
Vol.:(0123456789)1 3

Modeling Earth Systems and Environment (2020) 6:1783–1793 
https://doi.org/10.1007/s40808-020-00789-8

ORIGINAL ARTICLE

Assessment of vegetation dynamics in Upper East Region of Ghana 
based on wavelet multi‑resolution analysis

J. A. Quaye‑Ballard1 · T. M. Okrah1 · S. A. Andam‑Akorful1 · A. Awotwi2 · W. Osei‑Wusu1 · T. Antwi1 · X. Tang3

Received: 2 December 2019 / Accepted: 10 April 2020 / Published online: 21 April 2020 
© Springer Nature Switzerland AG 2020

Abstract
Vegetation variation offers significant information for environmental planning, management, sustainability and prompts 
caution of ecosystem degradation, particularly for the semiarid regions. Normalized difference vegetation index (NDVI) 
discloses the coverage growth situation, biomass and photosynthesis strength of vegetation and land-cover alterations. Wavelet 
was used to decompose NDVI time series into subseries at various timescales. This study used a multi-resolution analysis in 
association with Mann–Kendall and Sen’s Slope at 95% confidence interval to determine the trends in vegetation dynamics at 
the Upper East Region (UER) of Ghana. GIMMS NDVI3g time series was used to evaluate the performance of the vegetation 
at seasonal, interannual and intraannual timescale from 1982 to 2015. The results showed that the variability in NDVI in the 
region is annually significant. At the seasonal level, the whole surface area showed negative vegetation trend. In terms of 
the intraannual changes, 11.76% of the surface area showed critical patterns. At the interannual scale, results revealed that 
4.40% of the surface area demonstrated significant patterns, while 95.60% indicated nonsignificant pattern. Overall, there 
was negative performance in the vegetation growth from 1982 to 2015. The 16.6% decrease in vegetation dynamics can 
be attributed to anthropogenic activities. The results from this study would benefit and provide helpful assistance to water 
resources managers, agricultural and ecological development officers for sustainable planning of UER.
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Introduction

The vegetation in Upper East Region (UER) is continu-
ally changing due to climate-imposed stresses and human-
induced factors at spatial and temporal scales (USAID 
2011). Vegetation can be partitioned into natural, seminatu-
ral and cultivated. The natural vegetation is the virgin forest 
not hindered by human activities. Seminatural vegetation is 
when vegetation is influenced by human activities but has 
recovered to a degree that species constituents and ecosys-
tem processes are in a course of attaining their undisturbed 

status. Cultivated vegetation are those areas which are arti-
ficially planted and maintained, e.g., hayfields and pastures 
(Sprugel 1991). The vegetation in UER consists of natural, 
seminatural and cultivated in a form of forest reserves, Gov-
ernment Reforestation Program and cropland, respectively 
(Yiran et al., 2012). These vegetation types are important 
for raising livestock and other livestock products such as 
milk for human consumption in UER (USAID 2011). Glob-
ally, the vegetation compositions are changing at spatial and 
temporal scales and these can be attributed to natural and 
artificial reasons. The changes in vegetation can be classified 
into vegetation phenology, which are driven by photosyn-
thetic and land-cover change which involves permanently 
replacing vegetation at a particular location (Martínez and 
Gilabert 2009; Ibrahim et al. 2015). The vegetation dynam-
ics in West Africa have been firmly linked to both climatic 
variability and anthropogenic activities (Knauer et al. 2014). 
Monitoring to identify changes in vegetation over some time 
provides information for detecting the causes and rates of 
change in ecosystems (Omuto et al. 2010).
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Researching into climate- and human-induced changes 
on vegetation and their relationships is vital in managing 
the ecosystem (Mberego et al. 2013). Normalized differ-
ence vegetation index (NDVI) is one technique for detect-
ing and monitoring the spatiotemporal trends of vegetation 
to detect land-cover and land-use change (Bruce and Byrd, 
2006; Galford et al. 2008; Omuto et al. 2010; Campos 
and Marcelo 2012; Liu and Menzel 2016). The temporal 
dynamics of NDVI values at a location is a basic infor-
mation for studying observed phenomena in vegetation 
(Epinatl et al. 2001). Additionally, NDVI values can be 
utilized as a measure of aboveground land-cover changes, 
e.g., land degradation, fires, flooding and farming (Campos 
and Marcelo 2012). The ability of any framework to detect 
change depends on its capacity to account for variability 
at one scale (e.g., seasonal variations) while identifying 
change at another (e.g., multi-year trends) (Martínez and 
Gilabert 2009). As a result, changes in the ecosystems con-
ditions can be grouped into three classes: seasonal change 
which is driven by annual temperature and rainfall inter-
actions affecting plant phenology or proportional land-
cover types with different plant phenology; slow change 
such as interannual climate variability (e.g., patterns in 
mean annual rainfall) or slow change in managed/degraded 
land; and sudden change, caused by disturbances such as 
deforestation, urbanization, floods and fires (Geerken and 
Ilaiwi 2004; Martínez and Gilabert 2009; Jia et al. 2014; 
Awotwi et al. 2015; Liu and Menzel 2016; Rimkus et al. 
2017; Awotwi et al. 2019).

In order to determine the essential elements influenc-
ing the reduction in vegetation cover to support policies 
and sustainable management, researchers are adopting 
new methods and systems for an in-depth understand-
ing about changes in vegetation cover elements (Roder 
and Hill 2009). Various studies have been utilizing rela-
tionships between NDVI and climatic variables such as 
rainfall and temperature to show degradable territories 
or productivity in vegetation (Ichii et al. 2002; Al-Bakri 
and Taylor 2003; Nischitha et al. 2014). Notwithstand-
ing, these investigations hardly reveal the increasing or 
decreasing patterns and fail to determine the behavior 
of periodicity in climatic variable time series. Different 
studies used principal component analysis (PCA) to show 
the spatial variability in NDVI time series (Mberego et al. 
2013). In recent times, numerous researchers are embrac-
ing wavelet transform (WT), which can decompose and 
determine localization or power concentration in NDVI 
time series (Lunetta et al. 2006; Galford et al. 2008; Cam-
pos and Marcelo 2012). Some researchers combined WT 
with Mann–Kendall trend test and Sen’s Slope to evaluate 
patterns in climatic variables (e.g., Martínez and Gilabert 
2009; Joshi et al. 2016; Liu and Menzel 2016). For exam-
ple, Martínez and Gilabert (2009) and Liu and Menzel 

(2016) combined WT, Mann–Kendall trend test and Sen’s 
Slope estimator to determine critical long- and short-term 
pattern in NDVI time patterns.

The objective of this is to assess intraannual, interannual 
and human activities affecting vegetation in UER. This will 
help to assess the vegetation changes in an agriculture region 
of Ghana due to frequent drought episodes and overuse of 
natural resource from increased population (USAID 2011; 
Yiran et al. 2012; Ayumah 2016). For example, Ayumah 
(2016) demonstrated low harvest yield at the northeastern 
part of UER because of continuous dryness. Yiran et al. 
(2012) uncovered dynamic vegetation degradation at the 
same region as a result of climatic stress factors such as 
drought- and human-induced activities such as overgrazing, 
deforestation, bush burning, etc. In this study, multi-resolu-
tion analysis (MRA) was used in breaking down NDVI time 
series in order to analyze intraannual, interannual trend and 
human-induced activities in UER. The Mann–Kendall trend 
test and Sen’s Slope estimator were also used to show the 
areas of significant trend. A computer algorithm has been 
developed for the implementation of the MRA and determin-
ing the significant trend analysis at 95% confidence interval.

Materials and methods

Study area

The UER is located in the northeastern part of Ghana 
between latitude 10° 20′ N and 11° 12′ N and longitude 
0° 03′ E and 1° 25′ W (Fig. 1). It has a total land surface 
of around 8842 km2, representing 2.7% of land area of 
Ghana (Ghana Statistical Service 2014). The climate of the 
UER is dry submoist with average temperature of 38 °C. 
The region experiences a unimodal rainfall pattern, which 
begins in April/May (46.7/92.0 mm) and crests in August 
(255.0 mm) before it stops in October (53.2 mm). The topog-
raphy is dominated by relatively undulating plains and gentle 
slopes ranging from 1 to 5% gradient with some few rock 
outcrops and some highland slopes (Ghana Statistical Ser-
vice 2014). The vegetation is Sudan Savannah with short 
grasses and wide-scattered Shrub (Yiran et al. 2012). The 
region is drained by the Red, White Volta and Sissili Rivers 
with small dam reservoirs for irrigation farming and domes-
tic use during the dry season (Leemhuis et al. 2009). The 
region is characterized by low rainfall, high temperatures, 
land degradation, deforestation and overgrazing (Ministry of 
Food and Agriculture 2017). The main economic activity of 
the people is farming, which employs about 80% of the total 
population. The rest of the population involves in trading and 
craftsmanship like ‘smock’ weaving, pottery and basketry 
(Ghana Statistical Service 2014).
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Data description

The NDVI data used in this study are the third-generation 
version, GIMMS NDVI3g, from Global Inventory Modeling 
and Mapping Studies. The GIMMS NDVI3g is derived from 
National Oceanic and Atmospheric Administration (NOAA) 
satellite carrying Advanced Very High-Resolution Radiom-
eter (AVHRR) sensor (Dahlin et al. 2015; Liu and Menzel 
2016). GIMMS NDVI3g dataset is a worldwide vegetation 
condition data that has a spatial resolution of 0.0833° and 
a timescale of 15 days (Ibrahim et al. 2015). Since 2011, 
the GIMMS NDVI dataset has been improved and called 
NDVI3g. GIMMS NDVI3g ranges from 1981 to 2015. 
The GIMMS NDVI data are corrected from blunders, for 
example, residual sensor degradation, constant cloudiness 
globally, orbital drift, view geometry and solar zenith angle 
(Sharma 2006; Ibrahim et al. 2015; Liu and Menzel 2016). 
GIMMS NDVI3g data were chosen due to their long-term 
continuous satellite-derived NDVI time series.

Wavelet transform

Wavelet transform (WT) has been utilized in different 
research fields to investigate signal and has shown supe-
riority in analyzing frequency and time localization in a 
time series (Martínez and Gilabert 2009; Santos and Freire 
2012). A wavelet is characterized as a small wave with 
finite and concentrated energy in time and space (Sharma 
2006). This makes wavelet a powerful tool for investigating 

nonstationary, time-invariant and periodicity in signals 
(Santos and Freire 2012; Ramana et al. 2013; Dyn et al. 
2016; Sun et al. 2016). Various strategies have been uti-
lized to investigate variety in signals, e.g., harmonic and 
Fourier transform, but their disadvantage in assuming a sta-
tionarity and linearity makes them not ideal for analyzing 
nonstationary data, e.g., climatic variables (Martínez and 
Gilabert 2009; Santos and Freire 2012; Baidu et al. 2017). 
WT decomposes time series or signals into time–frequency 
space, enabling the determination of localized variation in 
the time series (Torrence et al. 1998; Santos and Freire 2012; 
Ramana et al. 2013; Sun et al. 2016). In applying WT, a 
small wavelet with finite length called ‘Mother wavelet’ is 
used to decompose the original time series. Mother wavelet 
is a mathematical function with zero mean and localized in 
time and space (Torrence and Compo 1998). As indicated by 
Torrence and Compo (1998), there are conditions that must 
be adhered to when choosing a mother wavelet, for example, 
orthogonality or nonorthogonality, real or complex function, 
shape and width. There are different types of mother wave-
lets, e.g., Symmlet, Haar, Daubechies, Gaussian, Molert, etc. 
The length of a wavelet ranges from positive to negative 
infinite such that by varying the length of the wavelet, both 
low- and high-frequency components can be determined 
(Martínez and Gilabert 2009). Localized variation or power 
concentration of variance in a signal can be viewed through 
spikes, discontinuity, etc., in a time series which can easily 
be detected. This study employs Daubechies (db) and Mol-
ert (morl) mother wavelet functions due to their ability to 

Fig. 1  Study area and location of rain gauge stations
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detect localized pattern in time series and their full scaling 
and translational orthonormality properties and popularity 
in climatic studies (Nalley et al. 2012; Joshi et al. 2016; Liu 
and Menzel 2016). Usually, in a one-dimensional view, a 
wavelet is formed from the connection between the mother 
wavelet (ψ) and the scaling capacity (ϕ). For example, con-
sider Mother wavelet consisting of the product of a plane 
wave with a Gaussian modulation (Santos and Freire 2012) 
as indicated below:

where a is the scale parameter and b determines the location 
of the wave in time t.

The parameter b can be utilized to choose bit of the signal 
at any time t. Parameter a is the dilation parameter of the 
wavelet, which can be varied at a scale. Wavelet must fulfill 
two primary conditions: (1) integrating ψ to zero and (2) 
integrating ψ2 to zero as illustrated below.

Equation (2) means that the function ψ oscillates around 
zero, and Eq. (3) makes the function ψ localized in a finite 
width interval. These conditions act as constraints in creat-
ing a small wave or wavelet (Martínez and Gilabert 2009). 
In practice, a third condition known as admissibility which 
allows reconstruction of the wavelet from its continuous 
wavelet transform needs to be met (Torrence and Compo 
1998). The three conditions ensure that the energy in the 
time series is maintained after transform (Torrence and 
Compo 1998; Martínez and Gilabert 2009; Santos and Freire 
2012). The two main types of WT are continuous wavelet 
transform (CWT) and discrete wavelet transform (DWT). 
CWT adopts a smooth continuous function to decompose 
a time series. Consider a signal f(t) and a ‘mother wavelet’ 
�a,b ; then, the CWT is given as:

(1)𝜓a,b(t) =
1√
a
𝜓

�
t − b

a

�
a > 0, −∞ < b < ∞

(2)

+∞

∫
−∞

�(t)dt = 0

(3)

+∞

∫
−∞

�
2(t)dt = 1

(4)W(a, b) =

+∞

∫
−∞

�̄�a,b(t)f (t)dt

(5)W(a, b) =
1√
a

+∞

∫
−∞

�̄�a,b

�
t − b

a

�
f (t)dt.

Integrating Eq. (4) results into (5), the outcome W(a, 
b) for any timescale parameter is the wavelet coefficient at 
an location specified by a. The integration is repeated for 
all the combinations of parameters a and b leading to the 
decomposition in both time and space. The wavelet coef-
ficient would then be able to be interpreted as variation in 
the signal through time. CWT is smoother and provides 
a fast way for analyzing small array signals. A detailed 
literature on CWT can be found in Torrence and Compo 
(1998). For DWT, a discrete wavelet function is utilized 
which adjusts well to a given signal. The scaling parameter 
for DWT is 2 where a is  2j and j is the level of decom-
position. DWT involves filtering and downsampling. The 
filtering process involves using different cutoff frequen-
cies at different scales (a), and it is applied to analyze 
both high and low frequencies in a signal. The high filters 
are known as details (D) component and retain the detail 
features of the signal, while the low filters are known as 
approximations (A) component and retain small features in 
a time series (Sharma 2006; Martínez and Gilabert 2009). 
The DWT decomposition of signal (S) into details (D) and 
approximations (A) component is shown in Fig. 2.

In downsampling process, the resolution of the signal 
is reduced to remove some of the samples in a signal. 
This enables the detailed component of the signal to be 
assessed. The wavelet coefficient (W) of a DWT is derived 
by considering a signal f(t), ‘mother wavelet’ �a,b and a 
decomposition level j as follows:

where j = 1, 2, 3,..., N.
The detail (D) part which is determined by the high 

filter is identified with wavelet coefficient (W), while the 
approximation (A) which is the smooth representation of 

(6)�j,k(t) = 2−j∕ 2�(2−jt − k)

(7)Wj,k = 2−j∕2

+∞

∫
−∞

f (t)�̄�(2−jt − k)dt

Fig. 2  Discrete wavelet decomposition of signal into detail and 
approximation (adopted from Sharma (2006)
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the signal (f(t)) is controlled by the scaling function (Mar-
tínez and Gilabert 2009).

Multi‑resolution analysis (MRA)

MRA is a hierarchical application of DWT in which a signal 
is successively decomposed into different levels and filtered 
utilizing high and low filters (Martínez and Gilabert 2009). 
The connection between the detail (D) and approximation (A) 
components is in the proportion of 2:1. The decomposed sig-
nal (S) is then reconstructed by summing the details (D) and 
approximation (A) components. For example, consider a flag 
F(t) decomposed at a level l (Fig. 3). The detail (D) component 
detects changes related to high frequency variation in a signal. 
The approximation (A) component detects gradual changes in 
the signal, which is the smooth representation of the signal.

The power of DWT lies with the ability to decompose a 
time series at different levels, and this forms the basis of wave-
let MRA. The MRA was used to decompose the NDVI time 
arrangement from 1982 to 2015 at level 5. Wavelet decompo-
sition at level 5 provides the platform to assess intraannual, 
interannual variation and human-induced impact on NDVI 
time series (Martínez and Gilabert 2009; Campos and Marcelo 
2012). According to Martínez and Gilabert (2009), in order to 
select the most appropriate scales for the study of the inter-
annual and intraannual components in vegetation phenology, 
the scale and frequency need to be connected. The dominant 
frequency of the wavelet is characterized by defining a purely 
periodic signal for the period (p) (Meyers et al. 1993; Abry 
1994) given by:

where a is the scale; Δt sampling period; and Vc center fre-
quency of the wavelet in Hz (i.e., the frequency correspond-
ing to the spectral peak of the wavelet).

(8)p =
aΔt

Vc

In applying MRA, Daubechies (db) mother wavelet func-
tion was utilized because of its ability to identify localized 
event in time series, its full scaling and translational ortho-
normality properties and its prevalence in climatic studies 
(Nalley et al. 2012; Joshi et al. 2016; Liu and Menzel 2016). 
NDVI decomposition at level 5 is appropriate for recogniz-
ing patterns at 30-day, 60-day, 119-day and 238-day scales, 
and these can be computed using Eq. 8. Thus, D1, D2, D3, 
D4 and D5 detect trends corresponding to 30 days, 60 days, 
119 days, and 238 days, respectively (Table 1) (Martínez 
and Gilabert 2009; Liu and Menzel 2016). Trends in the 
details D2 to D5 components and also the approximation 
(D5) component were analyzed using Mann–Kendall and 
Sen’s Slope to determine an increasing or decreasing mag-
nitude and areas with significant trend at 95% confidence 
interval. The MRA was executed to decompose NDVI time 
series per pixels values across the study area.

Mann–Kendall (MK) trend test

Mann–Kendall (MK) is a statistical method for testing trend 
in time series (Blain 2013). It is nonparametric, which means 
it does not assume the time series and its deviation from the 
mean follows any statistical distribution (Dawood and Atta-ur-
Rahman 2017). This makes MK powerful for detecting trends 
in climatic variables which are nonstationary. MK tests for 

Fig. 3  Iteration decomposition of DTW into detail (D) and approximation (A) at level n 

Table 1  MRA decomposition levels and their corresponding periods 
(P) in days for Daubechies DWT

Level (j) Scale (a) Period (days) Representation

1 2 60 Rapid changes
2 4 120 Slow rapid changes
3 8 240 Rapid seasonal changes
4 16 360 Slow seasonal changes
5 32 390 > Interannual changes
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the null hypothesis  (H0) of trend absent against an alternative 
hypothesis  (H1) of trend which shows upward or downward 
trend in a time series at a given confidence level.  H0 essentially 
simply means that the time series is independent and identi-
cally distributed around the mean to indicate trend present in 
a time series (Blain 2013; Nunes and Lopes 2016).

For a given time series (x) with length (N), the test measure-
ment (comparing  H0 and  H1) is given by:

If N > 8 , then the time series is assumed to be normally 
distributed with a zero mean (Blain 2013) and variance (V) is 
computed from Eq. (10) as follows:

where GG is the number of groups and ti is the length of 
GGth group.

The test statistic (t) is standardized and the significance is 
also estimated by Eq. (11).

The null hypothesis is accepted if |Z| ≤ Z1 −
�∕2 ; other-

wise,  H1 is accepted at α significant level.

Sen’s slope estimator (Q)

The Sen’s Slope estimator (Q) is used to determine the mag-
nitude of trend in a time series. The assertion for Q is that the 
pattern in the time series is linear (Nunes and Lopes 2016). 
Negative values of Q suggest a decreasing trend, while posi-
tive values imply an increasing trend in a time series. For a 
given time series (x) of length N, where xi and xj are observed 
or measured values at ith and jth timescale, Q is computed as 
follows:

The Q values are computed N times and rearranged in 
increasing manner. If N is odd, then the median of Q is com-
puted using Eq. (13), but when N is even, the median of Q is 
computed using Eq. (14):

(9)Test statistic (t) =

N−1∑
i=1

N∑
j=i+1

sgn(xj − xi) where j > 1.

(10)
V =

N(N − 1)(2N + 5) −
GG∑
y=1

ti(y − 1)(2y + 2)y

18

(11)z =

⎧
⎪⎨⎪⎩

t−1√
V
→ t > 0

0 → t = 0
t+1√
V
→ t < 0

⎫⎪⎬⎪⎭

(12)Qi =
xi − xj

i − j
where i = 1, 2, 3…N

(13)Qmed = Q[N + 1]∕2

Results and discussion

The mean NDVI from 1982 to 2015 in UER is shown in 
Fig. 4. There is high vegetation reflectance in the western 
and the southern parts of UER, while the northeastern part 
shows the lowest vegetation.

The results from the wavelet decomposition of spatial 
aggregated NDVI using Daubechies (db) mother wavelet 
function from 1982 to 2015 at levelfour (4) are shown in 
Figs. 5a–f. The NDVI time series was decomposed to level 
5. D1 to D5 are the detail (D) components of the original 
GIMMS NDVI3g time series and represent the short-term 
fluctuation in the original data. They provide information on 
vegetation change associated with 60, 120, 240 and 360 days 
over the 34 years (1982–2015). That is, D1 to D5 were used 
to assess seasonal and intraannual changes. The approxima-
tion (A) component at level 4 of the wavelet decomposition 
represents long-term trends in the original data (Fig. 5f). 
Approximation A5 provides information on interannual veg-
etation changes.

The periodicity in the month to month NDVI time 
series represents the patterns, and this was analyzed by 
utilizing CWT to determine the power concentration. Fig-
ure 6a is the wavelet power spectrum (WPS) representing 
the decomposition of NDVI time arrangement into fre-
quency timescale. Figure 6a demonstrates the variance 
of the power concentration is around the 1-year period, 
which indicates the variation in NDVI time series in the 
UER is annually significant. The estimation of the true 
power in the NDVI time series indicates one significant 
peak above the 95% confidence interval line, and it is cen-
tered around the 1-year period as shown in Fig. 6b. The 

(14)Qmed = Q
[
QN

2

+ QN+2

2

]/
2.

Fig. 4  Mean NDVI from 1982 to 2015
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Fig. 5  MRA decomposition of NDVI from 1982 to 2015 at level 4 using Daubechies (db) wavelet function showing the detail (D) and the 
approximation (A) components

Fig. 6  a Wavelet power spectrum which indicates the variance of the power concentration in the time series, b global wavelet power spectrum. c 
Scale average of power around 8–11-month period. The red dash lines represent 95% confidence interval
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red dash line indicates the 95% confidence interval. Fig-
ure 6c is the average variance around 1-year period in the 
wavelet power spectrum. The varying power concentration 
shows how NDVI values modulate in the UER. The result 
indicates a decreasing trend in NDVI from 2010 to 2015.

The intraannual variation of NDVI in the UER was 
obtained by summing the detail components (D1 to D5). 
This provides information on how vegetation in UER is 
changing intraannually (60–360 days). Figure 7a, b shows 
the Sen’s Slope and Mann–Kendall test, respectively, of 
the intraannual variability in the NDVI time series. The 
result indicates that UER is experiencing decreasing trend 
in vegetation performance at the intraannual level. High 
magnitude of the decreased intraannual vegetation per-
formance is found at the north moving toward the eastern 
part of UER, which corresponds to areas of low vegetation 

(Fig. 4). Figure 7b represents the significant map where 
the white  (H0) portion indicates areas without significant 
trend, while the black  (H1) indicates areas of significant 
trend at 95% confidence interval.

The interannual variability was obtained from the 
approximation (A5) component. The result from Sen’s 
Slope implies that 4.4% of UER shows decreasing pattern 
in interannual vegetation performance, while 95.6% shows 
increasing pattern in the vegetation performance (Fig. 8a–b). 
Mann–Kendall trend test at 95% confidence interval indi-
cates that 5.2% of the total surface area shows significant 
pattern (shown in black), while 94.8% showed significant 
pattern (shown in white). This demonstrates active land deg-
radation (black areas) across the study area and has impli-
cation to food security (Fig. 7b) (Antwi-agyei et al. 2012; 
Yiran et al. 2012).

Fig. 7  a Sen’s Slopes (Q) and b Mann–Kendall trend test of intraannual NDVI variation from 1982 to 2015

Fig. 8  a Sen’s Slopes (Q) and b Mann–Kendall trend test of interannual NDVI variation from 1982 to 2015
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Further analysis was conducted on the detail compo-
nent at level 5 (D5). The D5 decomposition represents 
a major component in describing annual variability. At 
level 5, all the seasonal factors had been removed and the 
results show the human-induced factors. The Sen’s Slope 
(Q) result shows that 16.6% of UER indicates a decreasing 
(negative) trend, while 83.4% shows an increasing (posi-
tive) trend (Fig. 9).

The negative trends are concentrated at the northeast-
ern part of UER. The decreasing trend in NDVI can be 
attributed to the active vegetation degradation as a result 
of bush burning, deforestation, land erosion, etc. (Yiran 
et al. 2012). The increasing NDVI can be attributed to 
fertilizer application by farmers during the farming sea-
son and also better land management practices as high-
lighted by Epule et al. (2012) and Epule et al. (2014) on 
review on the causes, effects and challenges of Sahelian 
droughts. The results from the MRA on the NDVI datasets 
from 1982 to 2015 in the UER indicate that the region 
has declined in the intraannual vegetation performance. 
The negative trends in vegetation dynamics at the sea-
sonal, interannual and intraannual scale are mostly con-
centrated at the northern and northeastern part of UER. 
This indicates that the decrease in NDVI values at the 
northeastern part is not only associated with rainfall vari-
ation but also vegetation degradation as a result of human 
activities. The outcome of the research is similar to the 
findings by USAID (2011), Antwi-agyei et al. (2012) and 
Yiran et al. (2012). At the interannual scale, 95.6% of the 
UER shows an increasing trend in NDVI. The increase 
in NDVI can be attributed to better land management, 
application of fertilizer and better irrigation farming prac-
tices in the UER. Studies by Ichii et al. (2002), Leemhuis 
et al. (2009), Knauer et al. (2014), Epule et al. (2012) and 
Epule et al. (2014) indicated significant increase in veg-
etation dynamics in Africa as the vegetation is recovering 
from previous drought activities.

Conclusions and recommendations

The MRA was used to detect and quantitatively analyze 
trends in NDVI time series at the UER from 1982 to 2015. 
The variation in monthly NDVI in UER is concentrated at 
1-year period. The results indicate that there is active vegeta-
tion degradation in the UER. At the intraannual scale, almost 
100% of the surface area showed decreased magnitude of 
NDVI time series. The Mann–Kendall significant test at 95% 
confidence level demonstrates that 11.8% of the surface area 
shows significant trends. However, 88.2% of the UER shows 
insignificant trend. At the interannual scale, results indicate 
that 4.40% of the UER showed significant trend, while 
95.60% shows insignificant trend The result from the mag-
nitude of change in NDVI when the ‘noise’ introduced by 
seasonality was removed indicates that 16.6% of the surface 
area showed decreasing trend, while 83.4% showed increas-
ing trend. These results mean that from 1982 to 2015, the 
vegetation across the UER shows negative performance and 
16.6% of the decreased vegetation dynamics are as a result 
of human activities. The degraded areas are located in the 
northeastern part moving toward the middle part of UER. 
For the long-term analysis, the vegetation showed a signifi-
cant increase across the UER with some selected parts indi-
cating decreased vegetation as a result of climatic variables. 
From the investigation, the drivers of vegetation degradation 
in the UER are human activities and climate change. The 
outcome from this study provides a benchmark for effective 
and efficient management, planning and sustainable develop-
ment since the UER is located in the transition zone between 
Sahelian savanna and Guinean savanna.
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