopes using a broad crested weir and a 
ramp constructed with the perspex sheet and made water-
tight with silicone sealant. The remaining downstream 
portion of the flume was kept horizontal. In this way, the 
hydraulic jumps were partly developed on the oblique plat-
form and partially on the horizontal segment of the flume, 
thereby forming B-type hydraulic jump (Refer to Fig. 3). 
In this way, 13 different laboratory experiments for B-type 
hydraulic jumps were set up having Froude numbers rang-
ing from 2 to 3 (Refer to Fig. 4 and Table 1). The pre-jump 
Froude number (Fr1) at inlet section for inclined jumps is 
calculated by the following Eq. (23) of Ohtsu and Yasuda 
(1991):

θ = slope of sloping portion of channel; uu = average 
velocity at supercritical flow condition and h1 = supercriti-
cal depth normal to bed.

(23)Fr1 =
uu√

gh1 cos �

To set up a plane hydraulic jump, three conditions were 
used. In one case, the bed was kept completely horizontal 
that is at zero slopes. In the other two cases, the entire flume 
was given a slope of 2.3° and 3.4°, respectively. In total, six 
different experiments were set up for plane jumps having 
Froude numbers varying between 4 and 6.

In the current study, velocity measurements are carried 
out at regular intervals along the channel with the help of 
an L type of glass pitot tube. At a section velocity, measure-
ments are approximately taken at the midpoint of the section 
and a depth of 40 percent of total depth for B-type jumps 
and a depth of 60% of total depth for plane hydraulic jumps.

Results and discussion

Having obtained the experimental results, we proceeded 
to analyze them to develop useful trends and relationships. 
For the velocity characteristics study, we use the measured 
sectional velocities to develop the nature of the decay curve 
of streamwise flow velocity during the transition. We again 
obtained the velocity profiles by performing numerical simu-
lations applying the de-Saint Venant quasi-linear equations 
as governing equations and using an explicit technique 
called the MacCormack technique with an accuracy of the 
second order for time and space. A source code for simu-
lation, shown in Appendix, is written in Fortran language 
using GNU-Fortran or GFortran compiler in code blocks ide 
(integrated development environment). Using proper initial 
boundary conditions, simulated profiles of the jumps were 
obtained by it. We further compare the experimental and 
numerical profiles of both oblique and plane hydraulic jumps 
and see that they are in good agreement. Using dimensional 
and regression analysis, we obtained an empirical relation-
ship for numerically predicting experimental sequent–depth 
ratios (H) in the case of B jumps.

Fig. 3  A 2-D schematic illustration of experimental setup for B-type jumps
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Fig. 4  Views of plane jumps and B-type jumps captured during experimentation

Table 1  Details about the experimental conditions

Th: throughout

Exp. No Discharge (Q) Type of jump Slope (S) tanθ (S) Inlet velocity (uu) Reynolds 
number (Reu)

Froude 
number 
(Fr1)

hd/hu L/hu (Exp.)

(–) (lps) (–) (degree) (–) (m/s) (–) (–) (–) (–)
E 1 9.5 B 8.5 0.1495 1.10 97,530 2.1 11.500 88.85
E 2 9.5 B 12.8 0.2273 1.04 98,920 2.0 6.964 81.79
E 3 9.5 B 12.8 0.2273 1.08 98,920 2.1 9.704 77.04
E 4 9.5 B 17.6 0.3174 1.14 101,200 2.3 7.615 68.46
E 5 9.5 B 17.6 0.3174 1.14 101,200 2.3 8.692 62.31
E 6 9.5 B 17.6 0.3174 1.06 101,200 2.0 11.250 42.86
E 7 9.5 B 17.6 0.3174 1.14 101,200 2.3 9.923 60.00
E 8 9.5 B 17.6 0.3174 1.19 101,200 2.3 9.120 63.20
E 9 9.5 B 17.6 0.3174 1.01 101,200 2.0 9.600 47.67
E 10 9.5 B 25.7 0.4815 1.05 107,050 2.1 8.400 39.33
E 11 9.5 B 25.7 0.4815 1.02 107,050 2.0 9.774 33.55
E 12 9.5 B 25.7 0.4815 1.00 107,050 2.2 5.719 41.56
E 13 9.5 B 25.7 0.4815 1.26 107,050 2.4 10.000 46.40
E 14 18.0 Plane 2.3 (Th) 0.0402 2.48 177,500 5.3 12.238 93.81
E 15 18.0 Plane 0 (Th) 0 2.09 177,500 4.0 6.120 61.20
E 16 25.0 Plane 0 (Th) 0 2.42 246,500 4.3 6.833 38.00
E 17 19.0 Plane 3.4 (Th) 0.0594 2.39 187,300 4.8 13.870 78.26
E 18 19.0 Plane 0 (Th) 0 2.75 187,300 6.0 10.600 91.50
E 19 18.0 Plane 2.3 (Th) 0.0402 2.48 177,500 5.3 12.476 92.86
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The decay rate of flow velocity

Velocity characteristic studies carried out for B jumps 
having slopes 17.6° and 25.7° are shown in Figs. 5a–d, 
6a–d. Velocity studies are also made for plane hydraulic 
jumps having slopes equal to 0, 2.3° (throughout), and 
3.3° (throughout). In the following graphs, Figs. 5, 6, u/uu 
(ratio of velocity measured at each section to initial veloc-
ity upstream) are plotted against x/hu (ratio of horizontal 
distance along with the flow to supercritical flow depth). 
The scale of ordinates is intentionally kept much larger than 
the scale of abscissa to show the decay rate of flow velocity 
with better representation.

As shown in Fig. 5a–d, B-type hydraulic jump carried 
out at θ = 17.6° and θ = 25.7°, Froude number (Fr1) = 2.3, 
2.2, and 2.1 sequent-depth ratio (hd/hu = H) = 7.61, 8.69, 8.4 
and 6.31. There are also two dashed lines, in graphs, one 
of which denotes the section at which jump toe is located 
and another which denotes the section at which the junction 
between the sloping part of the channel and horizontal part 
of the channel occurred. In some cases, we see a change in 
the nature of the curves. For θ = 25.7°; Fr1 = 2.1, H = 8.4; 
and Fr1 = 2.2, H = 6.31 the jumps occur early compared to 
the jumps at θ = 17.6°. It confirms bed slope has a significant 
role in changing the post-jump location. Again for θ = 25.7°, 
energy dissipation is more and post-jump depths are less 
compared to the energy dissipation and post-jump depths 

for θ = 17.6°. It means post-jump velocity increases with the 
increase of bed slope θ.

For the plane jumps, velocity studies were carried out 
which shows that plane jumps having horizontal beds, 
namely zero slopes, have concave decay trends while those 
having a bed slope all throughout have convex decay trends. 
In the following graphs (Fig. 6a–d), u/uu (ratio of veloc-
ity measured at each section to initial velocity upstream) 
is plotted against x/hu (ratio of horizontal distance along 
with the flow to supercritical flow depth). There is a dashed 
line which denotes the section at which jump toe is located. 
Figure 6 confirms that plane jump lengths also gradually 
increase with the continuing increase of inlet Froude number 
Fr1. Here, u/uu decreases with the increase of x/hu. Figure 6 
also confirms that both Fr1 and θ control the change of x/hu.

Numerical modeling

The numerical model developed herein is of second-order pre-
cision [(∆x)2]. The de-Saint Venant’s hyperbolic equations are 
then worked out using the MacCormack technique. The mini-
mum grid spacing size for the time step was confined using 
the stability state (Warming and Hyett 1974) of Courant and 
the minimum spatial grid-gap as well. Courant (C) value was 
set 0.65 since most excellent outcomes are achieved when the 
C value is ~ 2/3. For smoothing the curvature of oscillations of 
high frequency near B and plane jumps, the dissipation factor 

Fig. 5  Velocity decay rate for a θ = 17.6°, Fr1 (Froude number) = 2.3, H (Sequent depth ratio) = 7.61; b θ = 17.6°, Fr1 = 2.3, H = 8.69; c for 
θ = 25.7°, Fr1 = 2.1, H = 8.4; and d θ = 25.7°, Fr1 = 2.2, H = 6.31
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κ as in Jameson’s approach was then computed using the trial-
and-error application when κ is around 3/100.

For the numerical model run, the inflow or pre-jump 
depth hu and upstream velocity uu and only the post jump or 
outflow depth hd are identified. The upstream or pre-jump 
velocity uu for trial runs was calculated using continuity 
equation, discharge Q = bhuuu, where b is internal flume 
width. The inflow or pre-jump Froude number Fr1 is found 
out from Eq. (24).

The type of jump that is B or plane, slope S or tanθ, 
upstream measured depth hu, upstream velocity uu, upstream 
Froude number Fr1, inflow Reynolds number Reu and down-
stream measured depth hd in non-dimensional form for all 
different experimental runs are displayed below in Table 1. 
For all trial runs, Manning coefficient (Mn) was found using 
the trial-and-error application and fixed at 0.010–0.015 
for B-type jumps and 0.014–0.012 for plane jumps. The 
inlet Reynolds number (Reu) was maintained ~ 1 × 105 
to ~ 1.07 × 105 for the B jump and ~ 1.77 × 105 to ~ 2.46 × 105 
for the plane jump.

The spatial grid size ∆x is a very important parameter. 
More so, as according to the CFL condition, the time step 
size ∆t is limited and controlled by it. Trials were computed 
with ∆x values ranging from 0.05 to 0.28. For engineering 

(24)Fr1 = uu

�√
ghu

applications, it is seen that using a judicious value of ∆x, 
satisfactory simulation and modeling can be obtained. After 
observations, ∆x value of 0.1 is selected as herein the plane 
and oblique hydraulic jumps are formed at more than four 
computational grid points.

Comparison of numerical and experimental jump 
profiles

When the numerical findings are converged into a steady-
state approach the immediate depths at subsequent points 
of grids are obtained that presents the jump flow profile. 
The numerical data are compared with the experimentally 
obtained flow profile. Figure 7a–k presents a comparative 
observation between experimental results and numerical 
results for flows at varying inflow or pre-jump Froude num-
ber and varying slopes for both B-type and plane hydraulic 
jumps. Along with these, the real-life experiment pictures 
are also provided both in plane view and top view. The total 
depth ht (= he + h) of flow non-dimensionlised by hu is plot-
ted non-dimensionally in the vertical axis whereas distance 
x non-dimensionlised by hu is the distance along the flume, 
plotted in abscissa where h is an instantaneous depth of 
water from the sloping ramp and he is the elevation of jump 
toe section from the bed.

In the case of the B-type jumps, the inclined bed of 
flume is plotted in the centre line. The jump profile from 

Fig. 6  Velocity decay rate for a θ = 0°, Fr1 = 4.3, H = 6.83; b θ = 3.4° (throughout), Fr1 = 4.8, H = 13.91; c θ = 3.4° (throughout), Fr1 = 6, 
H = 10.75; and d θ = 2.3° (throughout), Fr1 = 5.3, H = 12.47
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Fig. 7  Jump profile for a Fr1 = 2.1 and slope = 8.5°; b Fr1 = 2 
and slope = 12.8; c Fr1 = 2.1 and slope = 12.8°; d F = 2.3 and 
slope = 17.6°; e Fr1 = 2.3 and slope = 17.6°; f Fr1 = 2 and 
slope = 17.6°; g Fr1 = 2.3 and slope = 17.6°; h Fr1 = 2.3 and 
slope = 17.6°; i Fr1 = 2 and slope = 17.6°; j Fr1 = 2.1 and slope = 25.7°; 
k Fr1 = 2 and slope = 25.7°; l Fr1 = 2.2 and slope = 25.7°; m Fr1 = 2.4 

and slope = 25.7°; n Fr1 = 5.3 and slope = 2.3° (throughout); o 
Jump profile for Fr1 = 4 and slope = 0° (throughout); p Fr1 = 4.3 and 
slope = 0° (throughout) q Fr1 = 4.8 and slope = 3.4° (throughout); r 
Fr1 = 6 and slope = 0° (throughout); and s Fr1 = 5.3 and slope = 2.3° 
(throughout)
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experimental data is plotted in dashed lines and that from 
simulated data in solid lines. For plane hydraulic jumps, the 
jump profile from experimental data is plotted in dashed 
lines and that from simulated data in solid lines.

In Fig. 8, experimental and numerical jump lengths (L) 
are non-dimensionlised by upstream jump height (hd) for 

both plane and B jump. Plotted points are shown in the blue 
circle in Fig. 8. These are almost clustered around the 1:1 
line. The overall dimensionless jump length comparison 
shown in Fig. 8 depicts the divergence of the non-dimen-
sional jump locations determined numerically [L/hu (simu-
lated)], using the MacCormack technique on the de-Saint 

Fig. 7  (continued)
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Venant’s hyperbolic equations, from the gauged locations 
[L/hu (measured)] is within ± 15%.

The experimental and numerically modeled data obtained 
from current study are judged with the previous results 
obtained from Nandi et al. (2020) where experiments were 
conducted for the very lower slopes of 1.25° and 2.5° and 
Fr1 2.17 to 7.00. It is observed that almost 90% of the data of 
Nandi et al. (2020) are also falling nicely within the ± 15% 
range. It further strengthens the aptness of using the Mac-
Cormack technique for analyzing sloping channels.

However, the accuracy would be more if bed roughness is 
taken care of and separate graphs are plotted for both plane 
jump and B jump. For sloping channels, it has been tested 
and confirmed that the MacCormack technique gives a better 
result than the two-four scheme.

Empirical solution for jump length

Either to determine jump length or H value, an empirical 
type relationship is created between the major parameters 
which determine the jump locations using dimensional anal-
ysis and self-similarity theory. From this empirical equation, 
the results here obtained are critically compared with com-
puted numerical results.

For dimensional analysis, it is considered that only 
dependent variable L that is the spacing between the com-
mencement of location of plane and oblique B jumps to 
the end location of plane and oblique B jumps that is jump 
length is dependent on the subsequent independent vari-
ables: flow density ρ, the pre-jump supercritical depth 
hu, the downstream or tail water or post-jump depth hd at 

channel end, the upstream or pre-jump velocity uu, bot-
tom slope S, a parameter G [= (ht—he)/hd] and the gravity 
acceleration g for determining the effect of simultaneous 
variations of head and tailwater levels.

Using Buckingham π theorem and dimensional analysis.
�1 = L∕hu , �2 = hd∕hu = H , �3 = uu∕

√
ghu , �4 = S and 

�5 = G . These terms of π are sensibly arranged in non 
dimensional form given in Eq. (26).

Finally completing the analysis, the following empirical 
relation is obtained:

where e = exponential, x is a coefficient whose range 
changes from 39.5 to 47.5 with the change of slope. Equa-
tion (27) is used to predict the locations of the hydraulic 
jumps of B types. The non-dimensional predicted values 
[L/hu (empirical) using Eq. 27] were judged with the non-
dimensional simulated values [L/hu (simulated) using 
MacCormack technique] of B jump to verify the soundness 
of Eq. (27). Therefore, some of the experimental results 
collected from previous researches (Peterka 1984; Car-
ollo et al. 2011; Nandi et al. 2020) are compared with the 
results of the present study. Non-dimensional L/hu val-
ues were determined from the researches Peterka (1984) 
for slopes 1.25–1.5° and Fr1 3.35–5.9; from Carollo et al. 
(2011) for slopes 8.5° and 17.5° and Fr1 1.12 to 6.29 and 
Nandi et al. (2020) for slopes 1.25° and 2.5° and Fr1 2.17 
to 7.00. The evaluation between the non-dimensional 
predicted jump length and observed jump length values 
corroborates very good conformity with ± 85% accuracy 
as exemplified in Fig. 9. When data of previous experi-
ments are considered for comparison, then this correlation 
is found within ± 75% accuracy and this is fair enough. 
Therefore, Eq. (27) provides good conformity for slopes 
ranging from 1.25° to 17.5° with Fr1 ranging from 1.12 
to 7.00.

Though Eq. (27) may not furnish very good results for 
other experimental outcomes since Eq. (27) is developed 
using a 19 number of runs, however, this is a part where 
further effort can be made for establishing a better empiri-
cal correlation linking the parameters of sloping hydraulic 
jump. The performance may be improved further if bed 
roughness is considered along with smaller space and time 
grid resolutions and a more accurate Courant number.

(25)f (L, �, hu, hd, uu, g, S,G) = 0

(26)f

�
L

hu
,
hd

hu
,

uu√
ghu

, S,G

�
= 0

(27)L∕hu =
exH6.6S7.2G34

F15.6
r1Fig. 8  Comparison between experimentally obtained and numerically 

formed non-dimensional jump locations
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Summary and conclusion

In this current study, the plane and B jump experiments were 
conducted at slope angles ranging from 8.5 to 25.7 degrees. 
The nature of the streamwise decay of flow velocity was 
established in B-type jumps at slopes equal to 17.6 and 25.7 
degrees. The pre-jump Froude’s numbers ranged from 2 to 3 
for the B jump. Plane hydraulic jumps were set up at slopes 
equal to 0 to 3.4 degrees. Here, the decay rate of streamwise 
velocity was also established for the pre-jump Froude num-
bers ranged from 4 to 6.

The 1-D de-Saint Venant’s hyperbolic equations for slop-
ing channels were numerically solved by simulating the B 
and plane hydraulic jumps. Then, starting with properly 
computed initial states, the de-Saint Venant’s hyperbolic 
equations were worked out subjected to right boundary 
conditions until a stable condition form is obtained. For 
modeling the simulation, MacCormack’s leading process 
with precision second-order of time grids and space grids 
has been newly introduced for B-type hydraulic jump. The 
source code for the numerical simulation and modeling of 
jump length, post-jump length, and post-jump velocity, illus-
trated in Appendix, is newly written in the Fortran language 
using GNU-Fortran or GFortran compiler. Since higher-
order approaches with oscillations of high frequency have 
been generated near hydraulic jumps, so these fluctuations 

were flattened by applying artificial viscosity term during 
the modeling.

The experimentally obtained profiles are compared with the 
numerically simulated and modeled profiles for both present 
and previous studies. It appears that typically simulated jump 
locations are formed upstream of the experimentally obtained 
jump locations. In the case of type B jumps, satisfactory agree-
ments are reached between the experimentally observed and 
numerically modeled profiles. In general, an increase in the 
depth of transition from subcritical state to supercritical state 
occurs at a faster rate in the simulated profiles. In the case 
of plane jumps, the numerically modeled profiles show good 
compatibility with those obtained by testing except in the case 
of a 3.4 degrees sloping.

Depending on the numerically modeled jump locations, 
a comprehensive dimensionless empirical equation is deter-
mined that relates the location of the jump with its key param-
eters. This empirical equitation has validated 75–85% of the 
results of three previous pieces of research on B-type jumps 
for non-zero slopes ranging from 1.25° to 25.7° along with 
pre-jump Froude numbers ranging from 2 to 7. The work dem-
onstrates the method of further research on sloping channels 
using the de-Saint Venant’s hyperbolic quasi-linear equations 
and selecting the appropriate CFD methods as the MacCor-
mack technique.

Fig. 9  Comparison between the 
dimensionless numerical (simu-
lated) and empirical results
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Appendix: Source code for simulation

Code availability

program MacCormack hydraulic jump
real :: Mn, Q, B, K1, K2, K3, K4, Cn, g, a1, b1, c1, d1, e1, g1
real :: delx, delt, slope, maj, cal, P, T, K10, Z, fnl,P ROD1, PROD2, PROD3, PROD4, PROD5,

PROD6
real, dimension (1:300, 0:15000) :: h, u, S0, Sf
real, dimension (1:300) :: x, y, e, yi, up
real, dimension (1:300) :: F1, Fi, Sfi, M1, M2
real, dimension (1:300) :: hF, uF, us, uss, hs, hss, S0s, Sfs
print *,"enter the initial depth"
read *, h(1, 0)
print *,"enter the final depth"
read *, h (50,1)
g = 9.81
y(1) = h(1,0)
print *,"enter the values of Q, Mn, B"
read *,Q, Mn, B
print *,"enter delx"
read *, delx
x (1) = 0
do i= 1, 50

x (i+1) = x (i) + delx
end do
print *,"enter junction point"
read *,j
print *,"enter slope"
read *,slope
do i=1, j

S0(i, 0) = slope
end do
do i = j+1, 50

S0(i, 0) = 0
end do
do i = 1, 50

u(i, 0)=Q/(B * y(i))
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