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Abstract
This article modifies the use of the Cellular Automata Markov Chain Model to predict future land use pattern in Lebanon, 
and compares it to the current developed model. LandSat images of years 2000, 2009 and 2018 are used to generate land use 
maps within the geographic information system. Current developed model was generated by integrating Population density 
data with land use classification maps to decompose the built-up development to three sub-classes: High, Medium and Low-
density built-up land uses. Simulations of future land use pattern over the year 2018 based on these two prediction models 
reveal that the Modified Cellular Automata Markov Chain Modelling technique is more accurate than the Extended Markov 
Chain model. Spatial effects of built-up densities are validated in this study. Consequently, the extension of the Cellular 
Automata Markov Chain Model represents an innovative tool for regional and urban planning to forecast potential locative 
distribution of old and new urban agglomeration. The sequential shift of the urban areas among different density classes in 
addition to the interactions of urban agglomerations should be employed as a guiding tool for decision-makers and planners 
during the phase of developing new population and economic strategies, new urban Masterplan and during the process of 
enacting/developing new land-use policies. In the final part of the study, a simulation of land use pattern for the year 2036 
is generated using TerrSet v.18 software and an analysis of the outcome for the forecasted map is discussed.
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Introduction

Previous applications of Cellular Automata—Markov Chain 
model (CAMCM) and Markov Chain Model (MCM) in addi-
tion to a brief introduction of the models used in the study 
are presented in this section. Moreover, the selection and the 
background of the study area are also reported.

Relationship of land use dynamics and Cellular Autom-
ata—Markov Chain Modelling; and preceding applications.

The simulation of Land Use (LU) dynamics is an essen-
tial technique to evaluate the future LU pattern, urban sprawl 
and landscape structure. The MCM is considered as an effec-
tive method to be employed to predict the future LU transi-
tions (Al-Shaar et al. 2020; Chakir and Parent 2009; Wang 
and Kockelman 2009). The CAMCM provides an efficient 
tool for the modelling of LU changes by integrating the 
location-based interactions between LU with the tempo-
ral dimension expressed as the historical LU transforma-
tions and their spatial interactions (Houet and Hubert-Moy 
2006; Ozturk 2015; Ghosh et al. 2017). The following part 
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discusses several case studies where the integrated CAMCM 
was implemented.

The CAMCM model was employed as a land-use fore-
casting model in recent studies as the study conducted 
by Ackom et al. (2020) on land degradation in the Odaw 
River Basin in Ghana; and the study of Kabite et al. (2020) 
intended to identify the land cover transformations in the 
Dhidhessa River Basin in Ethiopia and the driving forces 
behind these changes. The SLEUTH model which is derived 
from the Cellular Automata (CA) model was employed by 
Akın and Erdoğan (2020) to predict the future urban sprawl 
and land degradation in Bursa city in Turkey. A new urban 
planning simulation model was developed by Falah et al. 
(2019) by integrating the analytical hierarchy process into 
the modelling technique of cellular automata. The land use 
data of Qazvin city in years 1996 and 2016 were used in the 
model’s validation process. A study on the dynamics of LU 
in Halgurd-Sakran zone in Kurdistan, Iraq was conducted 
by Hamad et al. (2018) on the basis of CAMCM and the 
Remote Sensing Technology. The model was used to simu-
late LU for the year 2023 under two distinct situations. The 
first situation is a temporal period where Iraq was under the 
United Nations sanctions, satellite images for years 1993, 
1998 and 2003 were used. The second situation is after the 
end of the United Nations sanctions against Iraq, satellite 
images for years 2003, 2008 and 2017 were used. Results 
indicated that the cultivated zones are affected significantly 
by the United Nations sanctions (Hamad et al. 2018). The 
CAMCM was also applied by Hua (2017) to foresee the 
changes of LU in the watershed zone of Malacca River 
in Malaysia between the years 2015 and 2029. Historical 
data of LU were obtained from maps generated in ArcGIS 
10.0 and ENVI 4.0 softwares where the Landsat images for 
years 2001, 2009 and 2015 represent the input data. Simu-
lation of LU map for the year 2015 was processed within 
IDRISI Selva v.17 software and validated using Kappa sta-
tistics test. Then, a simulation of LU for the year 2029 using 
CAMCM was conducted. Outcomes indicate a degradation 
of vegetation and open space areas in addition to a signifi-
cant reduction in water bodies generated from the increased 
development of farming, industrial and non-industrial areas 
associated with increased pollution of Malacca River. The 
land-use scenarios of Shannon River’s watershed in Ireland 
for years 2020, 2050 and 2080 were simulated by Gharbia 
et al. (2016) by using the integrated Cellular Automata-GIS 
model based on land use maps and digital elevation models 
of the study area. Vázquez-Quintero et al. (2016) forecasted 
a reduction in the areas of pine forests of Pueblo Nuevo 
region in Mexico through a land-use CAMCM simulation 
for the year 2028. A new LU prediction model integrating 
CA, logistic regression and MCM was developed by Arsan-
jani et al. (2013) to investigate the increase of suburban 
areas in Tehran metropolitan zone, Iran. Socio-Economic 

and Environmental factors involved in the urban expansion 
were taken into consideration during the phase of formulat-
ing the Probability Transition Map for spatiotemporal states 
of urban LU in years 2006, 2016 and 2026. The model and 
its calibration were validated through cross comparison of 
simulated LU maps to actual maps. Subsequently, the cali-
brated model was employed to simulate the LU for the year 
2016 and 2026. Simulation results showed an induced urban 
development in the western metropolitan neighborhood of 
Tehran. The concept of spatial evolution of the CAMCM 
was adopted by Houet and Hubert-Moy (2006) to forecast 
future LU and LandCover evolution in Coët-Dan watershed 
which is an intensive cultivated zone in Central Brittany, 
France. Historical LU data and landscape features were 
extracted from aerial photos and satellite imagery for the 
period between 1950 and 2003. The authors considered that 
spatial evolution is occurring due to observed landscape 
features, biophysical and socio-economic driving factors. 
CAMCM simulations were applied to forecast the future LU 
change for the years 2015 and 2030. Two scenarios were 
conducted throughout these simulations: with and without 
taking into account the landscape features of the studied 
watersheds. The model that includes the landscape features 
simulates more accurately the LU changes than the one that 
excludes these features. Findings depict that considering 
landscape features will enhance the accuracy of simulations 
for future LU states.

Markov chain model

The study of chance progression as a new theory of predic-
tive probability was first introduced in 1907 by the math-
ematician Andrei Markov. This study showed the interde-
pendence between the results of future experiments and 
the outcomes of historical chance processes; this theory is 
known as the Markov Chain (Ching and Ng 2006; Grin-
stead and Snell 2006; Gagniuc 2017). Markov Chain Model 
(MCM) was considered as practical predictive in different 
scientific fields as the study and the prediction of LU dynam-
ics (Al-Shaar et al. 2020; Iacono et al. 2017). Baker (1989) 
as cited in (Iacono et al. 2017) indicated that a row vector 
describing the LU distribution at the time (t + 1):

Iacono et al. (2017) assumed that the transition probabil-
ity matrix will remain constant at following future periods 
and a row vector “Vt+y” at time “t + y” could be obtained by 
multiplying the current LU row vector “Vt” by the matrix 
“P” raised to the power “y” (Py):

(1)Vt+1 = P × Vt

(2)Vt+y = Py × Vt
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More info about the Markov Chain mathematical equa-
tions are explained in the following references:

(Hamad et al. 2018; Iacono et al. 2017; Rozario et al. 
2017; Gagniuc 2017; Parsa et al. 2016; Han et al. 2015; 
Subedi et al. 2013; Takada et al. 2010; Grinstead and Snell 
2006; Ching and Ng 2006; Levinson and Chen 2005; Weng 
2002; Muller and Middleton 1994).

Cellular automaton (CA) model

The Cellular Automata concept was initially presented by 
John Von Neumann and Stanislaw Ulam between 1940 and 
the early 1950s (Wolfram 2002). The concept indicates that 
the state of a group of cells is governed by its previous state, 
previous states of its surrounding/ neighboring cells in addi-
tion to local rules that govern this array of all cells (Wolfram 
2002; Alkheder et al. 2006; Houet and Hubert-Moy 2006; 
Koomen and Borsboom-van Beurden 2011; He et al. 2013; 
Ozturk 2015; Mishra and Rai 2016; Parsa et al. 2016; Hua 
2017; Hamad et al. 2018). The cellular Automata model 
relates the time with space interactions.

The following equation depicts the general algorithm 
of Cellular Automata model (Alkheder et al. 2006; Hamad 
et al. 2018):

where:
α: Group of studies cells.
St+1(α): the state of cell α at time (t + 1),
St (α): the state of cell α at time (t),
St (π): the state of cell π at time (t),

Local transition rules: spatial interactions 
among cells

The literature indicates that the Cellular Automata models 
represent a powerful tool that could forecast the future LU 
dynamics on the basis of the spatial interactions known also 
as the neighboring effects (Alkheder et al. 2006; Houet and 
Hubert-Moy 2006; Arsanjani et al. 2013; Halmy et al. 2015 
and Parsa et al. 2016).

CA‑Markov chain model

CAMCM represents an efficient tool that intends to describe 
future LU dynamics on the basis of integrating historical 
dynamics data with the spatial interactions effects. The 
CAMCM uses the outputs of MCM represented by the 
“Transition” data in the application of a “Contiguity Filter” 
to simulate the future LU changes. Through a predefined 
contiguity filter weighting factors are associated to neighbor-
ing LU cells (Eastman 2012; Arsanjani et al. 2013; Subedi 

(3)St+1(�) = f
(
St(�), St+1(�)

)
,

et al. 2013; Halmy et al. 2015; Ozturk 2015; Mishra and Rai 
2016; Parsa et al. 2016; Hua 2017; Ghosh et al., 2017 and 
Hamad et al. 2018).

A previous study by Al-Shaar et al. (2020) considered and 
validated the applicability of the extended MCM (EMCM) 
in forecasting future land use pattern in Lebanon. The 
authors indicated in their study that the Extension of Markov 
Model was explained as the integration of population density 
within the built-up land uses. An expansion of this previous 
study is conducted in this paper by modifying the CAMCM 
by the way of integrating the population densities with the 
built LUs. The extended model is denoted as ECAMCM. A 
comparison of two LU simulation models: ECAMCM and 
EMCM are carried out to determine which model has the 
greater accuracy and the better realistic representation of 
the LU change. Simulations to the year 2018 were conducted 
and the produced LU maps were compared to actual one 
based on the Frobenius Matrix Norm. It is hypothesized that 
the ECAMCM is the most accurate model since it generally 
takes the spatial effects of land use distribution during the 
simulation process and specifically the spatial distribution 
of population densities. Used data in this study are: (i) maps 
of Lebanon LU over years 2000, 2009 and 2018 which were 
generated using the Landsat images, (ii) projected popula-
tion density maps (with reference to the available density 
map of the year 2004) using ArcGIS 10.6.1 software. This 
research provides an innovative methodological concept 
(ECAMCM) within the techniques of future land use fore-
casting models. The structure of this article is depicted as 
follows, next section comprises a simple background of the 
case study. The second section depicts the adopted research 
methodology, the collected data and the treatment of these 
data. The third section represents the simulations of LU for 
the year 2018 using the two models and for the year 2036 
using the CAMCM. The fourth section highlights the anal-
ysis of actual and simulated LU transitions, respectively, 
between the period 2000–2018 and the period 2018–2036. 
The fifth section concludes the paper and highlights the 
robustness of the developed model for future LU simulation.

Background and case study

This paper considers Lebanon country as the case study zone 
since its LU are intensively changing.

A degradation of water bodies, natural areas and agri-
cultural zones has occurred and it is currently occurring 
in Lebanon. These uncontrolled LU dynamics represents a 
major national problem. Reasons behind these changes could 
be explained in the lack of appropriate LU planning policies 
in addition to the non-existence of a nationwide LU Master-
plan and a centralized governmental entity responsible for 
planning and coordination of landscape and LU dynamics 
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(FAO 2012). A study of the LU dynamics in Lebanon for 
the period from 1963 to 1998 was conducted by Masri et al. 
(2002). The study was processed using the Agro statistics 
map for the year 1963 in addition to the remote sensing sat-
ellite images for the year 1998 and Geographic Information 
System tools (GIS) by which the LU map of the year 1998 
was produced. The results showed an increase in the areas 
of bare soil lands and urban development at the expense 
of reduced Forests and Agricultural lands. The vertical and 
horizontal urban sprawl of Lebanese cities is expanding in a 
chaotic pattern without relying on consistent planning strate-
gies. The population growth increases the need for housing 
as well as for secondary houses as chalets and mountain 
retreats (Stephan 2010 as cited in FAO 2012). These urban 
developments are diminishing the natural areas, bare soils 
and agricultural zones (Zurayk and El Moubayid 1994 and 
FAO 2012). Fawaz (2011) reported that the quality of LU in 
Lebanon is deteriorating and the degraded agriculture zones 
along the coastline and natural zones in addition to old clas-
sical buildings could not be restored again. The research 
directed by Al-Shaar et al. (2020) indicated that the land 
use simulation under the Extended Markov Chain Model 
(EMCM) shows an estimated decrease in the areas of water 
bodies and agriculture zones in addition to an increase in 
high-density development and bare soil lands in the year 
2036. In this study, and after comparing the outputs accuracy 
of the ECAMCM and the ECMC, a simulation of future LU 
(for the year 2036) is conducted. The outcomes are con-
sidered as guidelines for policymakers during the stage of 
taking proactive decisions to appropriately manage the LU 
pattern and to protect the landscape.

Materials and methods

Research methodology

This research proposes the development of a new land-use 
forecasting model by modifying the CAMCM to include 
spatial effects of built-up densities in urban areas. The meth-
odology comprises stages of collecting and merging data, 
simulation of EMCM and ECAMCM models, validation and 
accuracy tests. The data processing phase comprises first the 
collection of data for the available population density map 
and the Landsat Satellite imagery for the study area over 
years 2000, 2009 and 2018. The second stage consists of 
processing the supervised LU classification of the collected 
satellite images; and the generation of density maps over 
years 2000, 2009 and 2018 at the basis of the projection 
and back-projection of the available population density map. 
The third stage is presented by integrating the generated 
density maps into the produced LU maps to decompose the 

built-up land use to three sub-classes characterized by: High, 
Medium and Low built-up densities. The fourth and fifth 
stages are, respectively, described as the computation of the 
Extended Markov matrix of transition for the period between 
2000 and 2009 and the use of this matrix in the applica-
tion of the ECAMCM to generate the simulated LU map 
of the year 2018. These two processes are conducted using 
TerrSet v.18 software. The MCM is not adequate to con-
duct a realistic spatial simulation due to lack of neighboring 
effects as an input (Arsanjani et al. 2013; Houet and Hubert-
Moy 2006). As indicated by Ozturk (2015), the neighboring 
effects represent one of the main spatial modelling compo-
nent. These effects could be explained as the tendency of an 
area to be transformed to another LU class corresponding 
to its adjacent and surrounding zones. The hybrid CAMCM 
combines the Markov change process with the neighboring 
effects by employing a Cellular Automata filter (Eastman 
2012 and Houet and Hubert-Moy 2006). This filter develops 
a space-based contiguity-weighting factor through a conti-
guity matrix by which the Cellular Automata model assess 
the contiguity pattern where the contiguity matrix indicates 
that the closest cells have higher effects on the considered 
center pixel than the far ones (Hamad et al. 2018). Using 
this model, the state’s change of a cell will not be based 
only on its historical dynamics but further on the states of 
its neighbors, and the neighboring effects are considered in 
the modelling process. This Cellular Automata filter was 
applied to maps to determine the contiguity of the pixels in 
each LU class. The standard Cellular Automata contiguity 
filter is a five by five pixels matrix, this means that each cell 
in the map will be surrounded by a matrix space of 5 × 5 
cells as indicated in the next matrix (Eastman 2012; Ozturk 
2015; Hamad et al. 2018).

Contiguity filter = 

⎡⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 1 1 1 0

1 1 1 1 1

0 1 1 1 0

0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎦

.

Nevertheless, the contiguity filter could be edited and 
tailored depending on the objective of the study (East-
man 2012 and Houet and Hubert-Moy 2006). At this stage, 
the simulated LU map for the year 2018 is generated and 
compared to the actual map to validate the simulation. 
The Validation process is based on the “Kappa Statistics 
test” which compares the simulated and actual LU states 
based on a defined calculation. After validating the simula-
tion, a second simulation process is performed by calculat-
ing the Extended Markov transition matrix for the period 
between 2000 and 2018. This matrix is employed within 
the ECAMCM to generate the simulated LU map of the 
year 2036. Figure 1 illustrates the flowchart of followed 
research processes in this paper.
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Data collection

The data needed in this study are the LU and population 
density maps. Population density and LU maps over years: 
2000, 2009 and 2018 are not available; however, these data 
are the same data input used in the study conducted by 
Al-Shaar et al. (2020) which validated the suitability of a 
modified Markov Model (Extended MCM) to be used in 
predicting the future land-use changes in Lebanon. Next 
sections provide a detailed description of data collected 
and the treatment process of these data.

Landsat images

Three multispectral satellite images (surface reflectance) 
with 30 m’ resolution for years 2000, 2009 and 2018 were 
downloaded from USGS Earth explorer (EarthExplorer 
2019). The image of the year 2000 was taken by the Landsat 
4–5—C1 Level 2 satellite, the image of the year 2009 was 
the Landsat 7—C1 Level 2 satellite and the image of the 
year 2018 was taken by the Landsat 8—C1 Level 2 satellite. 
It worth noting that Lebanon is located into two interna-
tional UTM zones: 36 N and 37 N; therefore, a single image 

Remote Sensing:
Obtaining the Reflectance 

LandSat images of Lebanon over
years: 2000, 2009 and 2018

Density Map:
Obtaining the available 

population Density maps (the
available is the map of year 2004)

Supervised LandUse 
Classification Using GIS

Projection and Back Projection 
of Population Density Maps for 

years 2000, 2009 and 2019 

Integration of Landuse 
classification maps with the 
projected population density 

maps 

Integrated Landuse 
classification maps for years 

2000, 2009 and 2018

Detection of the Extended 
Markov Transition Matrix 

between years 2000 and 2009 

Application of :
Extended Cellular Automata

Markov Chain Model 
(ECAMCM)

Validation of the simulation 
using Kappa Coefficient Test 

Simulated LandUse Map for 
year 2018Contiguity Filter 5x5 Neighbor

Detection of Extended Markov 
Transition Matrix between 

years 2009 and 2018 

Application of :
ECAMCM

Simulated LandUse Map for 
year 2036

Fig. 1  Flowchart of followed research processes



1326 Modeling Earth Systems and Environment (2021) 7:1321–1335

1 3

of Lebanon for any defined year could not be downloaded 
from (EarthExplorer 2019) since it provides two separate 
images located in the two UTM zones indicated above. In 
this research, these separate images were merged to obtain 
a single and full satellite image of Lebanon for each of the 
years 2000, 2009 and 2018.

Lebanon density maps

Maps of Population density in Lebanon over years 2018, 
2009 and 2000 are not available. Projected and Back-pro-
jected density maps (for 2000, 2009 and 2018) were gener-
ated based on the available Lebanon density map for the year 
2004 (Localiban 2016) and on the population data given by 
(WorldPopulationReview 2019) assuming that density and 
population’s growth rates are uniform across all areas illus-
trated within the density map of the year 2004. The data of 
WorldPopulationReview (2019) have been estimated based 
on United Nations (2019) data which were in turn based 
on the statistics of the Lebanese Central Administration for 
Statistics (CAS) over the year 2004. Densities’ intervals as 
tabulated in Table 1 are classified by Low, Medium and High 
population densities.

The generated Lebanon density maps over years 2000, 
2009 and 2018 are illustrated in Fig. 2.

Treatment of data

Classification of land use

The process of “Supervised classification” was conducted 
using the software ArcGIS 10.6.1.

The LU classes defined to classify the images are Built-
up, Bare Soil, Forest and Agriculture areas in addition Water 
Bodies. The built-up LU was decomposed by referring to the 
projected Lebanon population density maps to three further 
sub-classes: High, Medium and Low built-up density lands. 
This integration is implemented in ArcGIS 10.6.1 software 
through the use of Raster Calculator module by adding the 
pixel values of the original LU classified rasters to the ones 
of population density maps converted to rasters. The areas 
of LU classes were compiled in ArcMap software through 
the “Zonal Statistics as Table” module.

The LU classification for years 2000, 2009 and 2018 was 
validated via the accuracy assessment test. This test com-
prises the accuracy assessment process conducted in ArcGIS 
and the computation of a confusion matrix which indicates 
the kappa value of the classification and the percentage of 
its accuracy.

The percentages of accuracy for LU classifications over 
years 2000, 2009 and 2018 are 88, 89 and 92, respectively. 
The corresponding kappa statistics’ values are 0.83, 0.85 and 
0.89, respectively. All percentages are above 85% which, as 
stated by Weng (2010), is a good accuracy percentage of 
classification. In addition, all kappa values are above 0.8 

Table 1  Defined density intervals of built-up areas’ classes

Categories of built-up areas Density intervals

Low population density  < 250 person/km2

Medium population density 250 ≤ person/km2 
and < 5000 person/
km2

High population density 5000 ≤ person/km2

Fig. 2  Maps of Lebanese population density over years: 2000, 2009 and 2018 (Al-Shaar et al. 2020)
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indicating that the classification has a strong to perfect accu-
racy as indicated by Ozturk (2015).

Figure 3 illustrates the generated actual Lebanon LU 
maps over the years 2000, 2009 and 2018.

Maps simulation

Simulation of land use map for the year 2018

The LU classification raster maps of years 2000 and 2009 
were imported to TerrSet software to simulate the LU map 
for the year 2018. The TerrSet software calculates the 
Extended Markov transition matrix for the period between 
2000 and 2009 and it uses this matrix in the application of 
the ECAMCM to simulate LU map for the year 2018.

Validation

A comparison of simulated and actual LU maps for the year 
2018 was conducted in addition to a simulation’s validity 
test using “Kappa Statistics”. Subedi et al. (2013) and Parsa 
et al. (2016) stated that the “Kappa Index of Agreement” is 
an effective test to be used for the validation of LU dynam-
ics predictions.

Kappa test provides a numerical value of the accuracy 
degree of the simulation; it calculates the accuracy value 

according to the difference between actual and predicted 
states known respectively as the “Observed Agreement” and 
“Expected Agreement” (Tang et al. 2015; Viera and Garrett 
2005; Landis and Koch 1977; Cohen 1960). Kappa statistics 
is a standardized measure of the difference among Observed 
and Expected Agreements; the next equation depicts how 
Kappa Value could be calculated:

where “P0” represents the Observed Agreements and “Pc” 
represents the Expected Agreement or Agreement by 
Chance.

Kappa value indicates the level of accuracy of the simula-
tion as indicated Table 2.

We used the software TerrSet v.18 to conduct the kappa 
validation test based on 10 iterations; the calculated Kappa 
values are: 0.8041, 0.8529, 0.8529, and 0.6996 as indicted 
in Table 3.

All calculated Kappa values are within [0.7–0.85] range 
which verify the accuracy of the ECAMCM Simulation in 
forecasting the future LU change in Lebanon.

The following section shows a comparison between the 
predicted LU transition matrix from 2009 to 2018 using 
the EMCM and the simulated transition matrix using the 
ECAMCM for the same time period.

(4)K(Kappa) =
P0 − Pc

1 − Pc

Fig. 3  Generated maps of Lebanese land use over years: 2000, 2009 and 2018 (Al-Shaar et al. 2020)

Table 2  Interpretive kappa 
values (Viera and Garrett 2005)

Kappa Poor Slight Fair Moderate Substantial Almost perfect

0.0 0.20 0.40 0.60 0.80 1.0
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Figure 4 illustrates the actual and simulated LU maps of 
the year 2018.

Comparison of Extended Cellular Automata Markov 
Chain (ECAMCM) and Extended Markov Chain Models 
(EMCM).

A comparison between the EMCM and the ECAMCM 
was conducted in this section to determine which of these 
two models is more accurate in forecasting future LU.

The matrix of actual LU transition between years 
2000 and 2018 is used as the base for this comparison 
and denoted as Matrix A, as shown in Table 4. The pre-
dicted transition matrix between 2000 and 2018 denoted 

as Matrix X, as shown in Table 5, was calculated on the 
basis of Extended Markov Chain modelling technique 
using the actual 2000–2009 Probability Matrix as indi-
cated in Table 6.  

The simulated transition matrix using the ECAMCM 
between 2000 and 2018, denoted as Matrix Y and tabu-
lated in Table 7, was computed by TerrSet software using 
the simulated LU map of the year 2018 and the actual map 
of the year 2000.

The comparison process is based on assessing and com-
paring the Frobenius norm of these Matrices. The Frobe-
nius norm of a matrix is calculated as the square root of 
the sum of all its elements (Ford 2015 and Rencher 2002). 
The following equation depict the calculation processes:

where xij represents the elements of the matrix and 1 ≤ i, j ≤ 7 
(7 is the number of LU classes represented by the matrix).

The Frobenius norms of the above-indicated matrices 
are depicted in Table 8.

(5)Frobenius Norm =

√
ΣiΣj(xij)

2

Table 3  Values of calculated kappa

Type of kappa Value

Kappa for no information (Kno) 0.8041
Kappa of grid cells level location (Klocation) 0.8529
Kappa of stratum level location (KlocationStrata) 0.8529
Overall kappa (Kstandard) 0.6996

Fig. 4  Actual and simulated 
Lebanon land use maps of year 
2018

Table 4  Matrix A: actual 2000–2018 matrix of land use transition (Al-Shaar et al. 2020)

Water Low density 
built-up area

Medium density 
built-up area

High density 
built-up area

Agriculture Bare soil Forest

Water 5,404,155 463,666 330,247 116,247 6,038,228 758,246 99,074
Low density built-up Area 0 40,918,088 25,853,300 0 15,791,475 49,316,917 7,867,788
Medium density built-up area 0 0 81,034,206 17,386,650 17,138,269 32,925,968 6,752,851
High density built-up area 0 0 0 38,138,141 6,601,522 6,222,242 292,148
Agriculture 0 116,995,843 150,160,019 7,676,893 1,206,193,366 1,047,128,151 542,909,845
Bare soil 0 150,194,984 171,578,677 16,292,337 682,241,623 3,699,887,966 370,650,673
Forest 0 41,243,110 84,400,457 5,046,625 316,371,198 340,038,130 953,116,089
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The Calculated Frobenius norms of these three matrices 
indicated that the norm of the simulated 2000–2018 transi-
tion matrix by ECAMCM is closer to the actual one than 
the one predicted by EMCM and as a result the simulation 
of ECAMCM is more accurate.

Simulated land use map of the year 2036

The produced LU maps of years 2018 and 2000 were used in 
TerrSet software as input to simulate the LU map for the year 
2036. The TerrSet software calculates the Extended Markov 

Table 5  Actual matrix of transition for years 2000 and 2009 (Al-Shaar et al. 2020)

Water Low density 
built-up area

Medium density 
built-up area

High density 
built-up area

Agriculture Bare soil Forest

Water 6,289,215 354,024 208,716 413,469 5,744,969 157,197 42,272
Low density built-up area 125,773 55,633,507 13,737,186 0 55,675,431 12,926,650 1,662,996
Medium density built-up area 15,524 0 94,602,002 5,930,089 40,051,389 9,857,609 4,781,329
High density built-up area 0 0 0 44,278,376 3,229,005 1,886,149 1,860,522
Agriculture 1,535,532 80,154,773 76,776,603 5,835,022 2,043,486,063 634,174,740 229,101,383
Bare soil 3,054,508 233,160,759 118,616,718 13,745,285 1,329,219,958 3,337,049,723 57,017,478
Forest 0 20,882,587 26,777,256 1,914,237 996,447,457 115,550,316 579,317,776

Table 6  Predicted 2000–2018 transition matrix on the basis of the extended Markov chain model (Matrix X)

Water Low density 
built-up area

Medium density 
built-up area

High density 
built-up area

Agriculture Bare soil Forest

Water 2,997,602 467,139 409,287 573,407 6,844,072 1,428,244 490,183
Low density built-up area 146,918 24,216,195 15,560,390 671,212 67,137,093 26,100,726 5,937,324
Medium density built-up area 42,791 1,554,612 58,953,871 8,845,259 56,749,469 21,275,394 7,818,997
High density built-up area 2,746 192,989 152,766 38,265,364 6,495,926 3,656,143 2,488,682
Agriculture 2,213,132 117,080,174 124,013,991 13,868,711 1,709,279,538 865,416,379 239,349,954
Bare soil 4,342,797 281,116,887 207,097,713 28,099,588 1,914,103,569 2,495,347,682 162,452,620
Forest 588,976 46,564,654 54,417,325 5,499,986 1,040,143,436 323,647,022 269,611,361

Table 7  Predicted 2000–2018 transition matrix on the basis of ECAMCM (Matrix Y)

Water Low density 
built-up area

Medium density 
built-up area

High density 
built-up area

Agriculture Bare soil Forest

Water 5,734,401 339,493 221,926 462,345 6,351,302 79,259 23,778
Low density built-up area 55,899 47,989,315 26,440,240 69,874 60,356,975 3,619,462 1,201,829
Medium density built-up area 0 15,524 96,014,668 14,623,414 38,654,248 1,350,570 4,563,996
High density built-up area 0 0 30,752 43,842,717 2,834,349 1,629,879 2,916,356
Agriculture 614,213 92,131,924 131,134,438 6,756,341 2,128,247,433 517,781,410 194,398,359
Bare soil 1,018,169 367,559,100 196,506,666 13,745,285 1,430,018,714 3,049,416,909 32,581,416
Forest 0 24,885,083 42,809,304 2,088,259 1,138,623,072 80,920,026 450,715,842

Table 8  Calculated Frobenius 
norms

Matrix Frobenius norm

Actual 2000–2018 transition matrix (Matrix A) 4,286,569,065
Predicted 2000–2018 transition matrix based on EMCM (Matrix X) 3,882,814,361
Predicted 2000–2018 transition matrix based on ECAMCM (Matrix Y) 4,231,802,773
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transition matrix for the period between 2000 and 2018 and 
utilizes this matrix in the application of the ECAMCM to 
produce the simulated LU map for the year 2018. Figure 5 
illustrates the simulated LU map for the year 2036.

Analysis and discussion

The comparison of the simulated and actual land use maps 
shows that the types of urban development, categorized by 
their development densities, have spatial effects that could 
be considered in the CAMCM. This type of model exten-
sion, discretized by the insertion of urban development 
density zones as parts of land use classes, could add a new 
concept of urban and regional planning. New conceptions of 
urban planning dynamics could be monitored and measured 
by taking into account (i) population growth, (ii) locative 
distribution, (iii) types of potential urban agglomeration, (iv) 
interactions between urban agglomerations (differed by their 
urban densities), and (v) sequential shift of the urban areas 
among different density classes.

The actual 2000–2018 transition matrices by areas and 
probabilities of LU dynamics was computed by TerrSet 
software using the Extended Markov transition matrix 
module which compares the actual LU maps of the year 
2000 with the actual map of the year 2018 as shown in 
Table 9. This table depicts the conversion rate of Actual 

LU areas in the year 2000 to other LU over the year 2018. 
As for example, the Agriculture LU was transformed to 
Low-Density Built-up LU by 3.8%, to Medium-Density 
Built-up LU by 4.9%, to Forest by 17.7%, to bare soil by 
34.1%, and it maintains 43.6% of its total area of the year 
2000. It is noted that Low and Medium Density urban 
settlements were converted, respectively, to Medium and 
High-Density urban development by 18.5% and 11.2%. 
Moreover, High-Density Built-up lands have not been con-
verted at all to urban settlements Medium and Low built 
up Densities as well as Medium Density Built-up lands 
were not changed to Low-Density urban development. 
The forested areas are changed by 2.4% to lands with Low 
Built-up Density, 4.9% to lands with Medium Built-up 
Density, 0.3% to lands with High Built-up Density, 18% 
to agricultural areas, 20% to Bare Soil and retained 55% 
of their lands. The table shows the conversion of Actual 
LU areas of the year 2000 (in square meters) into other 
LU classes over the year 2018. As an example, the Agri-
culture LU has been transformed to low-Density Built-up 
LU by 116,995,843 square meters, to Medium Density 
Built-up LU by 150,160,019 square meters, to High-Den-
sity Built-up LU by 7,676,893 square meters, to Forest by 
542,909,845 square meters, to bare soil by 1,047,128,151 
square meters, and it maintained 1,206,193,366 square 
meters of its total area of the year 2000.

The predicted transition matrices by areas and prob-
abilities of LU dynamics between years 2018 and 2036 was 
computed by TerrSet software using the Extended Markov 
transition matrix module which compares the actual LU map 
of the year 2018 with the simulated map of the year 2036 as 
indicated in Table 10. This table summarizes the conversion 
rate of forecasted LU areas to other LU between the years 
2018 and 2036.

For example, the Agriculture LU was transformed to 
Low-Density urban settlements by 3.3%, to Medium-Density 
urban settlements by 4.1%, to Forest by 7.3%, to bare soil 
by 10.9%, and it maintains 74.5% of its total area of the year 
2018. It is noted that Low and Medium-Density Built-up 
lands will convert respectively to Medium and High-Density 
urban settlements by 24% and 20%.

These rates of conversion are considered elevated in com-
parison to the ones observed at the period between 2000 and 
2018. Thus, the urban development is oriented toward more 
condensed development.

High-Density Built-up lands are not expected to convert 
at all to Medium- and Low-Density Built zones. Likewise, 
Medium-Density Built-up lands are not expected to convert 
to Low-Density Built-up zones.

The forested areas are expected to convert by 2.5% to 
Low-Density Built lands, 7.4% to Medium-Density Built 
lands, 6.4% to agricultural areas, 2.6% to Bare Soil and 
expected to maintain 81% of their lands.Fig. 5  Simulated Lebanon land use maps of the year 2036
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The table shows as well the expected conversion of LU 
areas of the year 2000 (in square meters) into other LU 
classes over the year 2036.

For example, the Agriculture LU will be transformed 
to Low-Density Built LU by 73,587,285 square meters, 
to Medium-Density Built-up LU by 92,265,403 square 
meters, to Forest by 163,827,350 square meters, to bare 
soil by 244,165,761 square meters, and it will maintain 
1,676,304,844 square meters of its total area of the year 
2018.

The net changes of LU areas among the 2000–2018 
and 2018–2036 periods are shown in Tables 11 and 12, 
respectively.

A reduction in the areas of agriculture zones and water 
bodies is illustrated in Fig. 6. The rate of reduction has 
diminished from the period between 2000 and 2018 to the 
period between 2018 and 2036.

The rate of reduction in agriculture areas has dimin-
ished from − 820,688,436 to − 71,379,366 square meters. 

The rate of reduction in water bodies areas has diminished 
from − 7,805,707 to − 3,288,968 square meters. An expan-
sion in the lands of Forests and Bare Soil was observed in 
period between 2000 and 2018 as the total area of forests 
will increase by 141,472,859 square meters and the one 
of Bare Soil will increase by 85,431,359 square meters. 
However, a reduction in the lands of Forests and Bare Soil 
is expected to occur in the period between 2018 and 2036 
as the total area of forests will decrease by 55,855,578 
square meters and the one of Bare Soil will decrease by 
536,013,417 square meters. The actual and predicted LU 
transition matrices respectively for periods: 2000 to 2018 
and 2018 to 2036 show clearly that the orientation of built-
up LU are heading towards more compact urban develop-
ment. Furthermore, the period from 2018 to 2036 shows an 
increased rate of conversion from low to medium and from 
Medium to High-density built-up lands in comparison to 
the period from 2000 to 2018.

Table 9  Actual 2000–2018 land use transition matrix (Al-Shaar et al. 2020)

Water 
bodies

Built-up 
(low density)

Built-up 
(medium 
density)

Built-up 
(high den-
sity)

Agriculture Bare soil Forest Sum of areas 
over the year 
2000

Water 
bodies

Probabil-
ity

0.4091 0.0351 0.0250 0.0088 0.4571 0.0574 0.0075 –

Area 
 (m2)

5,404,155 463,666 330,247 116,247 6,038,228 758,246 99,074 13,209,862

Low-
density 
built-up

Probabil-
ity

0 0.2928 0.1850 0 0.1130 0.3529 0.0563 –

Area 
 (m2)

0 40,918,088 25,853,300 0 15,791,475 49,316,917 7,867,788 139,747,568

Medium-
density 
built-up

Probabil-
ity

0 0 0.5220 0.1120 0.1104 0.2121 0.0435 –

Area 
 (m2)

0 0 81,034,206 17,386,650 17,138,269 32,925,968 6,752,851 155,237,943

High-
density 
built-up

Probabil-
ity

0 0 0 0.7441 0.1288 0.1214 0.0057 –

Area 
 (m2)

0 0 0 38,138,141 6,601,522 6,222,242 292,148 51,254,053

Agricul-
ture

Probabil-
ity

0 0.0381 0.0489 0.0025 0.3928 0.3410 0.1768 –

Area 
 (m2)

0 116,995,843 150,160,019 7,676,893 1,206,193,366 1,047,128,151 542,909,845 3,071,064,117

Bare soil Probabil-
ity

0 0.0295 0.0337 0.0032 0.1340 0.7267 0.0728 –

Area 
 (m2)

0 150,194,984 171,578,677 16,292,337 682,241,623 3,699,887,966 370,650,673 5,090,846,259

Forest Probabil-
ity

0 0.0237 0.0485 0.0029 0.1818 0.1954 0.5477 –

Area 
 (m2)

0 41,243,110 84,400,457 5,046,625 316,371,198 340,038,130 953,116,089 1,740,215,608

Sum of areas over 
the year 2018

5,404,155 349,815,691 513,356,906 84,656,892 2,250,375,680 5,176,277,619 1,881,688,467 –
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Moreover, the rate of expansion of Low-density built-
up areas has diminished between the two periods 2000 to 
2018 and 2018 to 2036. Thus, the urban fabric will come 
to be more condensed during the period between 2018 and 
2036. The increase in the areas of built-up zones, bare soil 
and forests between years 2000 and 2018 is justified by the 

diminishing of Agriculture areas. However, the increase in 
the areas of built-up zones between the years 2018 and 2036 
is explained by the decrease of Agriculture, Bare Soil and 
forest areas.

Figure 6 illustrates a comparison of the variations in LU 
areas between 2000–2018 and 2018–2036.

Table 10  Matrix of the predicted land use transition among years 2018 and 2036

Water 
bodies

Built-up 
(low density)

Built-up 
(medium 
density)

Built-up 
(high den-
sity)

Agriculture Bare soil Forest Sum of areas 
over the year 
2018

Water 
bodies

Prob-
ability

0.3915 0.0100 0.0043 0 0.5881 0.0062 0 –

Area 
 (m2)

2,115,727 54,042 23,238 0 3,178,183 33,506 0 5,404,155

Low-
density 
built-
up

Prob-
ability

0 0.7366 0.2368 0 0 0.0266 0 –

Area 
 (m2)

0 257,674,238 82,836,356 0 0 9,305,097 0 349,815,691

Medium-
density 
built-
up

Prob-
ability

0 0 0.7932 0.2012 0.0016 0.0038 0.0002 –

Area 
 (m2)

0 0 407,194,698 103,287,409 821,371 1,950,756 102,671 513,356,906

High-
density 
built-
up

Prob-
ability

0 0 0 0.8568 0.1432 0 0 –

Area 
 (m2)

0 0 0 72,534,025 12,122,867 0 0 84,656,892

Agricul-
ture

Prob-
ability

0 0.0327 0.0410 0 0.7449 0.1085 0.0728 –

Area 
 (m2)

0 73,587,285 92,265,403 0 1,676,304,844 244,165,761 163,827,350 2,250,375,680

Bare soil Prob-
ability

0 0.0255 0.0399 0.0002 0.0708 0.8375 0.0261 –

Area 
 (m2)

0 131,995,079 206,533,477 1,035,256 366,480,455 4,335,132,506 135,100,846 5,176,277,619

Forest Prob-
ability

0 0.0249 0.0736 0 0.0637 0.0264 0.8114 –

Area 
 (m2)

0 46,854,043 138,492,271 0 119,863,555 49,676,576 1,526,802,022 1,881,688,467

Sum of areas over 
the year 2036

2,115,727 510,164,687 927,345,442 176,856,690 2,178,771,276 4,640,264,202 1,825,832,889 –

Table 11  Actual net changes 
(Gains and Losses) in the areas 
of land use (in square meters) 
among years 2000 and 2018

Type of land use 2000–2018

Loosed areas Gained areas Net change

Water bodies − 7,805,707 0 − 7,805,707
Low density built-up area − 98,829,480 308,897,603 210,068,123
Medium density built-up area − 74,203,737 432,322,700 358,118,963
High density built-up area − 13,115,912 46,518,752 33,402,839
Agriculture − 1,864,870,751 1,044,182,315 − 820,688,436
Bare soil − 1,390,958,294 1,476,389,653 85,431,359
Forest − 787,099,519 928,572,378 141,472,859
Total − 4,236,883,401 4,236,883,401 –
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Conclusion

This paper validates the spatial effects of urban densities 
within built-up zones by comparing two models intended 
to forecast the LU variation in Lebanon. The two models 
compared are the Extended Markov Chain (EMCM) and 
the Extended Cellular Automata Markov Chain Model 
(ECAMCM). The accuracy of applying the ECAMCM to 
predict the LU dynamics was conducted using the Cohen’s 
Kappa statistics test. A comparison between these two 
models in reference to actual LU data for the year 2018 
using Frobenius norm indicates that the forecasted data 

by ECAMCM are the best data representing the actual 
LU dynamics. Effects of contiguity was taken into consid-
eration within the Extended Cellular Automata—Markov 
Chain Model to be merged with historical changes’ data 
of the studied LU. The neighboring effects could be pre-
sented as the Cellular-Automaton modelling integrated 
with Extended Markov Chain technique.

However, both models are lacking the effects of trans-
port implementations, policies, strategies, plans and socio-
economic effects. Transport-Land Use interactions such 
as gravity models need to be integrated into ECAMCM to 
study the impact of transportation in changing the urban 
fabric. The LU projection under ECAMCM to the year 

Table 12  Predicted net changes 
(Gains and Losses) in the areas 
of land use (in square meters) 
among years 2018 and 2036

Type of land use 2018–2036

Loosed areas Gained areas Net change

Water bodies − 3,288,968 0 − 3,288,968
low density built-up area − 92,141,453 252,490,448 160,348,995
Medium density built-up area − 106,162,208 520,150,745 413,988,536
High density built-up area − 12,122,867 104,322,665 92,199,798
Agriculture − 573,845,798 502,466,432 − 71,379,366
Bare soil − 841,145,113 305,131,696 − 536,013,417
Forest − 354,886,445 299,030,867 − 55,855,578
Total − 1,983,592,853 1,983,592,853 –

3 

Water Bodies Low Density
Built-up LU

Medium
Density

Built-up LU

High Density
Built-up LU Agriculture Bare Soil Forest

2000-2018 -78,05,707 21,00,68,123 35,81,18,963 3,34,02,839 -82,06,88,436 8,54,31,359 14,14,72,859
2018-2036 -32,88,968 16,03,48,995 41,39,88,536 9,21,99,798 -7,13,79,366 -53,60,13,417 -5,58,55,578
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Fig. 6  Observed and simulated land use evolutions among the periods 2000–2018 and 2018–2036
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2036 indicated a reduction in the areas of Bare Soil lands, 
Forests, Agriculture and water bodies.

This reduction was associated with an expansion in 
urban settlements with Low, Medium and High built up 
Densities. Between 2018 and 2036 the forecasted decreas-
ing rate of cultivated zones is less than the rate of the 
period 2000–2018. Furthermore, the forecasted increasing 
rate in low urban development between 2018 and 2036 
is less than the rate corresponding to 2000–2018’s time 
frame; while the forecasted increasing rate for High and 
Medium-density built-up zones among years 2018 and 
2036 is higher than the rate corresponding to the preced-
ing time frame. These results indicate that a shift in urban 
development orientation is occurring in favor of increasing 
the High and Medium-density Built-up zones.

This paper provides a guiding tool for decision-makers 
and planners to develop new urban masterplans in addi-
tion to population, economic and land-use strategies by 
monitoring and assessing potential variations in densities 
of new and old urban sprawl.

More studies focusing on changes of lifestyles and 
socio-economic capacities in addition to climatic changes 
and pollution are needed to explain the decrease in Agri-
culture, Bare Soil, forests and water bodies’ areas in favor 
of the sprawl of urban development. The degradation of 
natural areas in addition to agricultural zones as depicted 
in the findings impose the critical necessity for enacting 
updated appropriate LU enforcing policies and planning 
regulations. Moreover, developing a national Masterplan 
in addition to establishing a central governmental entity 
that superintends and forecast activities, plans or coordi-
nates the evolution of LU patterns and Lebanese landscape 
is considered to be on the top of priorities of national 
requirements.
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