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Abstract
An attempt has been made in this study to quantify the soil loss rate in Guna-Tana Landscape, Ethiopia. A Digital Elevation 
Model (12 m by 12 m spatial resolution), rainfall data over 10 years, soil, and land cover/land use extracted were used as 
an input to calculate soil loss rates. GIS-based RUSLE factors were integrated and analyzed in the ArcGIS 10.3 plate form. 
The results showed that 12-monthly loss of soil in the study area ranges from zero in the lower, middle, upper, and steeper 
slope parts of the watershed to 4735 t/ha/year with a mean annual soil loss of 3627.5 t/ha/year. The overall annual soil loss 
in the study area is 14,335,517.8 tonnes. Approximately 681.21 ha of the area is within the extreme and very extreme erosion 
clusters which demand immediate controlling measures.
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Introduction

Socio-economic factors and limited resources have accel-
erated soil erosion in developing countries (Bayramin 
et al. 2003). According to the researchers (Edwards 1979; 
Gachene 1995; Tiffen et al. 1994), widespread soil erosion 

occurs in East African highlands. According to Hurni 
(1985), an annual soil loss of Ethiopian highland reaches up 
to 300 t/ha/year. This leads to a reduction in the productivity 
of Ethiopian land (Sertsu 2000). Another research done by 
Taddese (2001) showed that Ethiopia loses over 1.5 × 106 
metric tons of soil each year by erosion. The accelerated 
soil loss rate in Ethiopian highlands is attributed to multiple 
factors including the shifting cultivation on the hill slopes 
and non-adoption of soil conservation techniques (Bewket 
2002; Nyssen et al. 2004; Amsalu et al. 2007; Tamene and 
Vlek 2008; Fazzini et al. 2015).

Different scholars applied the Revised Universal Soil 
Loss Equation (RUSLE) model to estimate soil loss estima-
tion for different land-use practices on steep slopes (Renard 
et al. 1996; Dunn and Hickey 1998; Mekuriaw et al. 2018; 
Miheretu and Yimer 2018).

Geographic Information System (GIS) is a powerful tool 
in demarcating the spatial distribution of soil loss rates. 
For example, soil erosion modeling of Gumara watershed 
(Ethiopia) has been done by Imran (2018) using GIS coupled 
with RUSLE. GIS coupled with RUSLE factors provides a 
better opportunity to assess the soil loss distribution, iden-
tify hotspot areas, and simulate possible management meas-
ures (Stillhardt et al. 2002; Nyssen et al. 2004; Kaltenrieder 
2007; Woldeamlak and Ermias 2009). Better conservation 
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planning requires a sound knowledge of spatial variations in 
soil erosion (Lulseged et al. 2006).

Therefore, RUSLE integrated with GIS is best suited for 
this research in the Guna-Tana Landscape, Ethiopia; the 
Guna-Tana Landscape where information on soil loss and 
risk assessment of potential soil erosion is not documented 
well. The main objectives of this study area: (a) to identify 
the soil erosion hazard areas spatially and (b) to estimate 
the soil loss rates spatially, so that necessary steps could 
be taken to control the severe soil loss for better watershed 
management.

Research methods

Description of study area

Guna-Tana landscape was located in the South Gondar 
zone of the Amhara Region in the eastern part of the 
Lake Tana basin of Ethiopia. The catchment cov-
ers the 349,292.53  ha area (Fig.  1). The watershed 
extends from 337,239 to 417,206  m longitude and 
1,280,022–1,352,403 m latitude. The elevation ranges 

from 4108 m in the highland to around 1774 m in the 
floodplain. The catchment was drained by Gumara and 
Ribb rivers which were originated from Guna Mountain 
and, finally, joins Lake Tana in the vicinity where rivers 
cause flooding. An undulating and rugged topography is 
dominating the basin containing steep slopes in the moun-
tainous region in the east and more gentle slopes towards 
Lake Tana.

Meteorological conditions

There are about eight Woredas in the watershed. The 
average yearly rainfall of the study area was 1368.61 mm, 
(Fig. 2). The important input parameters used in this study 
were DEM, precipitation, and soil (Table 1).

Sources of data

The soil data, DEM, land use/cover, and rainfall records 
(Table 1) were used to achieve the output of the study.
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Fig. 1   Situation of the study area
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Soil loss estimation parameters

As stated by different scholars, there was a limitation to 
apply USLE for estimating soil loss in different situations 
due to it was applicable only for specific situations like 
cultivated land rather than for different land-cover types 
and could not applicable for complex topographical land-
forms. Hence, RUSLE was applicable for such types of 
landscapes and mathematically expressed as:

where A average yearly soil loss (metric t/ha/year). R rain-
fall erosivity factor (Mega Joules mm perh/ha/year). K soil 
erodibility factor (metric t/ha/MJ/mm). LS slope length-
steepness factor (dimensionless). C cover and management 
factor (dimensionless). P erosion support practice or land 
management factor (dimensionless).

As indicated in the conceptual framework diagram 
(Fig. 3), all factors estimated based on the recommenda-
tion of different scholars and Hurni (1985).

Rainfall erosivity R‑factor vs soil loss

The estimation of soil loss was affected by rainfall and 
rate of runoff which was influenced by rainfall erosivity 
factor (Xu et al. 2008). The map of the R-factor for the 

(1)A = R ∗ K ∗ LS ∗ C ∗ P,

study area was prepared by using the following step in the 
GIS environment.

1.	 Preparation of mean annual rainfall (P).
2.	 Applying interpolation techniques by Inverse Distance 

Weighted (IDW) in the ArcGIS 10.3 platform.
3.	 Calculating the corresponding factor by considering 

the condition for Ethiopia using Eq. (2) and see Table 2 
below

4.	

K factor (soil erodibility)

This factor used to quantify soil resistivity to transport by 
shear stress on ground flow and raindrops. Based on the 
recommendation of different scholars (Tirkey et al. 2013; 
Wischmeier and Smith 1978) and kinds of literature the 
researcher reclassifying the soil of the study area and 
assigned k values based on the colors of the soils (Table 3).

Slope length–steepness (LS) factor

The LS factor of the study area has been generated from 
DEM using the following steps in the GIS environment.

(2)R = −8.12 + (0.562 ∗ P)

Fig. 2   Mean annual rainfall of 
Guna-Tana landscape
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Table 1   Source of data and description

No Data type Source Description

1 DEM vertex.daac.asf.alaska.edu 12 m × 12 m resolution DEM from Alaska satellite facility’s
2 Rainfall data ANMA Bahir Dar Precipitation data for 19 years (1997–2016) of ten hydrometer stations
3 Soil data Blue Nile Basin soil map The soil map prepared by ANMA, (2014)
4 Land use Blue Nile Basin land-use map Extracted from Blue Nile Basin land-use map
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Fig. 3   The conceptual frame-
work of soil loss analysis by 
RUSLE model

RUSLE model
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Table 2   Mean annual rainfall 
and the corresponding R-factor 
value

R = Mega Joules mm perh/ha/year

No Station name Lat (m) Long (m) Elev (m) Mean annual 
rainfall (mm)

R values

1 Luwaye 11.72 38.07 2709 1500.46 835.14
2 Amed ber 11.91 37.89 2051 1338.49 744.11
3 Wanzaye 11.78 37.68 1830 1483.58 825.65
4 Debre Tabor 11.85 38.01 2612 1496.44 832.88
5 Woreta 11.90 37.68 1798 1315.47 731.18
6 Addis zem 12.10 37.87 1936 1320.86 734.20
7 Licha 11.2 36.74 2319 1409.17 783.83
8 Yifag 10.92 37.25 1901 1476.69 821.78
9 Gassay 11.70 38.43 2795 1176.33 652.98
10 Kimir Dingay 12.75 37.63 2983 1168.65 648.66

Table 3   K values based on 
colors

No Soil color Name/class K values 
(metric t/ha/
MJ/mm)

1 Brown Chronic Luvisols/Haplic Luvisols/Urban, etc 0.2
2 Yelow Eutric Fluvisols/Eutric Leptosols 0.3
4 Block Eutric Vertisols etc 0.15
6 Red Haplic Nitisols, Alisols, etc. 0.25
8 Blue Water 0
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1.	 Filling of sinks of DEM of the study area;
2.	 Generation of S factor using filled-in DEM as an input;
3.	 Generation of flow direction using filled DEM as an 

input.
4.	 Computing flow accumulation raster using flow direc-

tion raster as an input;
5.	 Generating the slope of the study area in degree
6.	 Calculating LS factor using flow accumulation slope 

raster as an input.

The output LS-factor raster map of the Guna-Tana land-
scape is shown in Fig. 6. As revealed by Moore and Wil-
son (1992), LS factor is important parameters in RUSLE to 
measure sediment transport capacity of the flow. It is impor-
tant to consider the upslope contributing area to estimate 
the LS factor for the spatial distribution of soil erosion in a 
given catchment area (Moore and Burch 1986a, b; Mitas and 
Tarasova 1996; Simms et al. 2003). Hence, this study used 
the following advanced method of calculating the LS factor 
in the ArcGIS environment (Eq. 3):

Support practice (P) factor

In this study, the P-factor values were assigned according 
to the suggestion of different academics and considering the 
indigenous managing performs (Table 4). Based on the land-
use/land-cover thematic map of the study area, the p values 
suggested by different scholars were assigned (Fig. 3).

Cover and management (C) factor

The major land-use/land-cover types in the watershed were 
extracted from the land-use/land-cover types of Blue Nile 

(3)

LS = Power
(

Flow accumulation ∗
Cell size

22.13
, 0.4

)

∗ Power

(

sin(slope 0.01745

0.09
, 1.4

)

∗ 1.4.

Basin and assigning the corresponding C-factor value 
obtained from different revisions (Fig. 6 and Table 5).

Results and discussion

Rainfall erosivity factor (R)

In the current investigation, the average annual rainfall 
was used for the calculation of the R factor as indicated in 
(Eq. 2). The value of R ranges from 648.66 to 835.14 MJ/
mm/ha/h/year. Inverse Distance Weighted (IDW) used for 
the spatial average rainfall distribution in the study area. 
In the IDW process, rainfall data from 19 (1997–2016) 
years were considered for ten rainfall stations (Fig. 4) in 
and around the study area. Figure 4 shows the erosivity 
map of the rain prepared by the rainfall data of the study 
area.

Soil erodibility factor (K)

The value of the K factor generated from the respective soil 
types to obtain a map of the soil erodibility at Guna-Tana 
landscape. The lowest value of K is associated with soils 
that have a low moisture content, low permeability, and so 
on. The Guna-Tana soil map has been reclassified with the 
given value of K (Fig. 5). The value of K ranges from 0 to 
0.3, values close to 0 being less prone to soil erosion were 
prepared.

Topographic factor (LS)

The topographic aspect represents the impact of the length 
of the given slope and its steepness in the erosion pro-
cess. The LS factor was estimated by taking into account 
the accumulation of the flow and the slope in percentage. 
Based on the analysis, the value of the topographic factor 
increases in a range from 0 to 223 as flow accumulation 

Table 4   P factor with 
corresponding land-use types

P = dimensionless

Land use/land cover P factor

Afro-alpine 1
Dominantly cultivated 0.8
Moderately cultivated 0.9
Grassland 0.9
Water body 0
Swamp 1
Plantations 1
Shrubland 0.9
Urban area 0.003

Table 5   Land-cover classes and relevant C-factor value

Land use/land cover Area (km2) Area (%) C factor

Afro-alpine 2867.81 0.816 0.1
Dominantly cultivated 223,714.41 63.633 0.15
Moderately cultivated 94,948.9 27.007 0.1
Grassland 23,674.15 6.734 0.01
water body 8.41 0.002 0
Swamp 1984.76 0.565 0.045
Plantations 883.05 0.251 0.02
Shrub land 3229.44 0.919 0.014
Urban 260.71 0.074 0.09
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Fig. 4   Maximum slope is positively correlated with the maximum interval of LS-factor values in the study area

Fig. 5   Rainfall and rainfall erosivity map (R)
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and slope increase. The minimum slopw and maximum 
slope at each pixel were calculated using fishnet and the 
corresponding maximum slope with LS-factor is indicated 
in the following map (Fig. 6).

Crop management factor (C)

Available land-use data provide a good understanding of 
the land-use characteristics of surface water, wastelands, 
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cropping patterns, forests, and fallow land, which are essen-
tial for studies of soil erosion or development planning. The 
values of C are given in Table 4. The value of the C factor 
determined using the land-use map (Fig. 7).

Conservation support practice factor (P)

The P factor explains the mechanism that reduces the ero-
sion possible of runoff by influencing runoff concentration, 
hydraulic forces, and runoff velocity, drainage patterns, 
applied by surface runoff. The value of the P factor varies 
from 0.003 to 1, the value which closes to 0.003 shows good 
protection practices. and on the other hand, the value close 
to 1 shows bad protection practices (Fig. 8).

Soil erosion (loss) probability zones

The calculation of the main factors contributing to soil loss, 
which is the key input of the RUSLE model for calculat-
ing soil erosion, was performed using several procedures 
documented by many researchers (Renard et al. 1996; Wis-
chmeier and Smith 1978; Hurni 1985). The map (Fig. 9) is 
generated by a cell to cell multiplication overlay of raster 
maps of six RUSLE input factors (soil erodibility, slope gra-
dient, rainfall erosivity, conservation practice, and cropping 
and management factor and slope length). Overall results in 
the Guna-Tana Landscape show that soil loss values ranging 

from 0 to 4735 t/ha/year were obtained. All maps were cat-
egorized into six erosion potential classes, which range from 
low erosion hazard (≤ 60 t/ha/year) to very extreme ero-
sion hazard (refer Table 6). Nearly 85.9% of the watershed 
area produces low erosion of 90, 01,559.4 t annually, while 
extreme probability zone covers about 0.02% of the water-
shed area and yields soil erosion of 226,439.25t annually. 

Conclusions

This study was designed to estimate soil loss and assess 
the erosion-prone areas of the Guna-Tana Landscape. 
The results of the study focused on the application of the 
RUSLE model associated with Geographic Information 
System (GIS) to assess erosion-prone areas and estimate 
soil loss in the study area. The outcomes of the study 
conclude that the mean 12-monthly loss of soil estimated 
with the RUSLE model is nearly 3627.5 t/ha year in the 
area. Also, it detected the amount of erosion varies mainly 
in LULC and topographic characteristics. The overplayed 
map showed that nearly 681.21 ha (0.2%) of the area is 
within the extreme and very extreme erosion clusters. 
Hence, the soil loss values/year of the study area were 
beyond the tolerable limits of soil loss, and it is neces-
sary to implement adequate water and soil conservation 
practices in the study area. The faster increment in the 

Fig. 8   Land use/land cover and P-factor
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farming area the more will be the risk of soil erosion due 
to farming practices. Comparing the potential loss of soil 
with the actual loss of soil supports the influence of sev-
eral conservation measures and cropping systems on ero-
sion. The result of the study implies the need for applying 
context-specific soil and water conservation techniques 

in 681.21 has of extremely and very extremely affected 
parts of the studied watershed.

Compliance with ethical standards 

Conflict of interest  No conflict of interest.
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Table 6   Numeric soil loss summary of the watershed

Numeric range of soil 
loss (t/ha/year)

Soil erosion risk class Area (ha) Area (%) Annual soil loss (t/year) Percentage of 
total soil loss

0–60 Low 300,051.98 85.90 9,001,559.4 62.79
60–100 Medium 34,380.08 9.84 2,750,406.4 19.19
100–150 High 11,168.48 3.20 1,396,060 9.74
150–300 Very high 3010.78 0.86 677,425.5 4.73
300–650 Extreme 597.11 0.17 283,627.25 1.98
> 650 Very extreme 84.1 0.02 226,439.25 1.58
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