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Abstract
Using various GCM (general circulation model), the present study attempted to analyze the impact of climate change on the 
entire stretch of one of the major rivers in South Asia, the Brahmaputra river basin. Initially, we identified a suitable GCM 
based on some statistical measures of the interpolated and bias-corrected variables. The results of the trend analysis show a 
significant impact on the climatic variables during future periods. The Brahmaputra basin is likely to experience an increase 
in rainfall, maximum temperature, and minimum temperature at the rates of 2.5 mm/year, 0.062 °C/year and 0.05 °C/year, 
respectively, corresponding to representative concentration pathway (RCP) 8.5 scenarios till the end of the current century. 
Moreover, the climate change impact analysis on streamflow indicates a rise of up to 13.06% in annual discharge at Pandughat, 
India. The findings of this study will provide a basis for water resource management of the transboundary Brahmaputra 
basin in the coming decades.
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Introduction

In recent years, increased concentration of greenhouse gases, 
notably carbon dioxide, has been reported, which induce 
climate change around the world (Arrow 2007; Hinge et al. 
2018, 2020). This change leads to an increase in the average 
global temperature, which in turn affects the global hydro-
logical cycle (Pervez and Henebry 2015). Changes in the 
hydrological cycle are affecting the intensity and duration 
of precipitation (Trenberth 2011), magnitude of stream-
flow (Ma et al. 2008), and thereby affect drought and flood 
(Huntington 2006) characteristics. Thus, the changing cli-
mate will have a significant implication on water resource 
management.

There have been many studies in recent years that 
assessed the likely impacts of climate change on basin 

hydrology and water availability (Kim et al. 2008; Pervez 
and Henebry 2015; Singh and Kumar 2018). All these cli-
mate change studies depend on projections of future climate 
provided by general circulation models (GCM). However, 
GCM outputs may produce error/biases due to their limited 
spatial resolution and various thermodynamic as well as cli-
mate system processes. Even in cases of regional climate 
models (RCM), where the climate is simulated by consider-
ing the regional characteristics of the area under investiga-
tion, there are observed biases between the simulation and 
the in-situ measurements (Lazoglou et al. 2019). Hence, they 
cannot directly be used as input to any semi-distributed or 
lumped hydrological model. Otherwise, the error between 
the GCM output and the historical observations is often 
observed to be significant (Ramirez-Villegas et al. 2013). 
Therefore, the GCM models have to be downscaled to an 
appropriate, but the higher resolution (Von Storch et al. 
1993).

The issues of uncertainties of future climate data of 
various downscaled GCM outputs are not yet avoidable 
(Chen et al. 2011). Taking these uncertainties into account 
along with other factors such as time constraints, human 
resources, and computational constraints, the downscal-
ing of GCM models is not a straight forward or simple 
task, especially for a large area like the Brahmaputra river 
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basin (area ≈ 6,00,000 km2) having numerous observed 
weather stations. To tackle this problem, one approach 
may be to adopt the bias-correction coupled with spatial 
interpolation methods to bring the GCM outputs close to 
the observed climate variables. The availability of several 
grid points of GCM within its boundary of a large area, 
even many of them lying at the proximity of the observed 
weather stations, justifies the applicability of interpolation 
and bias correction methods in climate impact studies of 
the Brahmaputra basin.

The Brahmaputra basin is also known to be of the most 
vulnerable to climate change because of its diverse climate 
and topographic variation (Pervez and Henebry 2015). The 
upper part of this basin receives its discharge from the snow-
melt before it enters India (Singh and Kumar 2018). How-
ever, once the Brahmaputra enters the Indian state through 
Arunachal Pradesh, its basin experiences heavy rainfall 
until it ends the journey at the Bay of Bengal. The river 
basin hazards like alternation in its channel configuration, 
sediment transport, and flood are some common phenomena 
because of high discharge (Goswami 1985) of the Brahma-
putra. Despite these facts, not many studies have been car-
ried out in terms of the vulnerability of climate change in 
the entire basin. There have been numerous case-specific 
studies (Goswami 1985; Sarma 2005; Akhtar et al. 2011; 
Ghosh and Dutta 2012; Sahoo and Sreeja 2015) regarding 
hydrologic, hydraulic, and sediment analyses on the Brah-
maputra river. Other case studies (Bongartz et al. 2008; 
Immerzeel 2008; Mahanta 2014) regarding the climate 
change impact have noted an increase in the average annual 
temperature, monthly evaporation, and monthly rainfall. 
But all these studies were performed for a particular part 
of the basin, rather than considering the entire basin. As 
per the author’s knowledge, the mighty Brahmaputra basin 
has been hardly studied as a single unit incorporating the 
complete river stretch starting from the source at Tibet to the 
mouth at the Bay of Bengal. Although, Aktar et al. (2015) 
considered the entire river stretch, the results of this study 
could not be taken at confidence since the hydrologic model 
was calibrated for discharge at only one gauge station viz. 
Bahadurabad, Bangladesh. The change in future streamflow 
at the same location was also evaluated based on the per-
turbed values of GCM data (Alam et al. 2016). Here, future 
rainfall and temperature data were generated by applying 
some hypothetical factors to analyze the subsequent impact 
on streamflow. The study carried out by Mohammed et al. 
(2017) also considered the entire stretch to analyze climate 
change impact, but for the same location only. None of these 
studies forwarded the future climate change variability in 
terms of spatial and temporal analyses throughout the basin. 
However, the present study is carried out using interpolated 
and bias corrected data of certain GCMs for spatial and tem-
poral analysis throughout the entire basin.

The present study aims to evaluate the pattern of climate 
change and its impact on the entire Brahmaputra basin. As 
the performance of GCMs can vary depending on the loca-
tion, multiple GCM datasets available at the Earth System 
Grid Federation were evaluated to identify the most suitable 
one for the area of interest. First, the output of each GCM 
was interpolated to the desired weather station location, 
followed by the bias correction using the historical data. 
Standard statistical measurements are then used to identify 
the best performing GCM by comparing its output with the 
observed data. The bias-corrected outputs of the selected 
GCM were used to assess the possible impact of climate 
change on the basin. This impact analysis includes quanti-
fication of the variability and trend of the climate variables 
of the basin in the ongoing century as well as the changes in 
the hydrological parameter of the basin using a hydrologi-
cal model in the Soil and Water Assessment Tool (SWAT) 
platform.

Study area

The present study is carried out for the Brahmaputra River 
basin (Fig. 1), which covers four different countries, namely 
China, India, Bhutan, and Bangladesh. The Brahmaputra 
River originates in Southern Tibet at an elevation of 5300 m. 
Out of its total length of 2880 km, the Brahmaputra covers 
a major part of its journey in Tibet and then flows through 
India to merge into the Bay of Bengal in Bangladesh. 
China occupies the major part of the basin area (~ 50%), 
followed by India (~ 36%), and the other two nations, i.e., 
Bhutan and Bangladesh share almost equally (~ 7%). This 
river is popularly pronounced as ’Tsangpo’ in Tibet; ‘Yar-
lungZangbo’ in China; ’Siang’/’Brahmaputra’ in India and 
’Jamuna’/’Meghna’ in Bangladesh. The basin is character-
ized by high spatial variations of topography, land use, and 
weather variables. This river basin has a wide spatial varia-
tion of temperatures that range from negative values at the 
Himalayan region to 35–39 0C during summer in the plain 
areas. Expanding over 5,80,000 square kilometers, this basin 
experiences a wide spatial variation of rainfall magnitudes 
that ranges from very low values at the Himalayan region to 
very high values at the plain.

Data selection

Certain GCM of CMIP5 archive were selected based on their 
suitability for the Brahmaputra basin and its sub basin as 
identified in the previous work, and on the availability of 
data for the present and the future period. Previous work 
carried out by Sarthi et al. (2016) used both IPSL-CM5 
and HadGEM-2CC model for their study on Brahmaputra. 
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Whereas the work carried out by Saharia and Sarma (2018) 
used the bias-corrected GFDL ESM2M model to evaluate 
the future climate change impact on hydrological cycle in an 
area within the Brahmapatra basin. Both these studies proves 
that these models work well for the Brahmaputra basin and/
or part thereof. The present study involves the complete 
stretch of the Brahmaputra basin, and, therefore, we selected 
all the three GCMs mentioned earlier Viz. GFDL-ESM2M, 
HadGEM2-CC, and IPSL-CM5-1R for the analysis. The 
grid size of each GCM is presented in Table 1. For our 
analysis, two RCP (representative concentration pathways) 
scenarios viz. RCP4.5 and RCP8.5 were chosen to represent 
the complete range of impact.

Referring to the previous works (Dutta and Sarma 2020), 
we have selected observed weather data corresponding to 
three different sources, the combination of which was found 
the best suitable for analyzing the hydrology over the Brah-
maputra basin. These include (i) climate forecast system rea-
nalysis (CFSR) data provided by Texas A&M University; (ii) 

IMD (Indian Meteorological Department) gridded data gen-
erated by Dr. Balaji Narasimhan, Associate Professor, IIT 
Madras; (iii) Measured data at certain gauge stations over 
Tibet (China), obtained through academic collaboration. Out 
of numerous observed weather stations [(i) + (ii) + (iii)] data, 
we selected 36 stations (Fig. 2b) data so that at least one 
station falls within each major sub-basins (Fig.S1), prefer-
ably the point near the geometric center. For the present 
analysis, we utilize three observed variables, namely precipi-
tation (PCP), temperature maximum (TMax), and tempera-
ture minimum (TMin) spanning over 15 years (1991–2005) 
records. Any missing value was filled up by interpolating 
the corresponding available weather records. Any variable 
if not available in the later three datasets are copied from the 
nearest corresponding CFSR dataset. The GCM data corre-
sponding to PCP, TMax, and TMin were obtained for both 
the historical (1991–2005) as well as future (2006–2099) 
periods from the Coupled Model Intercomparison Project 
Phase 5.

Fig. 1  Study area showing the main river, location of meteorological stations, and location of observed discharge (Q) (Pancharatna, Bhomor-
aguri, and Pandughat)

Table 1  GCMs used in the 
present study

GCM Grid Archive

GFDL-ESM2M (2.02 × 1.25)° Coupled Model Inter-comparison Project Phase-V (CMIP5)
HadGEM2-CC (1.25 × 1.875)°
IPSL-CM5-LR (1.89 × 3.75)°
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Methodology

Interpolation

We have utilized raw data of nine GCM grid points (Fig. 2) 
for processing, and to obtain interpolated data correspond-
ing to an observed weather location using Inverse Distance 
Weighted Average (IDWA) interpolation method. The IDWA 
method is given by the equation (Eq. 1) as follows:

where Vf is the interpolated value required at the station, 
Vi is the data at grid point I; di is the distance of i from the 
station, n is the number of points. Here the power 2 was 
chosen by evaluating the cross-validation statistics of dif-
ferent power value.

Using Eq. 1, we generated a set of ‘interpolated data’ for 
each of the 36 weather locations of three climatic variables 
viz. PCP, TMax, and TMin. All these interpolated values 
are then bias-corrected by adopting an appropriate method.

Bias correction

Climatic processes are simulated using the equations of con-
servation of mass, energy and momentum. These climate 
models called general circulation models (GCMs) are used 
for study and prediction of future climate (Singh et al. 2019). 
The models simulate large-scale processes and it is very 
difficult to capture minute details that occur on a regional 
scale. Thus, the outputs of the GCM are bound to have some 
deviations from the actual data better known as the bias. 
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Therefore, bias correction of GCM outputs before using it 
for any hydrological study is of prime importance. In the 
present analysis, bias correction was carried out, whereas no 
downscaling was adopted because large numbers (Fig. 2a) of 
GCM points (~ 25 nos.) are available within the study area.

Linear scaling method (Teutschbein and Seibert 2013; 
Shrestha et al. 2017) was employed for bias correction of 
the interpolated GCM outputs. This method is based on the 
difference between monthly observed and raw GCM values. 
These differences are then applied to climate data to obtain 
bias-corrected climate variables.

where, MO is the monthly mean observed for a particular 
month, MG is the monthly mean raw GCM data for the same 
month as MO.

Additive correction is used for temperature, and mul-
tiplicative correction is used for precipitation, as defined 
by Hempel et al. (2013). Additive correction is used for 
the temperature to ensure that absolute changes (whether 
positive or negative) are not modified; however, precipita-
tion being a non-negative parameter, a multiplicative cor-
rection is applied to make sure that the corrected data are 
non-negative.

The following equation, as defined by Shrestha et al. 
(2017), were used for Linear scaling correction:

(2)Bias correction factor = MO −MG,

(3)Ph(d)
b = Ph(d) ×

[
μm × Pobs(d)∕μm × Ph(d)

]
,

(4)Prwf(d)
b = Prwf(d) ×

[
μm × Pobs(d)∕μm × Ph(d)

]
,

(5)Th(d)
b = Th(d) +

[
�m × Tobs(d) − �m × Th(d)

]
,

Fig. 2  Weather stations: a GCM coordinates (HadGEM2-CC, for example); b observed weather stations (36 numbers) considered for climate 
change studies



2479Modeling Earth Systems and Environment (2021) 7:2475–2490 

1 3

here ’P’ refers to precipitation, ’T’ for temperature, ’d’ 
refers to daily, ’μ’m refers to the long-term monthly mean, 
the superscript letter ’b’ refers to bias-corrected, ’h’ refers to 
historical raw GCM data, ’obs’ refers to observed data and 
’rwf’ is the raw GCM future data.

Uncertainty analyses: evaluation of GCMs

Climate change studies are generally forwarded by taking 
the outputs from several GCMs. The present study consid-
ers three GCMs for computation of interpolation followed 
by the bias correction based on their historical (1991–2005) 
records. However, managing the GCM data and its process-
ing to make them useful for both the present and future cli-
mate change studies are computationally very expensive. 
It becomes more tedious for the large Brahmaputra river 
basin considering numerous gauge weather stations. There-
fore, the present climate change study for the future periods 
(2006–2099) is intended to forward by utilizing the outputs 
of a GCM identified as the best among the selected GCMs. 
This section describes the evaluations of the performances 
of all GCMs based on the historical (corrected) records, 
and to identify one GCM that best replicates the observed 
weather records. It is assumed that the GCM identified best 
suitable for the historical records would reflect the same for 
the future periods too. The most suitable GCM so selected 
would be considered for future climate change studies.

The ability of the GCMs to simulate the historical PCP, 
TMax and TMin values can be assessed using a different 
type of evaluation measure. However, no individual measure 
is considered superior to the other, instead of combined use 
of different measures can provide a comprehensive assess-
ment of the model performance (Flato et al. 2014). For this 
study, the corrected outputs of the GCMs are compared with 
the observed data using statistical measures defined by the 
World Meteorological Organization (WMO). These statisti-
cal measures include root mean square error (RMSE) [Eq. 7] 
and Nash–Sutcliff efficiency (NSE) [Eq. 8].

here ‘S’ and ‘O’ refers to the simulated (i.e., model gener-
ated) and observed values, O and S are the mean of observed 
and model-generated data series, ‘i’ denotes the simulated 

(6)Trwf(d)
b = Trwf(d) +

[
�m × Tobs(d) − �m × Th(d)

]
,
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and observed pairs, and ‘N’ refers to the total number of 
such pairs.

Trend analysis

To quantify the temporal trends of climate variables across 
the study area till the year 2099, the present study first used 
the nonparametric Mann–Kendall test to detect the exist-
ence of increasing or decreasing trend (Kendall 1975), then 
followed by nonparametric Sen’s method to estimate the 
magnitude of the trend (Sen 1968). A two-tail test is per-
formed using a significance level α to evaluate significance 
increase or decrease of the data set. For this analysis, α is 
taken as 0.05. Based on this level, the Z statistic value (ZC) 
greater than 1.96 indicate significant increasing (positive) 
trend and value ZC lower than − 1.96 represents significant 
decreasing(negative) trends, respectively.

The trend analysis is applied to the bias-corrected 
HadGEM2-CC data during 2020–2099, for both the RCP4.5 
and RCP8.5 scenarios. To identify the local trend existing in 
the long time series, analyses were carried out by dividing 
the data into smaller timescales, i.e., 2020–2040 (Future1, 
i.e., "F1"), 2041–2070 (Future2, i.e., "F2") and 2071–2099 
(Future3, i.e., F3).

Results and discussion

Bias correction results

Initially, the bias correction factors on a monthly basis are 
calculated using Eq. 2. These factors are different for differ-
ent GCMs and different stations. An example is shown in 
Table S1, indicating the values of bias correction factors. 
Similar factors are obtained for the weather variables at all 
other stations, and corresponding to all three GCMs. Here, 
the correction factors on a monthly basis are assumed to 
remain constant over the present as well as future periods. 
Later, these factors are applied to the interpolated (raw) 
GCM outputs using the respective equations (Eqs. 3–6), 
to obtain the bias-corrected daily outputs at a station. By 
principle, the bias factors calculated based on the historical 
records are assumed to remain the same throughout and, 
therefore, applicable for the future climatic records too.

Applying the bias factors, we generated a set of data 
for the bias-corrected climate variables. Figure 3 shows 
an example of comparison of raw, bias-corrected and the 
observed daily data for PCP and TMax. Similar results are 
observed for TMin and even at all the other stations. This is 
evident from this figure that while correcting for bias, the 
raw GCM data points which were at far distant from the 
observed ones became closer to the later. Even a few points, 
especially during 90–150 days of the year, the bias-corrected 
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values are almost concentric to the observed values. It is 
evident that the raw data after correcting for biases do not 
exactly tally with the observed values. The bias correction 
methods are incapable to remove the model biases com-
pletely. However, the magnitudes of the raw GCM outputs 
are brought closer to that of the observed variables at the 
ground. It is not possible to match the corrected GCM out-
puts with the observed ones at the point to point scale. This 
is because the linear scaling method is based on the long 
term monthly mean values. As such, the monthly mean val-
ues of the corrected GCM values become the same as the 
corresponding observed values.

Figure 4 shows the comparison of the bias-corrected 
variables with the observed variables on a monthly basis. 
Rainfall being a non-negative parameter, multiplicative cor-
rection is applied to them. On the other hand, the additive 
correction was applied to the temperature data to ensure 
absolute changes not being modified. Therefore, the total 
rainfall in a month remains the same for both the corrected 
GCM and the observed data sets. For example, the total rain-
fall corresponding to the corrected GCM (GFDL-ESM2M) 

during March at station S5 (Lat: 29.82  N; Long: 89.06  E) 
is 36 mm that is exactly same in magnitudes as the observed 
rainfall during the same month. Similar results at the same 
locations are observed for TMax (+ 0.48 °C) and TMin 
(− 12.9 °C) of GFDL-ESM2M, during the same month. 
Such kinds of results are also prevalent for the other GCMs 
viz. IPSL-CM5-LR and HadGEM2-CC, and even at all the 
weather locations considered in this study. This signifies the 
monthly values of the bias-corrected GCM variables stand 
the same as the magnitudes of observed climatic variables. 
It, therefore, the climate impact studies using input values 
on a monthly basis provide better results than on a daily 
basis. So, bias correction provides the reasonably accept-
able outputs of the GCM, similar to the observed values, 
and they might further be utilized for climate change studies 
of an area.

Selection of GCMs

The data series of all GCMs and the observed records on a 
daily basis corresponding to each weather station is utilized 
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for calculation of the RMSE and NSE. The spatial distribu-
tion of RMSE values is shown in Fig. 5. It is evident from 
the figure (Fig. 5) that all the GCMs simulate rainfall with 
error in the range of 1–20 mm/day or even more in some 
stations. The GFDL-ESM2M simulations had errors up to 
5 mm/day in the northern region. In the southern and east-
ern regions, five stations had maximum errors (RMSE > 20). 
The HadGEM2-CC had error values ranging from 0 to 20. 
But as compared to GFDL-ESM2M, there were lesser num-
ber of stations falling under RMSE > 20 mm/day. It can be 
seen from Fig. 5 that most of the stations had errors within 
0–5 mm/day range. In the case of IPSL-CM5-1R, the error 
rates were higher in the northern and southeastern regions 
(> 15 mm/day). On the other hand, the central region had 
errors within 0–15 mm/day.

The RMSE values of TMax as produced by GFDL-
ESM2M ranges from 3.6 to 4.5 °C, in the northern region, 
whereas the errors are comparatively less in the central 
region. This error was found maximum in two stations 
located at the extreme east. In the case of HadGEM2-CC, 
more errors were prevalent in the central region, with the 
RMSE range of 3.1° to 4°. The IPSL-CM5-1R performs 
well in simulating TMax with a lesser number of stations 
showing 4.1–4.5 range of RMSE. Most of the stations 
show RMSE under a value of 4. In the simulation of TMin, 
the GFDL-ESM2M shows the highest error in the most 
upstream part of the basin (> 4.5). The central region was 
able to capture the observed values within RMSE values of 
2–3, whereas the RMSE was higher in the northeast region 
of the basin. For the HadGEM2-CC model, many stations 
have RMSE > 4.1 as compared to the other two GCMs. The 
stations located in the central regions show higher error 

rates. In the case of IPSL-CM5-1R, only four stations were 
found with RMSE > 4.5. The majority of the stations have 
RMSE within 2–3, and few stations scattered in the RMSE 
range of 4.5–4.5. Thus, the spatial variability of the RMSE 
at each weather station considered across the large Brahma-
putra river basin is much significant, thereby leads to diffi-
culty in culminating the performance of GCMs. Therefore, 
the results of RMSE, as well as the NSE values, are sum-
marized in Table 2.

It can be seen from this table (Table  2) that the 
HadGEM2-CC performed better than the other two mod-
els in simulating mean PCP with RMSE of 9.81 and 
NSE of − 0.04. Likewise, in TMax and TMin as well, 
the HadGEM2-CC outperformed GFDL-ESM2M and 
IPSL-CM5-LR. Thus, it becomes evident from the above 
analyses that the outputs of the bias-corrected HadGEM2-
CC provide better agreement to the observed data than that 
of the other GCMs. As such, this GCM would be utilized for 
the future climate change studies of the Brahmaputra basin.

Impact analyses due to climate change

The bias-corrected values of the most suitable GCM (i.e., 
HadGEM2-CC) was forwarded in the climate change 
impact analyses. Initially, we downloaded the future data 
(2006–2099) of this GCM only, for the RCP4.5 and RCP8.5 
scenarios, followed by interpolation and bias correction. 
Then, the climate change trends were analyzed using these 
bias-corrected values of PCP, TMax, and TMin. We consid-
ered 1991–2005 as historical and 2006–2099 as the future 
period. Since the period 2006–2019 has already been over, 
we carried out Man–Kendall and Sen’s slope trend analysis 

Fig. 4  Box plot for monthly mean values of rainfall, maximum tem-
perature and minimum temperature at certain salient stations selected 
on a random basis. Here, the GCM outputs are shown for GFDL-

ESM2M at station S5 (29.82  N: 89.06 E); for IPSL-CM5-LR at sta-
tion S14 (26.8  N: 89.36E) for HadGEM2-CC at S24 (26.5  N:92.5 E) 
for March only
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for the remaining future period (i.e., 2020–2099) only. How-
ever, the bias-corrected data during the period 2006–2019 
is used in certain analyses of climate change impact of the 
Brahmaputra basin.

To evaluate the climate change impact on the discharge 
of the basin, the study makes use of a hydrological model 
(Dutta and Sarma 2020) in the Soil and Water Assessment 
Tool (SWAT) platform. SWAT as a physically based model 
that simulates the physical processes through the input 
parameters like topography, land use, climate variables and 
soil properties (Goyal et al. 2018). The basin boundary is 
delineated using the SRTM (Shuttle Radar Transmission 
Mission) Digital Elevation Model (DEM) of 90 m spatial 
resolution. The stream network is generated for the thresh-
old drainage area of 20,000 km2. In SWAT, the Brahma-
putra basin watershed is divided into 41 sub-watersheds, 
which are then further subdivided into 1578 numbers of 
hydrologic response units (HRUs). The HRUs represent an 
area consisting of dominant land use, soil characteristics, 
topography, and management practices. The present study 

utilizes MODIS-based landuse of 0.5 km resolution and 
soil map provided by Food and Agriculture Organization 
(FAO) at 0.9 km spatial resolution. Incorporating sensitivity 
and uncertainty analyses of the SWAT model, we applied 
multi-site calibration and validation for discharge, at three 
locations (Fig. 1) namely Bhomoraguri, Pandughat, and Pan-
charatna. Finally, the performance of the hydrologic model 
was evaluated based on certain statistical parameters like 
R2 (coefficient of determination), NS (Nash–Sutcliffe) coef-
ficients etc. The model so established was found to produce 
a reasonably accepted strength of model outputs (Fig. S5), 
and could provide a fair replica of the hydrology of the Brah-
maputra basin.

Trend analysis result

Fig. S3 describes the trend pattern of changes in maxi-
mum temperature at a certain station for RCP4.5 and dur-
ing the F1 (2020–2040) period, for example. Here, the 
value in the y-axis, for a year is obtained by averaging 

Fig. 5  RMSE of the GCMs in simulating precipitation (mm/day) (first row), maximum temperature (°C) (second row), and minimum tempera-
ture (°C) (third row) at different stations of the Brahmaputra Basin. Different columns refer to different GCMs
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all days’ maximum temperature values during that par-
ticular year. In this figure, Z (or Zc) is the Mann–Kendall 
statistics, and the trend is said to be ‘Significant’ (S) if 
its value is more than 1.96. Otherwise, the trend is ‘non-
significant’ (NS). Moreover, Sen’s slope value signifies 
that the maximum temperature at S26 station during 2040 
increases by 4.7% with respect to the base year (2020) 
corresponding to the RCP4.5 scenario.

Likewise, the trends of all the variables (PCP, TMax, 
TMin) at all the 36 stations (S1–S36) corresponding 
to both the scenarios (RCP4.5 and RCP8.5) during all 
the time scales (F1, F2, F3) are obtained by applying 
Mann–Kendall and Sen’s slope method. Moreover, trend 
plots are made for the annual and seasonal (i.e., four sea-
sons) changes of climatic parameters. Thus, we have sev-
eral hundreds of such trend plots for the entire study area. 
And, we underwent difficulties in presenting such a vast 
number of trend plots in our report. Therefore, they are 
presented in the GIS plot, as shown in the subsequent fig-
ures, for minimizing the space required in our report and 
simplicity of presentation. And, the relevant discussions 
regarding the future climate change of the Brahmaputra 
basin is forwarded based on the respective figures.

Trends in annual PCP

For the F1 period under RCP4.5, 10 out of 36 stations 
(Fig. 6) located in the northern part of the basin are found 
to have significant trends with a moderately high value of 
Sen’s slope. The areas in the southeast of the basin show a 
significantly increasing trend, whereas the non-significant 
decreasing trend is seen on the southwestern side. In the F2 
period, only two stations in the northern area show a signifi-
cantly increasing trend. Down the southern areas, a non-sig-
nificant decreasing trend of PCP is seen. In the late century 
F3 scenario, the majority of the stations exhibit decreasing 
trends, and only in the southern areas, one station is found 
to have an increasing trend.

For the F1 period under RCP8.5, only one station (Fig. 6) 
shows a significantly increasing trend, and the majority of 
the stations show a decreasing trend. In the F2 period, the 
upper half of the basin shows an increasing trend while the 
lower half shows a decreasing trend. The highest positive 
values of Sen’s slope lie in the upper Indo–China region, 
and the lowest Sen’s slope value lies towards the southern 
side. Under the F3 period, the areas in the northern side of 
the basin show a non-significantly decreasing trend, whereas 

Table 2  Root mean square error (RMSE) and Nash–Sutcliff efficiency (NSE) of precipitation (mm/day), maximum temperature (°C) and mini-
mum temperature (°C) evaluated on three GCMs

The best-fitted GCM values are displayed in bold

Variable GCM Indices Mean Standard 
deviation

Max Min Median First quartile Third quartile

Precipitation GFDL-ESM2M RMSE 10.08 7.19 23.38 1.44 7.45 3.83 15.26
NSE − 0.16 0.21 0.04 − 0.87 − 0.11 − 0.20 − 0.02

HadGEM2-CC RMSE 9.81 7.17 24.29 1.39 7.26 3.28 15.37
NSE − 0.04 0.11 0.17 − 0.34 0 − 0.09 0.02

IPSL-CM5-LR RMSE 10.64 7.52 26.15 1.49 7.48 4.01 15.96
NSE − 0.27 0.24 0.09 − 0.89 − 0.21 − 0.40 − 0.09

Max. temp (TMax) GFDL-ESM2M RMSE 3.75 0.47 4.65 2.78 3.81 3.39 4.07
NSE 0.48 0.25 0.80 0.05 0.49 0.25 0.70

HadGEM2-CC RMSE 3.33 0.39 4.05 2.47 3.41 2.97 3.81
NSE 0.60 0.16 0.83 0.29 0.58 0.46 0.74

IPSL-CM5-LR RMSE 3.54 0.39 4.11 2.84 3.63 3.22 3.85
NSE 0.55 0.22 0.81 0.15 0.56 0.34 0.75

Min. temp (TMin) GFDL-ESM2M RMSE 3.38 0.99 5.80 2.28 3.17 2.55 3.96
NSE 0.78 0.06 0.86 0.51 0.80 0.77 0.82

HadGEM2-CC RMSE 3.36 1.08 5.32 1.84 2.93 2.23 4.06
NSE 0.82 0.04 0.88 0.69 0.83 0.81 0.85

IPSL-CM5-LR RMSE 3.26 1.06 6.03 2.07 3.08 2.45 3.93
NSE 0.78 0.17 0.86 − 0.19 0.81 0.80 0.83
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the southern side of the basin shows increasing trends. The 
increasing trends were significant in the southern areas of 
the basin border.

The annual rainfall during 2020–2040 is likely to 
increase over the majority of the basin areas up to 6.05% 
(RCP4.5) and 4.2% (RCP8.5). A significant increasing 
trend in annual rainfall has been observed over the China 
portion of the basin. This portion is the Himalayan range 
and would undergo changes in the hydrological cycle 
due to the increase in rainfall. However, the plain areas 
over India would experience a relatively low impact in 
the annual rainfall than the hilly areas. But, the annual 
rainfall over Bangladesh during 2040 is likely to decrease 
up to 3.09% with respect to the base year (2020), and cor-
responding to RCP 8.5. This area of the basin would even 
undergo shortfall in annual rainfall during 2041–2070. The 

Himalayan range would experience a continuous increase 
in the annual rainfall till 2070, with respect to the base 
year (2020). Interestingly, this area would suffer a little 
shortfall in annual rainfall till the end of 2099. But the 
southern part of the basin is likely to have more impact 
with an increase in rainfall. During 2071–2099, this 
change would stand up to + 3.47% (RCP4.5) and + 8.2% 
(RCP 8.5). While Akhtar et al. (2011) reported an increase 
of over 5% in annual rainfall in the southern part of the 
basin. So, the annual rainfall in the Brahmaputra basin 
would change in the near future following an increasing 
trend over the majority of the basin areas. However, the 
snow-fed areas of the Himalayan range and the river mouth 
portion near the Bay of Bengal would be more susceptible 
to the future rainfall changes as compared to the plain 
areas.

Fig. 6  Simulated (i.e. bias corrected GCM) annual rainfall (PCP) 
under RCP4.5 (first column) and RCP8.5 (second column) for F1 
(2020–2040), F2 (2041–2070) and F3 (2071–2099). Here, the sum 
of all values of daily rainfall during a particular year over F1 (or F2 

or F3) was used for calculation of the Sen’s slope (SS) value. Dark 
circles represent significant (S), whereas hollow circles represent non-
significant (NS) trend
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Trends in annual TMax

The trend analysis of annual TMax for F1 under RCP4.5 
(Fig. 7) shows a significantly increasing trend over most 
parts of the basin with few pockets showing a significantly 
decreasing trend. The annual maximum temperature may 
increase up to 7.4% during 2020–2040 which would 
even escalate up to 8.25% during the next time duration 
(2041–2070). Of course, the rate of this increase would 
occur at a relatively slower pitch with maximum value as 
4.99% till the end of the century. The plain areas of the 
basin covering India and Bangladesh would have lesser 
impacts due to a change in maximum temperature till 
2099.

Trend analysis of annual TMax under RCP 8.5 (Fig. 7), 
the F1 period shows increasing trend all over the basin with 
Sen’s slope ranging from 9.8 to 1. The higher values of Sen’s 
slope are attributed to the northern areas. In F2 period, the 
increase in TMax is higher (up to 12.8%) in the northern 
areas whereas an increase in the southern areas would 

happen up to 6.1%. Moreover, the TMax would increase all 
over the basin during 2071–2099, with a minimum value 
of 8.7%.

Comparing RCP4.5 and RCP8.5, it can be seen from 
Fig. 7 that most of the stations were showing a significantly 
increasing trend in RCP4.5 with little deviations at a few sta-
tions over the study area. But under RCP8.5, all the stations 
fall under increasing trend with minimum Sen’s slope of 1 
among all the future periods. Under F2, there is a rise in both 
upper and lower values of the increasing trend in Tmax for 
both the RCP scenarios. However, TMax during 2071–2099 
would increase at a relatively lower rate, than 2041–2070. 
Overall, the Brahmaputra basin’s annual maximum tempera-
ture would increase by the end of the current century.

Trends in annual TMin

For F1 period under RCP4.5 (Fig. 8), the trend analysis of 
the annual minimum temperature shows the overall increas-
ing trend in the basin with little deviations as decreasing 

Fig. 7  Simulated (i.e. bias corrected GCM) annual maximum tem-
perature (TMax) under RCP4.5 (first column) and RCP8.5 (second 
column) for F1 (2020–2040), F2 (2041–2070) and F3 (2071–2099). 
Here, the average of all values of daily maximum temperature during 

a particular year over F1 (or F2 or F3) was used for calculation of the 
Sen’s slope (SS) value. Dark circles represent significant (S), whereas 
hollow circles represent non-significant (NS) trends
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trends at only few stations. This deviation perhaps is due to 
either the incorrect assessment in the GCM outputs or the 
bias has not been properly removed. The bias factors calcu-
lated using the Linear Scaling method is correctly reflected 
provided the observed records are merely correct that results 
in correct relationship between these data and the GCM out-
puts. Moreover, the TMin would increase throughout the 
basin upto 4.25% for F2 (2041–2070) and 5.12% during F3 
(2071–2099). However, the plain areas of India and Bang-
ladesh would have relatively less impact as compared to the 
hilly areas.

During 2020–2040, the TMin under RCP8.5 (Fig. 8) 
shows a significantly increasing trend over the plain areas of 
India and Bangladesh at higher rates than over the northern 
(China) part of the basin. Here, the maximum increase in 
TMin would stand up to 6.29%. But, the TMin would even 
increase at higher rates, over the entire basin during the F2 
(2041–2070) period and the value lies in between 5.2 and 
9.8%. A similar increasing trend would prevail even during 
the F3 (2071–2099) period. The TMin would increase up 

to 8.5% during 2099 from the base year (2071). Overall, 
the TMin would significantly increase until the end of the 
current century.

The annual minimum temperature of the Brahmaputra 
basin would increase during all the future periods and under 
both the RCP scenarios. But TMin is likely to decrease at 
a few stations during 2020–2041 (RCP4.5). This is perhaps 
not the fair estimate so far the trend values are concerned. 
Because only two stations, out of 36 total stations consid-
ered for climate change analysis is not expected to exhibit 
the opposite trend than the others, even by a huge margin. 
Generally speaking, the annual TMin would increase over 
the entire Brahmaputra basin till 2099, and for both the RCP 
scenarios.

Annual climate of Brahmaputra basin during 2006–2099

The values of rainfall, maximum temperature, and mini-
mum temperature during 2006–2099 have been plotted in 
Fig. 9, to understand the pattern of climate change. This 

Fig. 8  Simulated (i.e. bias-corrected GCM) annual minimum tem-
perature (TMin) under RCP4.5 (first column) and RCP8.5 (second 
column) for F1 (2020–2040), F2 (2041–2070), and F3 (2071–2099). 
Here, the average of all values of daily minimum temperature during 

a particular year over F1 (or F2 or F3) was used for calculation of the 
Sen’s slope (SS) value. Dark circles represent significant (S), whereas 
hollow circles represent non-significant (NS) trends
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plot shows the basin average values for the interpolated 
cum bias-corrected climatic variables during the entire 
period. For precipitation, the daily values in the records of 
corrected GCM (i.e. HadGEM2-CC) database are added to 
obtain the total annual rainfall during a particular year. On 
the other hand, for temperature, the daily values are aver-
aged over a particular year, to obtain the annual tempera-
ture value. As per the trend line, the maximum tempera-
ture is likely to increase by 3.2 °C (RCP4.5) and 6.8 °C 
(RCP8.5) starting from the year 2006 to the year 2099. So, 
the Brahmaputra basin is likely to experience an increase 
in maximum temperature at the rate of 0.029 °C/year and 
0.062  °C/year, for RCP 4.5 and RCP8.5, respectively. 

At the end of the century, the minimum temperature of 
the Brahmaputra basin is likely to increase at the rate of 
0.009 °C/year (RCP 4.5) and 0.052 °C/year (RCP8.5), 
with respect to the base year 2006. Moreover, the annual 
rainfall of the basin would increase by 2.29 mm/year for 
RCP4.5, starting from 2006 till 2099. This value stands 
even higher for RCP8.5, and the value is 2.56 mm/year. 
So, it is obvious that the climatic variables would increase 
at higher rates for RCP 8.5, as compared to RCP4.5. It 
can be concluded from this analysis that the Brahmaputra 
river basin would experience the impacts of global climate 
change.
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Fig. 9  Pattern of climate changes of the Brahmaputra river basin during 2006 –2099: a rainfall (PCP); b maximum temperature (Tmax); c mini-
mum temperature (Tmin). Here, the blue line corresponds to RCP4.5, and the red line corresponds to RCP8.5
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Impact on future discharge

The projected annual discharge time series are divided 
into three smaller time scale, i.e. from 2020–2040 (F1), 
2041–2070, (F2) and 2071–2099 (F3). The discharge val-
ues are obtained from the SWAT model run using the bias-
corrected GCM (HadGEM2-CC) data for the present as well 
as for all the future timescales. The annual discharge vari-
ability of these three timescales is analyzed and compared 
with respect to the annual discharge during the base period 
(2006–2019) of the SWAT model output. The SWAT model 
is simulated using the daily values of input variables and to 
provide outputs on an annual basis.

The annual discharge values obtained from the SWAT 
model simulation for each time scale are shown in Fig. 10, 
as a box plot. Here, the SWAT model is run using the input 
variables obtained from the bias-corrected HadGEM2-CC 
database. The simulation was done for the respective peri-
ods (i.e. BP, F1, F2 and F3) individually, and for both the 
RCP scenarios. Then, the outputs corresponding to three 
locations (Bhomoraguri, Pandughat, and Pancharatna) are 
derived from the simulation results for this analysis.

The box-plot result indicates that the mean values of 
the projected discharge are higher than the base period, 
for the majority of the timescales under both the RCP4.5 

and RCP8.5 scenarios, at all the three locations. From the 
figure (Fig. 10), it is also evident that there is a wide varia-
tion in the maximum discharge values of all the three-time 
scales at each location with respect to the base period.

Referring to Table 3, which denotes the percentage of 
changes in annual mean discharges w.r.t. the base period 
(2006–2019), it has been observed that there is a positive 
increment, for all scenarios at majority time scales, except 
few deviations. The basin average annual rainfall (Fig. S4) 
value during the base period is 1690 mm, for RCP4.5. This 
value insignificantly changes during the F1 (2020–2040) 
period. As such, the changes in annual discharge values at 
all three locations are found to be insignificant. The annual 
rainfall during F2 period would increase to 1760 mm, 
thereby the annual discharge value during this period is 
likely to increase w.r.t. the base period discharge values. 
Indeed, this is clear from Table 3 that this increase would 
happen to 4.05% at Pancharatna. However, the annual 
discharge during F3 period would increase at higher 
rates, and the values are 8.47% (Bhomoraguri), 9.34% 
(Pandughat), and 9.93% (Pancharatna). This is due to an 
increase in annual rainfall to a greater extent (Fig. S4), 
as a consequence of global climate change. As well, for 
RCP4.5, the temperature (TMax/TMin) of the Brahmapu-
tra basin during F3 period would increase by 2–3 °C from 

Fig. 10  Impact of future climate 
change on the annual discharges 
of the Brahmaputra basin at the 
three locations: a Bhomoraguri, 
b Pandughat, and c Pancharatna. 
Here, the results of SWAT 
model run using bias-corrected 
HadGEM2-CC correspond-
ing to RCP4.5 and RCP8.5 are 
shown as box plot

Table 3  Percentage (%) changes 
in annual discharge due to 
climate change w.r.t base period 
(2006–2019)

Location Future 1 (2020–2040) Future 2 (2041–2070) Future 3 (2071–2099)

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

Bhomoraguri − 1.32 − 3.78 + 2.75 − 3.36 + 8.47 + 3.93
Pandughat + 1.25 − 1.50 + 1.26 − 1.31 + 9.34 + 13.06
Pancharatna + 0.84 − 1.63 + 4.05 − 1.63 + 9.93 + 12.13
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the base period. This would aid to increase in the future 
annual discharge at the end of the century.

For RCP8.5, the annual discharge during both the F1 and 
F2 periods would decrease, as compared to the base period. 
It is evident from Table 3, this decrease may happen up to 
3.78%. Of course, the Brahmaputra basin would experience 
a deficit in annual discharges during F1 and F2 periods, due 
to the impact of climate change. The annual rainfall values 
during these periods would decrease, as compared to the 
base period. However, there is a sharp increase (= 225 mm) 
in annual rainfall (Fig. S4) over the basin, during F3 periods, 
w.r.t. the base period. As a result, the Brahmaputra discharge 
during F3 period would increase to a large extent. The 
upstream location i.e. Bhomoraguri is likely to have the least 
impact, whereas the downstream locations (i.e. Pandughat 
and Pancharatna) are likely to experience relatively greater 
impact. This is because annual rainfalls during that period 
are relatively higher in the downstream plain areas than the 
upstream hilly areas. The highest increase in annual dis-
charge under RCP8.5 would occur at Pandughat (13.06%), 
followed by Pancharatna (12.13%), during 2071–2099, and 
with respect to the base periods.

Looking at some of the limitations of this work, the 
present study used GCMs from three different agencies, 
which is sufficient to address the model uncertainty, how-
ever future study may consider more GCMs or even a multi 
model ensemble to improve the climate impact assessment. 
Climate change impact analysis on seasonal variation may 
also be considered.

Conclusion

Based on the results of interpolation and bias correction, we 
could identify HadGEM2-CC as the most suitable GCM for 
the present study area. While comparing the performances 
of all the GCMs selected in this study, it was observed the 
data of HadGEM2-CC to replicate merely the ground obser-
vations. This information will be helpful to the research 
community.

Climate change is associated with not only the rise in tem-
perature but also with the change in the global precipitation 
cycle that leads to variation in spatial and temporal patterns. 
Due to global climate change, the values of climatic varia-
bles across the Brahmaputra basin would change until 2099. 
As per the highest possible emission scenario (RCP8.5) 
results, the increases in annual rainfall and maximum tem-
perature of the basin are likely to stand up to 2.56 mm per 
year and 0.062 °C/year, till the end of the running century. 
Increasing precipitation may result in an increased flood, 
whereas the increasing trend of temperature would result in 
the melting of glaciers over the Himalayan range of the basin 
area. Subsequently, the Brahmaputra basin would undergo 

changes in the basin behaviour, due to change in the basin 
hydrology. The impact analysis of future climate change on 
the annual discharge of the basin indicates the mean values 
of the projected discharge are higher than the historical time 
period for both RCP4.5 and RCP8.5 in all the three observed 
locations. Such a variation affecting the quantity and quality 
of available water resources of the Brahmaputra basin would 
lead to an increase in competition among agriculture, eco-
systems, settlements, industry, and energy sectors.
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