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Abstract
Forest operates as sink–source of the atmospheric  CO2; hence, they form the integral part of terrestrial global carbon cycle. 
Biomass and primary productivity are the crucial dynamic biophysical parameters for understanding the ecosystem func-
tioning in any forested landscape. The present study was performed in Aglar watershed situated in outer Indian Himalayan 
range. We performed geospatial modeling of plot-level field data on forest above ground biomass (AGB) by correlating it 
with textural, spectral and linearly transformed variables retrieved from Landsat 8 OLI data using of random forest (RF) 
machine learning algorithm. We also applied recursive feature elimination function (RFE) to obtain the variables contributing 
most in AGB prediction. A combination of 24 among 96 variables was identified as the most effective variables. Ground-
based AGB varied from 62.54 to 470.98 Mg ha−1, whereas RF-modeled AGB ranged from 48.5 to 407.73 Mg ha−1. Results 
indicated that RFE selected variables were able to predict AGB with R2 of 0.84, RMSE of 42.03 Mg ha−1, MAE of 34.68 
and %RMSE of 19.49 Mg ha−1 which was accepted considering the terrain complexity. Light use efficiency approach was 
used to model monthly NPP using Landsat 8 OLI data. The results indicated that Quercus mixed forest had highest carbon 
assimilation (95,148,073.9 gC) followed by Pinus roxburghii (1,863,187.7 gC), Cedrus deodara (5,752,954.1 gC) and mixed 
forest (2,634,737.1 gC). The seasonal pattern of NPP indicated that its strike peaked in October, whereas December and 
January were the lean months, suggesting that NPP is governed by climatic factors, viz. PAR, precipitation and temperature. 
Such watershed-level study in complex Himalayan terrain would help to understand complex biogeochemical processes in 
basins and ecosystem services provided by the forests.
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Introduction

Forest biomass and net primary productivity (NPP) form an 
integral part of the global terrestrial carbon cycle by operat-
ing as sink–source of atmospheric  CO2 (Dixon et al. 1994; 
Pan et al. 2011). These are crucial biophysical parameters for 
understanding ecosystem functioning in any forested land-
scape. Forest biomass and NPP are known to have causal 
correlation (Cramer et al. 1999). However, mere observation 
of increase in carbon storage of a forest vegetation would 
be insufficient to acknowledge the increase in productivity 
(Keeling and Phillips 2007). Thus, site-specific factors, viz. 
temperature, moisture and nutrient availability influencing 
the process of carbon assimilation, must be taken into con-
sideration for productivity assessment (Lieth 1975; Melillo 
et al. 1993; Laurance et al. 1999; Knapp and Smith 2001; 
Malhi et al. 2004; Raich et al. 2006).
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Forest biomass represents the potential amount of living 
or dead organic matter that gets added to the biosphere, 
whereas NPP signifies the rate at which net assimilation of 
organic carbon by green vegetation occurs over a period. 
Thus, their quantification becomes imperative for discern-
ing the energy flow exchanges and nutrients fluxes in a ter-
restrial ecosystem, more importantly in a complex moun-
tainous terrain (Chave et al. 2008; Shirima et al. 2015). 
Two most widely followed approaches for estimation of 
forest AGB are: ground-based and remote sensing (RS)-
based methods combined with field data (Roy and Ravan 
1996; Kale et al. 2002; Tiwari et al. 2005; Kumar et al. 
2011; Singh et al. 2012; Devagiri et al. 2013; Salunkhe 
et al. 2016). Certainly, ground-based methods furnish pre-
cise information but are time-labor intensive and destruc-
tive to semi-destructive in nature (de Gier 2003). They 
also fail to capture the overall spatiotemporal micro-cli-
matic variability when practiced in rugged mountainous 
terrain on large scale. An alternate to prior approach is to 
use satellite data based on RS technique, since it is ame-
nable to produce synoptic and time-series coverage of an 
area (Kale et al. 2002; Patenaude et al. 2005; Rosillo-Calle 
2007; Ravindranath and Ostwald 2008). Maisongrande 
et al. (1995), Nelson et al. (2000), Lu et al. (2004) and 
Lu (2005) have utilized satellite data-derived variables as 
predictor variables for geospatial modeling of forest above 
ground biomass (AGB) by applying either empirical or 
biophysical process-based models (Kale et al. 2002; Gas-
parri et al. 2010; Manna et al. 2014). However, selection 
of the method is usually based on the availability of the 
input parameters, micro-climatic and topographic condi-
tions of the region. In Indian scenario, AGB assessments 
were done by developing regression equations between 
crown cover and stand biomass using satellite data in dif-
ferent eco-regions in western Himalaya (Tiwari and Singh 
1984; Tiwari 1994; Tiwari et al. 2005). Kale et al. (2002, 
2005) and Kumar et al. (2011) applied similar approach 
for AGB assessment in tropical forest ecosystems of 
Central India and Shivalik Himalaya. Singh et al. (2012) 
performed spatial up-scaling of AGB using multi-season 
NDVI images of MODIS satellite data in temperate forests 
of Jammu & Kashmir Himalaya. Upgupta et al. (2015) 
used very high-resolution data of Cartosat-1 and Quick 
Bird to assess AGB of forest plantations. Though majority 
of studies have used few VIs for spectral modeling of AGB 
many authors have reported saturation of VIs at higher 
biomass values (Steininger 2000; Kasischke et al. 2014). 
Hence, attempts are being made to develop suitable regres-
sion models world over (Lu 2006; Mutanga et al. 2012). 
Random forest (RF) algorithm is an ensemble technique 
that exploits bagging and boosting to perform classifica-
tion and regression analyses (Breiman 2001). With a mod-
est fine-tuning of parameters, the RF algorithm produces 

outcomes with high accuracy at high computational speed 
(Gislason et al. 2006; Lawrence et al. 2006; Meacham 
et al. 2016; Liu et al. 2017; Safari et al. 2017; Le et al. 
2018; Pandit et al. 2018a; Teluguntla et al. 2018). The 
algorithm is also capable of predicting important inde-
pendent variables w.r.t. dependent variable by using recur-
sive feature elimination function (RFE) (Guyon and Elis-
seeff 2003; Ismail and Mutanga 2010; Belgiu and Drăgu 
2016; Dang et al. 2019).

NPP is recognized as key indicator for assessing ecosys-
tem pattern, processes and its overall health. The increased 
availability of RS data has excelled the count of models 
simulating dynamics of NPP over a time. Cramer et al. 
(1999) and Ruimy et al. (1999) have reviewed productiv-
ity models in two groups, viz. production efficiency model 
(PEMs) and canopy production model (CPMs). The diag-
nostic PEMs rely on the concept of light use efficiency 
(LUE)—‘the efficiency with which light energy is used by 
the vegetation to sequester carbon’ (Monteith 1972; Kumar 
and Montieth 1981). A few examples of PEMs coupled with 
RS data are Global-PEM (Prince and Goward 1995), Carn-
egie–Ames–Stanford Approach ‘CASA’ (Potter et al. 1993), 
Carbon Fixation (C-Fix), etc. The prognostic CPMs such as 
Global Biome Model (Haxeltine and Prentice 1996), Carbon 
Assimilation the Biosphere (Warnant et al. 1994), HYBRID 
(Friend and Cox 1995), etc., follow the principles of major 
biophysical processes, viz. photosynthesis, respiration and 
allocation of assimilates. Modeling of NPP through CPMs 
requires various field-derived eco-physiological inputs, 
whereas LUE model utilizes fraction of absorbed photosyn-
thetically active radiation (fAPAR) and LUE (εmax). Roy and 
Jain (1998), Kale et al. (2002) and Kale and Roy (2012) 
estimated NPP using PEMs in tropical deciduous forests of 
central India. Chhabra and Dadhwal (2004), Nayak et al. 
(2010), Chitale et al. (2012) and Nayak et al. (2013, 2015) 
used C-Fix and CASA models to estimate monthly NPP 
over the Indian subcontinent. Singh et al. (2011) studied the 
inter-annual variability in NPP using Global-PEM model. 
Tripathi et al. (2018) and Behera et al. (2019) estimated 
monthly NPP in the forests of Northern India using CASA 
and Biome BGC models. The process of estimation of NPP 
has transformed now for monitoring of in situ carbon fluxes 
(Chhabra and Dadhwal 2004; Goroshi et al. 2014; Dadhwal 
2012; Deb Burman et al. 2017). However, due to unavail-
ability of in situ data, only limited number of studies related 
to biomass and carbon dynamics are reported from remote 
interiors of Indian Himalaya Region (IHR). Despite holding 
39.33% forest cover of the total geographical area, the for-
est ecosystems of IHR are insufficiently studied in terms of 
NPP specifically at basin and watershed scales. Under such 
scenario, the present study is an attempt (a) to estimate forest 
AGB using RF algorithm and (b) to assess spatiotemporal 
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variation in forest NPP using LUE approach in a Himalayan 
watershed.

Materials and methods

Study area

 Aglar watershed lies from 30° 27′ 4″ to 30° 38′ 5″ N and 
77° 56′ 15″ to 78° 18′ 45″ E in Tehri-Garhwal district of 
Uttarakhand, India (Fig. 1a). The watershed covers an area 
of ~ 307.28 km2 with altitudinal variation of 690–3015 amsl, 

representing tropical to humid temperate biomes. The high-
est rainfall is recorded in the months of June to Septem-
ber and the lowest in December with an annual average of 
> 2000 mm (IMD 2015). The altitudinal gradient and cli-
matic conditions favor a variety of vegetation formations. 
The dominant vegetation types are gregarious formations 
of Himalayan Moist Temperate forest of Quercus leucotri-
cophora, Qurecus floribanda and Cedrus deodara, Hima-
layan subtropical Pine forest (Pinus roxburghii) and tropi-
cal mixed miscellaneous forest with dominant species like 
Grewia optiva, Terminalia chebula, Bauhinia variegata, etc. 
However, the lower heights of southern aspect are mostly 

Fig. 1  a Location map of Uttarakhand, India b LULC and c homogeneity map of Aglar watershed (CD = Cedrus deodara, MF = Mixed forest, 
PR = Pinus roxburghii, QM = Quercus mixed, QS = Quercus scrub), and d LAI sampling points per 0.1 ha plot
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dominated by subtropical scrub, grasslands interspersed with 
agricultural fields (Fig. 1b). 

Satellite data and preprocessing

The ortho-rectified images of Landsat-8 OLI with 30 m 
spatial resolution were used for mapping of forest cover 
type, forest density and modeling of forest AGB and NPP 
(illustrated in Fig. 2). The cloud-free data for each month 
of the year 2015 were downloaded from https ://earth explo 
rer.usgs.gov except for July and August due to thick cloud 
cover because of prevailing monsoon season. For modeling 
of forest AGB, 17 April 2015 image was chosen when for-
est vegetation has distinct foliage cover. The entire dataset 
was atmospherically corrected using which VIs, textural 
components and linearly transformed images were gener-
ated (Table 1).  

Ground data collection

A stratified random sampling approach based on homoge-
neity map was followed to capture the variability of forest 
types, forest density and terrain conditions (Fig. 1c). The 
forest cover type and density cover maps were prepared from 

dry and growing season Landsat-8 OLI images. To deter-
mine sample size, a few samples were laid initially to ascer-
tain the variance and range of bole diameter, tree height and 
biomass in each stratum. The sample size was determined 
using Chako’s formula (1965) (Eq. 1)

where N is sample size and t is value of t test at 95% confi-
dence level.

Resultantly, considering probability proportion to its size, 
71 sample plots of 0.1 ha were distributed across the differ-
ent strata. Relevé size was based on earlier studies of Forest 
Department. Ground inventory on species, tree diameter at 
breast height (i.e., 1.37 m), tree height, canopy closure, num-
ber of storys, soil characteristics, pH, etc., were noted. The 
monthly leaf area index (LAI) observations were collected 
from 14 representative plots with the help of a well-cali-
brated AccuPARLP-80 Ceptometer. The LAI measurements 
were taken by traversing the area in all directions during 
early or late hours of the day or under sky cast conditions to 
avoid speckle effect of direct sunlight (Fig. 1d).

(1)
N = t

2 × (Coefficient of variation)2∕(% Standard error)2

LANDSAT-8 OLI 

bands

Ground 

Observations

Spectral 

variables

Textural 

variables

Band 

reflectance
Plot level AGB

Spatial Distribution of AGB

RF based modeling of AGB 

Tree height 

and bole 

diameter

Automatic Weather 

station data

PAR
Temperature 

scalar (Ts)

Phenology 

Scalar (Ps)

LUE based modeling of NPPValidation

fAPAR

Spectral 

indices

Moisture 

scalar (Ws) 

Net CO2 assimilated / PAR

Vegetation type-wise LUE (ℇmax)

Monthly 

LAI Radiometric correction

Grey Level Co-occurrence 

matrix

Extraction of study 

area

Species specific 

volumetric 

equations

Wood specific 

gravity

Species 

specific BEF

Fig. 2  Methodology paradigm for assessing geospatial pattern of AGB and NPP

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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Table 1  List of predictor variables computed from Landsat 8 OLI image for AGB modeling

S. no. Variables Full Name Formula References

1. Spectral bands (6) Band2 Blue Zanter (2016)
Band3 Green
Band4 Red
Band5 NIR
Band6 SWIR1
Band7 SWIR2

2. Simple ratios (7) Green by red Green/Red Tucker (1979)
Red by Green Red/Green Gamon and Surfus (1999)
SWIR1 by SWIR2 SWIR1/SWIR2 Singh et al. (2014)
NIR by Green NIR/Green Kimura et al. (2004)
SWIR2 by Red SWIR2/Red Lu et al. (2004)
NIR by SWIR2 NIR/SWIR2 Kimura et al. (2004)
NIR by Red NIR/Red Birth and McVey (1968)

3. Complex ratios (30) Atmospherically Resistant Vegeta-
tion Index (ARVI)

NIR − RB/NIR + RB where 
RB = γ(Red − Blue) and γ = 1 
when aerosol model is unavail-
able.

Kaufman and Tanre (1992)

Differenced Vegetation Index (DVI) NIR − Red Tucker (1979)
Enhanced Vegetation Index (EVI) 2.5 × (NIR − Red)/(NIR + 6 × Red − 

7.5 × Blue) + 1
Bannari et al. (1995)

Green Atmospherically Resistant 
Vegetation Index (GARI)

NIR − (Green − (Blue − Red))/
NIR − (Green + (Blue − Red))

Gitelson et al. (1996)

Green Difference Vegetation Index 
(GDVI)

NIR − Green Sripada et al. (2006)

Global Environment Monitoring 
Index (GEMI)

η(1 − 0.25η) − (Red − 0.125)/
(1 − Red)

Myneni et al. (1995)

Green Normalized Vegetation Index 
(GNDVI)

(NIR − Green)/(NIR + Green) Gitelson et al. (1996)

InfraRed Percentage Vegetation 
Index (IPVI)

(NIR/(NIR + Red) Crippen (1990)

Modified Soil-Adjusted Vegetation 
Index2 (MSAVI2)

(1/2) ×  (2NIR + 1) − (sqrt((2 × NIR) 
+ 1)2 − 8 × (NIR − Red))

Qi et al. (1994)

Moisture Stress Index (MSI) SWIR1/NIR Raymond Hunt et al. (1987)
Enhanced Moisture Stress Index 

(EMSI)
SWIR2/NIR Vogelmann and Rock (1985)

Modified Simple Ratio (MSR) (NIR/Red) − 1/sqrt(NIR/Red) + 1 Chen (1996)
Modified Normalized Difference 

Vegetation Index (mNDVI)
NIR–SWIR2/NIR + SWIR2 Jurgens (1997)

Modified Nonlinear Vegetation 
Index (MNLI)

(1 + L)(NIR2 − Red)/
(NIR2 + Red + L)

Gong et al. (2003)

Normalized NIR (NNIR) NIR/(NIR + Red + Green) Majasalmi and Rautiainen (2016)
Normalized Difference InfraRed 

Index (NDII)
NIR − SWIR1/NIR + SWIR1 Hardisky et al. (1983)

Nonlinear Vegetation Index (NLI) (NIR)2 − Red/(NIR)2 + Red Goel and Qin (1994)
Normalized Difference Water Index 

(NDWI)
(Green − NIR)/(Green + NIR) Gao (1996)

Normalized Difference Vegetation 
Index (NDVI)

NIR − Red/NIR + Red Rouse et al. (1973)

Normalized Green (Norm G) Green/(NIR + Red + Green) Kender (1976)
Optimized Soil-Adjusted Vegetation 

Index (OSAVI)
(NIR − Red)/(NIR + Red + 0.16) Rondeaux et al. (1996)

Renormalized Difference Vegeta-
tion Index (RDVI)

(NIR − Red)/sqrt(NIR − Red) Roujean and Breon (1995)
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Estimation of forest AGB

The species-specific volumetric equations developed by 
FSI (1996) were applied to get volume of individual trees. 
Tree volume was multiplied with wood-specific gravity 
(FRI 2002) to obtain bole biomass. Biomass expansion 
factor was used to obtain total tree biomass (Haripriya 
2002). The individual tree biomass was summed up to 
obtain plot-level biomass and then factorized to get pixel-
level biomass. For geospatial modeling of AGB, RF algo-
rithm from RandomForest package was applied in R-envi-
ronment. The algorithm combines large sets of decision 

trees formed by selecting sets of variables to improve 
classification and regression analysis. We used recursive 
feature elimination function (RFE) to find out important 
independent variables w.r.t. dependent variable. RFE was 
performed over 96 variables consisting of 6 spectral bands, 
5 linear transformed images, 7 simple ratios, 30 complex 
ratios and 48 textural (5 × 5) variables. Effective set of 
24 variables were identified on the basis lowest RMSEC 
value marked as red circle in Fig. 3. For modeling, 2/3 
rd of the samples (n = 53), also called in-bag samples, 
were utilized for training the algorithm, and 1/3 rd of the 
samples, i.e., out-of-bag ‘OOB’ samples (n = 18), were 

Table 1  (continued)

S. no. Variables Full Name Formula References

Normalized Red (Norm R) Red/(NIR + Red + Green) Kender (1976)
Soil-Adjusted and Atmospheri-

cally Resistant Vegetation Index 
(SARVI)

(1 + L) × (NIR − Red)/
(NIR + Red + L)

Kaufman and Tanre (1992)

Soil-Adjusted Vegetation Index 
(SAVI)

(1 + L)((NIR − Red)/
(NIR + Red + L))

Huete (1988)

Specific Leaf Vegetation Index 
(SLAVI)

NIR/Red + SWIR Lymburner et al. (2000)

Transformed Vegetation Difference 
Index (TDVI)

1.5 × ((NIR − Red)/
(sqrt(NIR)2 + Red + 0.5))

Bannari et al. (2002)

Wide Dynamic Range Vegetation 
Index (WDRVI)

((0.1 × NIR) − Red/
(0.1 × NIR) + Red)

Gitelson (2004)

Transformed Vegetation Index 
(TVI)

Sqrt(Red − Green)/
(Red + Green) + 0.5

Rouse et al. (1973)

Visible Atmospherically Resistant 
Index (VARI)

(Green − Red)/(Green + Red − Blue) Gitelson et al. (2002)

4. Linear transformation (5) Tasseled cap angle (TCA) arctan (TCG/TCB) Kauth (1976)
Tasseled cap brightness (TCB) Blue × 0.3029 + Green × 0.2786 + Re

d × 0.4733 + NIR × 0.5599 + SWIR
1 × 0.508 + SWIR2 × 0.1872

Tasseled cap distance (TCD) √(TCB)2 + (TCG)2

Tasseled cap greenness (TCG) Blue × (− 0.2941) + Green × (− 0.24
3) + Red × (− 0.5424) + NIR × (0.7
276) + SWIR1 × (0.0713) + SWIR
2 × (− 0.1608)

Tasseled cap wetness (TCW) Blue × (0.1511) + Green × (0.1973) 
+ Red × (0.3283) + NIR × (0.3407)  
+ SWIR1 × (− 0.7117) + SWIR2 × 
(− 0.4559)

5. Texture (48) Mean (b1) 3 × 3, 5 × 5, 7 × 7, 9 × 9 for band 2, 
3, 4, 5, 6 and 7

Haralick (1979)
Variance (b2)
Homogeneity (b3)
Contrast (b4)
Dissimilarity (b5)
Entropy (b6)
2nd Moment (b7)
Correlation (b8)
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used for cross-validation to determine the model error (or 
OOB error). Major parameters required for proper optimi-
zation of RF were: ‘ntree,’ i.e., total number of regression 
trees grown from bootstrap sample of the observations; 
‘mtry’ was the number of predictor variables examined 
on each node, and ‘node-size’ was the smallest size of the 
end nodes of the trees grown. After multiple iterations, 
the optimum ‘ntree’ selected was 500 at ‘mtry’ = 8 as it 
resulted into the small OOB error.

Estimation of NPP

The integration of LUE and process-based model was iden-
tified as an efficient approach to model NPP using RS data 
(Kale et al. 2002; Lu et al. 2010). NPP is predominantly 
affected by ε* (realized LUE) and absorbed photosynthetic 
active radiation (APAR) (Monteith 1972) and were obtained 
from Eqs. 2 and 3, respectively.

where PAR stands for photosynthetic active radiation in vis-
ible range (400–700 nm) calculated as 45–50% (Potter et al. 
2003) of the shortwave radiation, and fAPAR is the fraction 
of absorbed radiation and was calculated using Eq. 4 (Ruimy 
et al. 1999).

k in Eq. 4 is the light extinction coefficient and was set as 0.5 
(Jarvis and Leverenz 1983), and LAI is the leaf area index 
modeled by regressing field-observed monthly/seasonal LAI 
with corresponding NDVI.

The complex interactions between vegetation structure, 
soil moisture, climatic factors and solar radiation affect 
maximum LUE ( �max ) to govern the spatiotemporal 

(2)NPP = �
∗ × APAR

(3)APAR = fAPAR × PAR

(4)fAPAR = 0.95 × (1 − e−k×LAI))

variations of forest productivity (Kale et al. 2002; Nemani 
et al. 2003). Therefore, integration of temperature (Ts) and 
moisture scalar (Ws) was important in order to get ε* of a 
species in different forest ecosystems (Eq. 5). 

For the present study, �max value for different forest 
types was obtained from (Nayak et al. 2010). Terrestrial 
ecosystem model-based Ts (Raich 1991) and LSWI-based 
Ws (Xiao et al. 2005) were obtained from Eqs. 6 and 7.

where Tmin, Tmax, Topt and T are minimum, maximum, opti-
mum and average air temperatures (in  °C), respectively. 
We used Tmin and Tmax (2.68 °C and 23 °C, respectively) as 
recorded by Automatic Weather Station (AWS) installed in 
the area. Topt for photosynthesis in temperate evergreen for-
est ranges from 10 to 25 °C. It was set 21 °C and was used 
obtained from Cunningham and Read (2002).

where  LSWImax stands for maximum value of LSWI for each 
pixel in the growing period.

To account for leaf developmental stage, phenology 
scalar (Ps) was obtained from Xiao et al. (2004) (Eq. 8).

Similar approach was adopted by Huang et al. (2010) to 
model NPP in mountainous forest of Guangdong Province, 
China.

Results and discussion

Estimation of AGB

A total 3317 trees were measured for bole diameter (dbh) 
and tree height. The tree density (per 0.1 ha) ranged from 
23 to 147 in Quercus  (Oak) mixed forest, 17 to 73 in 
Cedrus deodara (Deodar) forest, 12 to 56 in Pinus rox-
burghii (Pine) forest and 27 to 82 in mixed miscellaneous 
forest. The diameter in Quercus forest ranged from 12.61 
to 40.63 cm (± 6.45 SD), for Cedrus deodara forest from 
27.47 to 58.64 cm (± 10.71 SD), for Pinus roxburghii for-
est from 17.27 to 56.85 cm (± 12.48 SD) and for mixed 
forest it was from 19.78 to 21.26 cm (± 0.52SD).

AGB based on pr imar y data  ranged f rom 
325.86 to 470.98  Mg  ha−1 (± 37.44 SD) in Cedrus 

(5)�
∗ = �max × Ts ×Ws × Ps

(6)Ts =

(

T − Tmin
)(

T − Tmax
)

(

T − Tmin
)(

T − Tmax
)

−
(

T − Topt

)2

(7)Ws =
1 + LSWI

1 + LSWImax

(8)Ps =
1 + LSWI

2

Fig. 3  RFE-based selection of optimum variables
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Fig. 4  Relative importance of variables selected by RFE (refer Table 1 for details)

Fig. 5  Spatial distribution of AGB in Aglar watershed
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deodara forest, Quercus mixed forest from 87.85 
to 413.93  Mg  ha−1(± 88.70 SD), mixed miscellane-
ous forest from 173.31 to 367.75  Mg  ha−1 (± 92.23 
SD), in softwood Pinus roxburghii forest from 60.26 
to 358.49  Mg  ha−1(± 85.74 SD) and Scrub from 
25.78 Mg ha−1 to 46.27 Mg ha−1(± 12.98 SD). It may 
be discerned from the range of AGB that Cedrus deo-
dara forests have good and uniform crop of tree and can-
opy density. Maximum range difference was noticed in 

Quercus forest, which is an indication of site conditions 
and biotic pressures (Quercus is a chief fuel wood and 
fodder species). However, the vigor of the Quercus forest 
improves with slope at higher ridges. Inaccessibility to 
the area could be the possible reason for it. Pinus rox-
burghii forests grow on exposed, rocky, poor soil condi-
tions having high biotic pressures, and hence varied range 
of ABG was observed. Lower AGB in Pinus roxburghii 
forest in comparison with Quercus mixed forest may be 
attributed to the high specific density of Quercus wood 
(Tiwari et al. 2005). The results are in close agreement 
with the study performed by Sharma et al. (2016) under 
similar forest types of the Garhwal Himalaya. AGB for 
Quercus mixed forest in this study was found lesser than 
Sharma et al. (2016); however, it was close to the AGB 
estimated by Dimri et al. (2017) under similar forest of 
Garhwal Himalaya.

For RF-based regression modeling of AGB, RFE ranked 
NDVI to be the most important predictor variable along 
with NNIR, ARVI, IPVI, GNDVI, etc., on the basis of 
%IncMSE and IncNode purity (Fig. 4). The individual 
spectral bands (B2, B3 and B4) also formed a robust com-
bination for prediction of AGB (Kumar et al. 2011; Singh 
et al. 2012; Vicharnakorn et al. 2014) and the presence 
of textural variables improved the prediction accuracy 
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0
50

100
150
200
250
300
350
400
450

0 50 100 150 200 250 300 350 400 450

Pr
ed

ic
te

d 
 B

io
m

as
s (

M
gh

a-1
)

Observed Biomass (Mg ha-1)

RMSE = 42.46 Mg ha-1

n = 18

Fig. 6  Validation of field-observed versus RF-modeled AGB

Table 2  Comparison of regression analysis-based models statistics for AGB prediction

S. no. Study area Forest type Satellite data R2 RMSE (Mg ha−1) References

1. KwaZulu-Natal Prov-
ince, South Africa

Wetland vegetation WorldView2 ‒ 4.41 Mutanga et al. (2012)

2. KwaZulu-Natal Prov-
ince, South Africa

Eucalyptus species and 
Pine forest

Landsat 7,8 and ETM+ 0.42, 0.32 55.32, 64.26 Dube and Mutanga 
(2015)

3. Northern Daklak Prov-
ince, Vietnam

Deciduous forest Landsat8 0.48 46.22 Le et al. (2018)

4. Daxing’anling Moun-
tains in northeastern 
China

Mixed species Landsat5/TM, GLAS 0.70 39.60 Liu et al. (2017)

5. Parsa National Park, 
Nepal

Subtropical forest Landsat8 0.95 13.3 Pandit et al. (2018b)

6. Parsa National Park, 
Nepal

Subtropical forest Sentinel2 0.81 25.57 Pandit et al. (2018a)

7. Parsa National Park, 
Nepal

Subtropical forest Sentinel2 0.99 4.51 Pandit et al. (2019)

8. Katerniaghat Wildlife 
Sanctuary

Tropical forest Sentinel1A 0.71, 0.60 105.03, 79.45 Ghosh and Behera (2018)

9. Kashmir Valley, West-
ern Himalaya, India

Temperate Forests 
(Broad leaved forest, 
Abies pindrow, Pinus 
wallichiana, and 
Cedrus deodara)

MODIS 250 0.85, 0.63, 
0.58, and 
0.42

38.60, 116.07, 
119.24, and 
85.27

Singh et al. (2012)

10. Aglar watershed, Utta-
rakhand

Pinus roxburghii, 
Cedrus deodara, 
Quercus mixed, 
mixed forest

Landsat8 0.84 42.03 Present work
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(Lu 2005). RF predicted highest AGB in Cedrus deodara 
forest (407.73 Mg ha−1) and minimum in mixed scrub 
(48.52 Mg ha−1), in agreement with primary data. High 
AGB was in dense forests of Quercus mixed occurring 
on the higher ridges in the watershed (Fig. 5). However, 
the results indicated that RF underestimated in high-
density forests with high AGB and overestimated in 
low-density forests with low AGB (Pandit et al. 2018a, 
b). The average value of modeled AGB was found to be 
268.22 Mg ha−1 in the present study. Singh et al. (2012) 
reported 210.48 Mg ha−1 in temperate forest in north-
western Himalaya in Kashmir valley. High AGB reported 

in this study can be ascribed to favorable environmental 
conditions, viz. high moisture availability and soil organic 
carbon in Garhwal Himalaya as compared to dry temperate 
regions of Kashmir valley (Kishwan et al. 2009). pH plays 
important role in net carbon assimilation. The former has 
more acidic soils with pH ranging from 5.50 and 6.64, 
respectively (Gairola et al. 2012; Wani et al. 2014) which 
could also be a plausible reason behind it. 

The validation of RF predicted vis-à-vis primary AGB 
at pixel-level gave coefficient of determination (R2) = 0.84, 
RMSE = 42.46 Mg ha−1, %RMSE = 19.49%, MAPE and 
MAE equal to 19.94%, and 34.68 Mg ha−1, respectively 

Fig. 7  Scatter plot correlation 
analysis between filed-observed 
monthly LAI and NDVI
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(Fig. 6). Safari et al. (2017) reported that RF outperforms 
with most important variables from Landsat-8 OLI data with 
low RMSE and moderate R2 values. Table 2 compares model 
statistics obtained from various regression models used to 
assess AGB over the world.

Spatiotemporal pattern of NPP

Regression analysis performed between field-observed LAI 
vis-à-vis NDVI showed high correlation for each corre-
sponding month (Fig. 7). Thus, NDVI images were used for 

Fig. 8  Distribution of NPP statistics a overall monthly variation b forest-type-wise variation

Table 3  Comparison of NPP estimates among similar forest cover types in the world

a BL Broad leaf, NL Needle leaf

S. no. Study area Forest cover types Satellite data Model used Estimated NPP (gC/
m2/year)

References

1. North America Temperate forest ‒ Osnabruck and 
Terrestrial 
Ecosystem 
Model

534.6–618.3 McGuire et al. (1993)

2. North-Central Hamp-
shire, USA

Temperate forest AVIRIS PnET-II 280–752 Ollinger and Smith 
(2005)

3. South-East Paris Quercus and Pinus 
species forest

SPOT CASTANEA 672 and 658 Le Maire et al. (2005)

4. China Province aBL, NL, mixed forest Landsat TM and 
MODIS image

Boreal 
ecosystem 
productivity 
simulator

613.1, 456.8, 559.5 Feng et al. (2007)

5. East Asia region 
located

aBL, NL AVHRR CASA (LUE) 948.36, 369.66 Yu et al. (2009)

6. Indian subcontinent aBL, NL SPOT vegetation, 
METEOSAT-V, 
NOAA

CASA (LUE) 989, 557 Nayak et al. (2010)

7. Indian subcontinent aBL GIMMS, CRU-UEA, 
SPOT vegetation

CASA (LUE) 1057 Nayak et al. (2013)

8. Aglar watershed, 
Uttarakhand

Quercus mixed, 
Pinusroxburghii 
and Cedrusdeodara, 
mixed forest

Landsat-8 OLI LUE 663.19, 468.79, 
369.07 and 250.57

Present work
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geospatial modeling of LAI and fAPAR for each month. The 
NPP ranged from 102 to 1056 gC/m2/year with an average 
of 561.32 gC/m2/year. It was the highest in Quercus mixed 
forest (663.19 gC/m2/year) followed by forests of Cedrus 
deodara, Pinus roxburghii and mixed forest as 468.79, 
369.07 and 250.57 gC/m2/year, respectively. Monthly vari-
ation of NPP among all the forest types studied is shown 
in Fig. 8a, b. Highest carbon assimilation of 95,148,073.9 
gC/year has been found in Quercus mixed with evergreen 
broadleaf species, followed by needle-shaped leaf forest of 
Cedrus deodara and Pinus roxbughii as 5,752,954.1 gC/year 
and 1,863,187.7 gC/year and mixed forests 2,634,737.1 gC/
year. A comparison of our findings with global reports is 
presented in Table 3.  

Spatiotemporal variations in monthly NPP were noticed 
across the watershed (Fig. 9). The significant effect of cli-
matic conditions, viz. temperature, precipitation events 
and PAR, was evident on forest productivity (Fig.  10). 
NPP peaked during growing season which starts from May 
and culminates in November–December (Fig. 10a). It was 
the highest in October which may be attributed to optimal 

environmental conditions for photosynthesis soon after the 
receding of monsoon (Fig. 10b, c). The productivity begins 
to decline with the onset of dry winter months, i.e., Decem-
ber to January and the decrease in productivity continues 
till January. It is primarily due to very low temperature that 
decreases the rate of photosynthetic phenomenon (Zhu et al. 
2006). With the rise in temperature and moisture condition 
in February, the leaf flushing or ‘green wave’ accelerates 
and this coupled with rise in temperature in the subsequent 
months helps in leaf expansion and maturity (Raich et al. 
2006). However, at this stage dry summer alleviates the pro-
cess of carbon assimilation by the plant foliage due to lack of 
moisture in soil and atmosphere. Such temporal variations of 
NPP were also reported by Feng et al. (2007) while studying 
temperate forests of China in the neighboring region. Other 
factors such as increased cloud cover reduces the availability 
of PAR (Beer et al. 2010) which negatively affects the pro-
cess of carbon assimilation. This phenomenon was evident 
in the month of September (Fig. 10d). The NPP estimates 
for major forest types in this study were found coherent with 
the findings of Feng et al. (2007).

Fig. 9  Spatiotemporal distribution of NPP in Aglar watershed
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Conclusion

Himalayan ecosystems exhibit intricate relationships among 
the environmental variables because of its arc-shape and 
complex terrain (slope, aspect, elevation) and varied orog-
raphy. Forest biomass and NPP are recognized as impor-
tant climate regulatory ecosystem services in South Asia 
furnished by Himalayan forest ecosystems. In-depth knowl-
edge of these biophysical variables is helpful in manifesting 
forest ecosystems status/functioning, sequestration poten-
tial and for framing climate-change mitigation strategy. It 
is established from study that temporal primary data and 
corresponding seasonal earth observation data have good 
potential to estimate AGB using RF and NPP using LUE 
for geospatial modeling in a medium sized watershed. RF-
based RFE function helped us in prioritizing and identifying 
the 24 most important variables out of 96 contributing to 

AGB prediction. The results had low RMSE with high R2 
than other regression equation-based simple spectral mod-
els. The process-based models coupled with earth observa-
tion data provided better understanding of highly dynamic 
productivity in ecosystems. LUE is a most important fac-
tor for NPP assessment and is affected by climatic factors 
such as rainfall, temperature, moisture/humidity, PAR, age 
of the leaves and plant itself. However, PAR, temperature 
and precipitation were the dominant factors governing it. 
Climatically, Aglar watershed lies in the western most limits 
of humid temperate forests in outer Himalayan zone and not 
far from vast Indo-Gangetic Plains; thus, it is very likely 
that NPP would vary from other temperate regions with 
high or low rainfall and humidity. We report lesser NPP 
cf. with earlier reports from other temperate forest ecosys-
tems. The approach is very robust and simple and can serve 
as a good alternative for reliable estimation of AGB and 

Fig. 10  Mean monthly variation in NPP w.r.t. a environmental variables and b, c, d are their effect on different forest types of Aglar watershed
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carbon storage potential especially in areas where ground 
data is scarce. Such watershed-level study would help to 
understand complex biogeochemical processes by improving 
regional and global scale models of climate change and NPP. 
However, the NPP estimates need to be further tested and 
validated with in situ measurements, viz. carbon flux tower.
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