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Abstract
In this study conducted in the semi-arid region of the irrigated plain of Doukkala, Morocco, we evaluated the spatial variation 
in the soil of organic matter (OM), pH of soil, cation exchange capacity (CEC), potassium (K2O), soil phosphorus (P2O5), 
clay, sand and silt, this investigation use conventional statistics and a geographical information system (GIS) to create a map 
of soil redistribution, which included a newly compiled 1:10,000 digital soil map, and using 1865 soil samples (0–20 cm), the 
produce maps of distribution the variability of soil physico-chemical properties and to provide information which revealed 
the soil quality functions of the physicochemical characteristics. Coefficient of variation (CV) indicated that OM, P2O5, K2O, 
CEC, and Silt indicated that high variation (CV > 40%), Moreover, the Coefficient of variation the pH, the our areas value 
was 9, 91%, which indicated very low variation. The semivariogram model of soil physico-chemical properties [lag distance, 
rang, nugget (C0), partial sill (C), Sill (C0 + C) and nugget/sill ratio] indicated the diver’s spatial dependency of soil proper-
ties (strongly, moderately and weakly). According to spatial variability of parameters was mapped by ordinary kriging using 
spherical model based on root mean square error and the interpolated methods of inverse distance weighting deterministic. In 
this work, we find that the kriging ordinary and deterministic methods show almost similar results with a spatial distribution 
and provide the heterogeneity the distribution map of four area in different soil parameters in the study areas.
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Introduction

Many key environmental, economic and social functions 
are performed by soil as a vital non-renewable natural 
resource. It is a resource that has a slowly developing 
rate, gradually over time, which makes it possible to 
show a great spatial variability (Vrščaj et al. 2008). For 

all that, soil quality is described as its capacity of having 
a biological function, to sustain plant and animal produc-
tion, which aims to maintain and even enhance water and 
air quality and to create a human’s health supportable cli-
mate (Liu et al. 2016). Spatial variability information and 
soil distribution properties are is primordial for farmers 
trying their best to improve fertilization efficiency and 
crop diversity (Tagore et al. 2015).

Soil quality for sustainable crop production is at the foun-
dation of soil health. Soil considered as a living being, which 
has the function of power include the nutrient cycle, and 
symbiotic relationships with plant roots, weed control and 
diseases, also soil structuring and aggregation soil particles 
that act on soil protection against erosion. Soil organic mat-
ter has multiple roles in the complex functioning of the soil 
ecosystem, which allows for a wide variety of organisms 
and constituting a reservoir of nutrients and moisture (FAO 
2011).

Soil organic properties (organic matter, nutrients, pH 
and texture) measured as key factors in quality of soil 
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(Reeves 1997; Pan et al. 2009). Specially, organic matter 
the product of on-site biological decomposition affects 
the chemical and physical properties of the soil and are 
essential to soil fertility. Consequently, soil organic mat-
ter could be increased by either improving C, tillage and 
vegetation burning, accelerate the decomposition of soil 
organic matter and leave the soil susceptible to wind 
and water erosion (Chen et al. 2009). However, there 
are alternative management practices that enhance soil 
health and allow sustained agricultural productivity (Liu 
et al. 2013a, b). Phosphorus (P), potassium (K), pH soil, 
soil organic matter (SOM) are considered as an key to 
soil quality which significantly contributes to the eco-
system services such as food production (Manlay et al. 
2007).

Spatial variation is primordial for exploiting soils effi-
ciently and to make decisions for land use, more details 
are required to set up models to simulate chemical physi-
cal, as well as for farming algorithms precision (Zhang 
et al. 2007). Over and above that, soil distribution is nec-
essary when evaluating potential soil productivity and 
assessing current environmental pollution, aiming for a 
better understanding of climate change and its feedbacks 
(Jennings et al. 2009). Therefore, heterogeneity spatial of 
soil is caused by various factors as climatic factors, veg-
etation types, soil texture lande use, among those factors, 
land use changes have substantial impact on soil, since 
land use variation could occur more frequently because 
of climate change and human activities (Liu et al. 2013a, 
b; Gami et al. 2009; Rodríguez et al. 2009; Patil et al. 
2010).

In an agricultural ecosystem soil phosphorus (P), 
potassium (K), pH soil, soil organic matter (SOM) are 
the major determinants and indicators of soil fertility and 
quality are closely related to soil productivity (Liu et al. 
2011; Reeves 1997; Susanne and Michelle 1998; Al-Kaisi 
et al. 2005; Badraoui and Naman 2008). In the plains 
Doukkala of Morocco recent studies have highlighted 
the existence of problems of degradation of soil fertility. 
These problems can limited Intensive agricultural man-
agement has affect economic and social development, 
this problems has also contributed to land degradation 
in terms of soil organic matter decline, desertification 
and biodiversity loss and ground and climate action and 
human activity play the most influential role in altering 
the performance characteristics of soils, irregular rain-
fall patterns, abiotic factors such as climate, low rainfall, 
agronomic practices, soil texture, fragile soils and low 
in organic matter and water contamination, intensified 
agriculture and management increased environmental 
degradation (Arshad and Coen 1992; Badraoui et  al. 

1993; Badraoui and Naman 2008; Chofqi 2004; Naman 
2003; Gana 2002).

During the last 30 years, many researches have been 
carried out geostatistics widely to describe the spatial 
variability of soil qualities because it allows the study of 
the spatial variability of soil properties and aptitude of 
quantifying and decreasing sampling uncertainties and 
reducing investigation costs (Cambule et al. 2014a, b; 
Emery and Ortiz 2007). There is many studies that have 
been showed based on geostatistical analysis to charac-
terize the soil spatial variability as well as physical (Li 
et al. 2007; Weindorf and Zhu 2010), chemical (Huang 
et al. 2007), biochemical properties (Šnajdr et al. 2008) 
and even the microbiological processes (Cao et al. 2011; 
Peigné et al. 2009).

In general, traditional statistics, in combination with 
GIS has been used extensively to characterize the spatial 
variability of soil attributes due to its ability of quantify-
ing and reducing sampling uncertainties and minimizing 
investigation (Liu et al. 2014; Cambule et al. 2014a, b; 
Emery and Ortiz 2007). Furthermore, traditional statis-
tics, in combination with geographical information sys-
tem (GIS), have been widely applied to assess spatial 
variability of soil properties, to provide soil maps and 
to supply information’s susceptible to help farmers and 
even researchers to more understand the quality of each 
soil the plains of Doukkala.

Therefore, the specific objectives were (1) to map the 
soil digitally and understand the spatial variability of 
soil map (2) to estimate the spatial variability soil phys-
icochemical properties such as organic matter (OM), pH 
soil, cation exchange capacity (CEC), potassium (K2O), 
soil phosphorus (P2O5), and soil texture, were analyzed 
using classical statistics, geostatistical method and GIS 
techniques, (3) to assess the spatial variation and to pro-
duce thematic maps of properties soil using geostatistical 
kriging ordinaire and inverse distance weighting (IDW) 
approaches an agricultural ecosystem in irrigated plains 
of Doukkala.

Materials and methods

Study area and site description

The study is performed in the irrigated perimeter of 
the Doukkala plains in the region of Casablanca-Settat, 
Morocco. The Doukkala plains irrigated perimeter cover 
a surface of 61,000 ha irrigated land in the Perimeter 
called “low service”. At the end of the development of 
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the Perimeter called “high service”, the total area irri-
gated will reach 125,000 hectares, localized between 
7°55′00″ and 9°15′00″ West and between 32°15′00″ and 
33°15′00′ North (Fig. 1).

The province is characterized by a semi-arid climate, 
and hot in summer and relatively cold in winter, where 
the annual average temperature of 18.7  °C, and the 
annual precipitation is 300–400 mm (mean 322 mm), 
However, duration of sunshine average annual 3030 h 
(between 1000 h, winter 590 h), annual values high levels 
of evaporation (1700 mm), superior to the rainfall, the 
neighbouring hygrometry of 70–80% is important due to 
ocean winds and mists and of the permanent winds with 
average speeds ranging between 1.7 and 2.8 m/s.

The main water resource in the area comes from the 
rivers Oum Errabia in central Morocco. However, many 
farmers’ pumps water as a complementary resource from 
the perimeter of the plains the Doukkala groundwater 
system.

Data analysis

Soils of the plains of Doukkala

Georeferencing and digitizing of soil maps of  the study 
area  GIS data integration, and instrumentation has made 
it possible to achieve unprecedented reliability and util-
ity in digital soil maps. In this study, the database of soil 
maps of the irrigated plains of Doukkala was obtained 
from the Regional Office for the implementation of the 
agricultural value of Doukkala (ORMVAD) conducted 
in the 1978s. However, soil maps geo-referenced and soil 
polygons were digitized from the 50,000 soil map, the 
mapping units of soils on the 50,000 soil map are soil 
families. In total, 27 polygons of soils were identified 
on the 50,000 soil map. The mapping units of soils offer 
opportunities to improve the prediction of the spatial 
distribution of nutrients. However, the methodological 
approach adopted is illustrated by the following chart:

Fig. 1   Locations of the irrigated perimeter of plains the Doukkala in Morocco and the sampling sites
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Database of ORMVAD

Soil maps

Georeferencing of maps

Create shapefiles in ArcCatalog

Digitalization of soil maps (1/50000) the 
Irrigated plains of Doukkala

Management of databases of soil maps

Soil maps

Exploratory statistical analysis

The eight soil variables (OM, pH, CEC, K2O, P2O5, clay, sand 
and silt) under investigation were subjected to a descriptive 
statistical study using descriptive statistics to describe all vari-
ables, statistics estimators such as minimum, maximum, mean, 
standard deviation, coefficient of variation, and skewness were 
determined using STATISTICA 23. This can provide first-
hand information to help us understand the variation of soil 
variables. However, normality tests, the Kolmogorov–Smirnov 
test was used to assess the normality of all variables, were 
conducted using Quantile–Quantile (Q–Q) plots and based on 
skewness values, was used to evaluate the normality of the 
data sets (Vasu et al. 2017; Goovaerts et al. 2005), of the soil 
physical–chemical properties of the soil fertility parameters 
are presented in Table 2.

Spatial variability mapping of soil with geostatistical 
analysis

The spatial variability of soil physicochemical properties 
from the Regional Office for the Implementation of the Agri-
cultural Value of Doukkala (ORMVAD) a total of 1865 top-
soil samples (0–20 cm) such as organic matter (OM), pH 
soil, cation exchange capacity (CEC), potassium (K2O), soil 
phosphorus (P2O5), clay, sand and silt were estimated using 
geostatistical analyst in ArcGIS 10.3 for windows. The struc-
ture of the spatial variability including spatial variation mod-
elling (variogram) was conducted to characterize the spatial 
distributions of parameters soil was assessed by calculating 
semivariograms by the formula (Goovaerts 1997; Outeiro 
et al. 2008; Webster and Oliver 2001; Vasu et al. 2017).

where γ(h) is the experimental semivariogram and N(h) 
is the number of pairs of samplins sites z(xi + h) and z(xi) 
separated by h.

However, a map of the spatial distribution of the soil 
redistribution was produced using the ordinary kriging 
approach for data interpolation method. Spherical, was 
tested root mean square error (RMSE) technique was used 
to select the best kriging model (Li et al. 2011; Vasu et al. 
2017). The RMSE was calculated using the following 
formula:

Therefore, kriging is based on the assumption that the 
parameter being interpolated can be considered as a local-
ized variable (Matheron 1963; Mabit et al. 2008). The ordi-
nary kriging (OK) is an estimation technique known as the 
best linear unbiased estimator (BLUE) that has the great 
advantage of using the semivariogram information (Cres-
sie 1993; Mabit et al. 2008). Concisely, the kriging is an 
advanced interpolation procedure generating estimated 
surfaces, and the interpolated methods of IDW which has 
one of the mostly applied and deterministic interpolation 
techniques in the field of soil science to determine the spa-
tial variability (Umali et al. 2012; Choudhury et al. 2013; 
Li et al. 2013; Xu et al. 2013; Cambule et al. 2014a, b; Xin 
et al. 2016). In the inverse distance weighted (IDW), which 
assumes that each point has a local influence that decreases 
with distance (Bonham-Carter 1994; Di Virgilio et al. 2007), 
was also used to produce maps in order to have a comparison 
with the kriging method, were directly implemented using 
the spatial analysis module of ArcGIS 10.3, where the power 

γ(h) =
1

2n(h)

n(h)
∑

i=1

[z(χi + h) − z(χi)]2

RMSE =

√

√
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√
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N

N
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{ẑ(xi) − z(xi)}2
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is 2 using a search radius of eight points based on the grid 
algorithm functions, which has been widely used to deter-
mine the spatial variability of parameters soil.

Data treatment with computer software

All the results were stored in a Microsoft Excel spread sheet. 
The descriptive parameters were calculated using SPSS 23.0 
for Windows. All maps were produced using GIS software 
ArcMap 10.3 with Geostatistical analyst extension.

Results and discussions

Data analysis

Soils of the plain of the Doukkala

Georeferenced and  digitizing of  soil maps of  the  study 
area  The georeferenced soil maps at 1:50,000 soils of the 
irrigated plain of the Doukkala and the map projection are 
of type Lambert Conic Conformal North Morocco Degree 
(datum: D Merchich).

The richness of the ground at a given time is not a func-
tion of the type of the soil only but depends on the history of 
fertilization of the parcel by against the standard of interpre-
tation of the analysis of the soil is strongly dependent on the 
type of the soil. In effect, there are types of soils which set 
of nutrients more than another and on the other that release 
more than others.

In this sense, the plain of Doukkala has been the sub-
ject of several studies of soil type since 1947, all these 

studies had for their objective the delineation and char-
acterization of irrigable soils. These studies, carried out 
at different scales, were synthesized in 1978 by Goffroy 
Jean-Louis Geoffroy responsible for research ORSTOM-
Soil Scientist DER in the form of map to the 1/50,000 
(Badraoui et al. 1993). Our first component of this work 
has consisted in digitizing and assembling soil maps of the 
study area (Fig. 2). The main types of soils of the region 
are divided into six classes according to the French clas-
sification (CPCS 1967; Badraoui et al. 1993).

Area of the classes of the soils of the plain of doukkala  Fol-
lowing the work of digitalization and assembly of soil maps, 
we calculated the size of each class of soils of the plains of 
Doukkala. The results obtained are data in (Table 1; Fig. 2) 
as a result.

•	 Aridisols:

There is specially ascendants in the Sidi Bennour of 
10,800 ha, 16.5% of the total area (Fig. 3), and these types 
are represented by soils of low advanced input modal allu-
vial. In Boulaouane, Zemamra and soils advanced little are 
éolisés, Moreover, the maps of the Aridisols, an area in the 
northwest region of the study area, was observed also along 
both sides indicating a large patched distribution of the irri-
gated plain of Doukkala.

•	 Vertisols:

Fig. 2   Digital mapping the soil 
maps (1:50,000) in the plain 
irrigated of Doukkala
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From the maps the Vertisols of the area the 18,250 ha, 30% 
of the scope of the bottom area (Fig. 3), localized mainly in 
the North West and South East, had also large spatial varia-
tion in the study the Zemamra and Tnine gharbia, the racks 
of Tnine Gharbia and Zemamra with deep shots, the firing 
shallow and firing sanded.

•	 Calcimagnesic soils:

The distribution the calcimagnesic soils represent the 
5760 ha, 9.4% of the total area of the perimeter (Fig. 3). 
However, the maps of calcimagnesic soil showed a relatively 
patchy distribution the study areas, in the south and south-
east area of the field, there is a relatively attributed the limit 
of plains irrigated the Doukkala.

•	 Isohumic soils:

With 21,970 ha representative of 36% the region of the study 
area (Fig. 3), there is a relatively attributed in the middle and 

everywhere in the plain irrigated of Doukkala, but especially 
in the areas of Sidi Bennour, Sidi Smail and Zemamra.

•	 Iron sesquioxide or fersiallitic soils:

Regarding the spatial distribution of Iron sesquioxide or fer-
siallitic soils with the 4100 ha, or 6.7% (Fig. 3), it is found 
that the high distribution the soils attribute of plain in the 
north and northeast, were observed also in the limit South 
east of the study areas.

•	 Hydromorphic soils:

With 840 ha, they represent 1.4% of the irrigated plain of 
Doukkala (Fig. 3), Although, the spatial distribution of soil 
maps of the hydromorphic soils is not homogenous it was 
found that there was low spatial variation in the all study 
area.

Descriptive statistics and distribution the variability of soil 
physico‑chemical properties

The descriptive statistics for the 1856 soil quality param-
eters are presented in Table 2. the variability was inter-
preted using the coefficient of variation (CV). However 
(Hillel 1980; Nielsen and Bouma 1985) classified the vari-
ability based on the coefficient of variations (CVs) of soil 
properties, as weak (lower 10%), moderate (10–100%) and 
strong (superior 100%) variability (Rosemary et al. 2017). 
as indicated by the coefficient of variation (CV), the our 
areas value for soil pH was 9, 91%, which indicated very 
low variation. Soil pH has often been found to be less vari-
able than other soil properties (Liu et al. 2013a, b, 2016). 
However, the CV for soil P2O5, K2O, CEC, and Silt, were 
117.21; 45.84; 42.62 and 41.01 respectively, indicating 

Table 1   Superficies the class of soils types in the study areas in the 
plain irrigated of Doukkala

Class of soils Area (ha) % of total area

Aridisols 57921.92 20.71
Vertisols 69135.03 24.72
Calcimagnesic soils 33273.73 11.9
Isohumic soils 82806.79 29.61
Iron sesquioxide or fersiallitic 

soils
20121.37 7.19

Hydromorphic soils 16305.09 5.83
Total 279563.9 100

Fig. 3   Variation of soils types 
in the study areas in the plain 
irrigated of Doukkala
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high variation (Naman and Badraoui 2008). High variation 
in P2O5 may result from various planting patterns and the 
amount of fertilizer used in different areas, thus showing 
the great wealth of the soil phosphorus in all the plain 
irrigated Doukkala, However, Spatial variation was also 
remarkable for OM and the CVs of textural fractions, it 
implied a considerable variation. (CV higher than 30%). 
The larger variation of available P2O5, K2O, CEC, OM and 
the texture of soil may be the result of extrinsic factors 
being more of an influence on these soil properties. The 
results also indicate high that is a consequence of the high 
heterogeneity of soil in the study area (Soudi et al. 1999).

In On other hand, descriptive statistical of the soil qual-
ity parameters are presented in Table 2, Mean values of the 
organic matter, pH, CEC, K2O, P2O, clay, sand and silt of 
the studied in the soil environment within the research area 
the irrigated of Doukkala were 1.46, 8.15, 22.40, 90.40, 
45.27, 29.31, 56.40 and 14.25 respectively. This indicated 
a remarkable concentration of K2O, sand and P2O5. Hence, 
the mean organic matter indicated the lowest organic matter 
percentage was observed in the soil irrigated of the plain of 
Doukkala. However, the organic matter content of a soil is 
a function of the relative rates at which organic materials 
are added to the soil and lost from it through decomposition 
(Oleschko et al. 1996). All of the irrigated plains of Douk-
kala have suffered from intensive agricultural cultivation, 
failure of management of crop residues and conditions of 
temperature and irrigation ensuring conditions thermal and 
water are optimal for mineralization. Which has resulted in 
relatively lower OM, both in terms of content and variability 
(Gana 2002).

The normal distribution was estimated on skewness base: 
for a skewness range between − 1 and 1 data were considered 
normally distributed (Table 2). Hence, the skewness (< 0.5) 
of soil properties indicated the approximate normal distribu-
tions of data (Rosemary et al. 2016), the positive skewness 
of Organic matter, K2O, P2O5, sand and silt were 0.95, 2.39, 
6.18, 0.40 and 1.70 respectively, and with negative coef-
ficient varying between − 0.77and − 0.22 (Table 1) these 
results may be associated with massive fertilizer applications 

in recent decades in the irrigated plain of Doukkala (Liu 
et al. 2014).

Test the  normality for  the  whole data set  In this test the 
normality for database, we will briefly discuss the follow-
ing tools to determine if our data is “normal”: Histogram 
for data, Normal quantile–quantile (Q–Q) plots were pro-
duced for identification of probability and obvious outliers 
(extreme values) (Fu et  al. 2010). However, the Normal 
Q–Q plots were produced for database for the organic mat-
ter, pH, CEC, K2O, P2O, Clay, sand and silt (Fig. 4). In other 
hence, CEC, sand, clay, silt and pH, followed a straight diag-
onal line except for a few samples slightly deviated from the 
majority at both ends, Should visually indicate that our data 
are approximately normally distributed, in terms of histo-
grams and normal Q–Q plots and box plots (Figs. 4, 5) which 
was confirmed by test of the Kolmogorov–Smirnov (K–S) 
significance value (0.005) method was applied to evaluate 
the normality of data sets, as asymmetry in the distribution 
of data has an important effect on the geostatistical analysis 
(Kerry and Oliver 2007; Fu et al. 2010) and the degree to 
which a given data set follows a specific theoretical distribu-
tion (such as normal, uniform, or Poisson). It is based on 
the largest absolute difference between the observed and the 
theoretical cumulative distribution functions (Zhang et  al. 
2005) the organic matter, K2O and P2O This data does not 
fit the normal distribution it fits a different distribution.

Semi variance analysis and spatial dependence 
of the variables with geostatistical analysis

In this study, geostatistical methods consists of analyze this 
spatial structure and spatial autocorrelation and has been 
useful to determine spatial distribution of soil by the vari-
ogram (Mabit et al. 2008). Accordingly, ordinary kriging 
was used to assess the spatial variability of various soil of 
8 variables for parameters at irrigated plain of Doukkala 
(organic matter, pH, CEC, K2O, P2O5, clay, salt and silt).

Based on the lowest RMSE value and r2 (Table 3) dis-
cusses R-squared and the regression standard error to assess 

Table 2   Descriptive statistics of 
soil quality parameters

Properties OM pH CEC K2O P2O5 Clay Sand Silt

N 1856 1856 1856 1856 1856 1856 1856 1856
Minimum 0.35 4.8 2.8 41 2 5.5 19.4 2.00
Maximum 4.32 9.9 42.4 1133 809 54.8 91.4 76.00
Mean 1.46 8.15 22.40 190.40 45.27 29.31 56.40 14.25
Median 1.43 8.3 23.1 176 32 31 54.4 13.80
Std. deviation 0.48 0.81 9.55 87.28 53.06 10.25 13.21 5.84
CV (%) 33.08 9.91 42.62 45.84 117.21 34.96 23.43 41.01
Skewness 0.959 − 0.771 − 0.22 2.398 6.18 − 0.353 0.409 1.70
Std. error of skewness 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.06
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model fit, the model’s ability to explain the variance in the 
dependent variable, thus properties of calculated semivari-
ograms are presented in Fig. 6 for fertility parameters to 
indicate different degree of spatial dependence, However, 
geostatistical methods were used in this study to characterize 
spatial variability by Spherical model the most commonly 
used (Di Virgilio et al. 2007) (Table 3), on the other hand, 
the sill represents the variance of the variable and Nugget 
could represent the measurement error or some variation at 
small scale this classes used to define spatial dependence 
of variable, the nugget: sill ratio indicates what percent 
of the overall variance is found at a distance smaller than 

the smallest lag interval, and gives a sense of how much 
variance you have successfully accounted for in the model. 
However, when there is a pattern present in the distribution, 
variance will increase with comparisons of close, autocorre-
lated samples, but will level off to form a sill when samples 
become independent. the nugget to sill (N:S) ratio, low ratio 
(< 25%) means that a large part of the variance is introduced 
spatially, implying a strong spatial dependence (S) of the 
variable, ratio was between 25 and 75%, the parameter was 
considered moderately spatially dependent (M). A high ratio 
(> 75%) often indicates weak spatial dependency (W) (Cam-
bardella et al. 1994; Dai et al. 2014).

Fig. 4   Histogram the database 8 of soil variables (N = 1856)
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The semivariogram in first case is a linear trend with 
positive slope in all the cases, which means spatial structure 
analysis indicated spatial variability across the study area 
showed that semivariance organic matter, pH, CEC, K2O, 
P2O5, clay, sand and silt in areas A and Areas B, respec-
tively, increased with distance to a constant value (sill). For 
the other areas C and D for eight variables for parameters 
(organic matter, pH, CEC, K2O, P2O5, clay, salt and silt). 
However, this provides a set of semivariance values for dis-
tance lags, h, increasing to value somewhat less than the 
greatest distance, that representing that a severe variety 
value could be identified outside the field scope, or that the 
number of samples were too few to extrapolate the spatial 
dependence (Cambardella and Karlen 1999; Di Virgilio et al. 
2007).

Based on nugget/sill ratio (Cambardella et al. 1994), het-
erogeneity observed in the distribution of area, in different 
classes the spatial dependence of eight variables for param-
eters may be evaluated. All these parameters were consid-
ered to have between moderate, weak and strongly spatial 

dependent (Table 4). Their spatial dependence for organic 
matter, pH, CEC, clay sand and silt in areas A and areas B, 
respectively, was moderate and the weakly spatial depend-
ence for organic matter, pH in area C and D. There are many 
possible causes for spatial variability included extrinsic and 
intrinsic causes of variability of soil, also environmental 
heterogeneity and the spatial climatic variability (Zhang 
et al. 2007). However, sand and silt was the moderate spa-
tial dependence for the four areas, strong spatial dependence 
for silt in areas D, P2O5 was considered moderately spatially 
dependent for areas A and areas D, and weakly spatially 
dependent for areas B and areas C. Which the first is that it 
would probably be assigned to a variable rates of fertiliza-
tion during the growing season (Rüth and Lennartz 2008). 
However, their spatial dependence is very likely due to mul-
tiple factors, such as may be attributed to both intrinsic fac-
tors, soil properties and extrinsic factors and anthropic dis-
turbances activities (Liu et al. 2013a, b). As a consequence, 
the spatial variability of soil properties fire must be affected 
by intrinsic factor such as, soil formation factors and soil 

Fig. 5   Normal Q–Q plots the database 8 of soil variables (N = 1856)
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parent material. Aside from this, soil would be substantially 
affected by soil texture, precipitation, temperature, vegeta-
tion and human activities (Liu et al. 2013a, b) and extrinsic 
(soil management, such as fertilization) factors (Rüth and 
Lennartz 2008). Usually, strong spatial dependence of soil 
properties can be attributed to intrinsic factors, and weak 
spatial dependence can be attributed to extrinsic factors 
(Cambardella et al. 1994) (Table 4).

Generally, strongly spatially were determined following 
properties likely to be controlled by both intrinsic factors, 
soil characteristics, while extrinsic factors may control the 
variability of these weakly spatially dependent parameters 
(Cambardella et al. 1994).

Spatial pattern of soil properties in such agricultural soils 
may be partly attributed to the manipulations of intensive 
management pratices such as increased amounts of fertiliz-
ers, different management practices adopted by farmers that 
have been designed to reduce spatial pattern of soil, includ-
ing type, the increased amounts of pesticides and saline 
waters (Jalali 2007). In other hand, Semivariogram was cal-
culated to examine the spatial correlation within the spatial 
correlation between soil properties and the range of vari-
ogram be used to indicate the degree of spatial correlation 
of soil properties (Ayoubi et al. 2007; Rosemary et al. 2017), 
therefore, the range of the semi-variograms was the distance 
(h) of spatial dependence were of values the Organic mat-
ter varied from 3891 m to 2243 m for 4 areas, 7658 m to 
1142 m, 3871 to 618, 9356 m to 2338 m, 9755 m to 771 m, 
2462 m to 1409 m, 2907 m 1836 m, 5163 m to 88 m of 
pH, CEC, K2O, P2O5, clay, sand and silt, respectively, the 
ranges of their spatial correlation were small (Table 4), were 
relatively small, 9755 m and 618 m, the ranges of spatial 
dependence were the highest for pH, K2O and P2O5. Accord-
ingly, soil spatial variability is present over a long range 
indicates that mechanisms by which these factors may have 
affected soil property of large spatial dependence factors 
such as vegetation, the greater the frequency over distances 
than soil properties that have the smaller range and the esti-
mates of the range has revealed much about nature on the 
largest scales (Dai et al. 2014).

Generally, this spatial heterogeneity of range indicating 
that greater heterogeneity in the upper soil layers, this could 
be suggesting that environmental heterogeneity and human 
disturbances that mainly affected the surface soil layer 
(Cambardella et al. 1994).

Spatial variability mapping

In the distribution map of various soil parameters, the 
organic matter (a), pH soil, CEC, P2O5, K2O, Clay, Sand, and 
Silt derived by kriging ordinaire (KO) and IDW is shown in 
Figs. 7 and 8. The mean contents of OM, pH, CEC, P2O5, 
clay, sand and silt were 1.46, 8.15, 22.40, 190.40, 45.27, 
29.31, 56.40, 14.25 respectively, Moreover, the heterogene-
ity observed in the distribution map of 4 area in different soil 
parameters (Figs. 7, 8). the results indicate that the values of 
organic matter in the north an area A, areas B, and areas C 
of content the range from 2.2 to 3.1 and hight content in the 
south areas D. low content of organic matter was observed 
south east of areas A, areas B, and areas C and low content 
for areas D in the study area. However, the frequency dis-
tribution of organic matter in the study areas was very low, 
generally, the ranged content in soil organic matter is low 
in the order of 1.3%, the majority of the soils are very poor 
in organic matter (< 1.5%) (Naman 2003; Badraoui 2006).

Table 3   Summary statistics of models of ordinary kriging for param-
eters

Soil property Areas Semivari-
ogram model

r2 RMSE

OM Areas A Spherical 0.954 0.297
Areas B Spherical 0.934 0.306
Areas C Spherical 0.879 0.321
Areas D Spherical 0.883 0.260

pH Areas A Spherical 0.958 0.593
Areas B Spherical 0.961 0.728
Areas C Spherical 0.956 0.794
Areas D Spherical 0.973 1.006

Log CEC Areas A Spherical 0.926 0.76
Areas B Spherical 0.970 0.72
Areas C Spherical 0.944 0.57
Areas D Spherical 0.971 0.37

Log K2O Areas A Spherical 0.874 1.84
Areas B Spherical 0.832 1.94
Areas C Spherical 0.851 1.76
Areas D Spherical 0.768 1.82

Log P2O5 Areas A Spherical 0.812 1.45
Areas B Spherical 0.494 1.80
Areas C Spherical 0.812 1.59
Areas D Spherical 0.835 1.73

Log clay Areas A Spherical 0.943 0.80
Areas B Spherical 0.979 0.84
Areas C Spherical 0.965 0.72
Areas D Spherical 0.956 0.52

Log sand Areas A Spherical 0.962 0.92
Areas B Spherical 0.977 0.94
Areas C Spherical 0.966 1.01
Areas D Spherical 0.927 0.50

Log silt Areas A Spherical 0.99 0.55
Areas B Spherical 0.853 0.67
Areas C Spherical 0.949 0.80
Areas D Spherical 0.970 0.16
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The spatial distribution of pH in the study area indicates that the pH soil the range from 8.2 to 9.2 was observed for 

Fig. 6   Calculated semivariograms of soil properties based on RMSE and r2 values
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Fig. 6   (continued)
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Fig. 6   (continued)
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all the study areas and the mean value of soil (8.15–8.5) was 
found in study areas, low pH values were located along the 
east boundary in areas A, and Areas B, the west part of the 
areas C and areas D the study site. Accordingly, the pH soil 
of Doukkala is weak to moderately basic on their surface 
horizons. However, in deep Horizons, pHs are moderately 
alkaline (Gana 2002). These results are also comparable 
with those of El Bouazaoui (2006). Another high soil CEC 
area of the range 32–40 was found in the areas A, north west 
and south east of areas B in the range 25–34, in the areas 
C were the hight value also in the north and south in the 
areas D. Cation exchange capacity (CEC) is a key parameter 
indicating soil nutrient conservation and buffering capacity 
(Liu et al. 2014; Tang et al. 2009), and its decrease always 

results in soil degradation for acid paddy fields (Noble et al. 
2000). High soil K2O concentrations were observed in the 
southern in the areas A and north part of the areas B in the 
study area and the hight concentration also east ares C and 
the middle areas D, while low soil K was located in the 
northern and east, areas A, areas D and areas C part of the 
study area. While low soil K was located in the study area. 
For the low soil K2O area, appropriate K fertilizer is also 
needed to improve soil fertility (Fu et al. 2010).

The distribution map of P2O5 showed high concentra-
tions in southeast in areas A, areas B, areas C and areas D 
and low concentrations in South in the study areas, Addi-
tionally, the most of the area is characterized by P2O5 rang-
ing from 6 to 32 (mg/kg) for areas A, 17–46 (mg/kg) for 

Table 4   Semivariogram model the parameters of soil properties

Soil property Areas Semi-
variogram 
model

Lag distance 
(m)

Rang(m) Nugget (C0) Partial sill (C) Sill (C0 + C) Nugget/sill 
ratio

Spatial 
dependency

Organic Mat-
ter

Areas A Spherical 420.521 3364 0.055 0.081 0.136 0.404 Moderately
Areas B Spherical 460.374 3682 0.062 0.076 0.138 0.449 Moderately
Areas C Spherical 486.422 3891 0.111 0.006 0.117 0.949 Weakly
Areas D Spherical 280.466 2243 0.068 0.018 0.086 0.791 Weakly

pH Areas A Spherical 142.789 1142 0.273 0.117 0.390 0.700 Moderately
Areas B Spherical 957.306 7658 0.481 0.229 0.710 0.677 Moderately
Areas C Spherical 817.738 6541 0.585 0.051 0.636 0.920 Weakly
Areas D Spherical 293.595 2348 1.064 0.049 1.113 0.956 Weakly

CEC Areas A Spherical 257.373 2058 21.633 22.265 43.898 0.493 Moderately
Areas B Spherical 203.416 1627 11.283 23.680 34.963 0.323 Moderately
Areas C Spherical 483.927 3871 13.390 0.000 13.390 1.000 Weakly
Areas D Spherical 77.313 618 1.659 3.192 4.851 0.342 Moderately

K2O Areas A Spherical 1169.509 9356 4951.000 1039.000 5990.000 0.827 Weakly
Areas B Spherical 548.670 4389 6590.000 2830.000 9420.000 0.700 Moderately
Areas C Spherical 292.334 2338 2912.000 0.000 2912.000 1.000 Weakly
Areas D Spherical 374.726 2997 2719.000 2818.000 5537.000 0.491 Moderately

P205 Areas A Spherical 96.409 771 505.000 284.000 789.000 0.640 Moderately
Areas B Spherical 1219.424 9755 5325.000 0.000 5325.000 1.000 Weakly
Areas C Spherical 817.738 6541 1320.000 312.000 1632.000 0.809 Weakly
Areas D Spherical 471.038 3768 1841.000 983.000 2824.000 0.652 Moderately

Clay Areas A Spherical 257.373 2058 24.977 24.922 49.899 0.501 Moderately
Areas B Spherical 204.650 1637 20.170 37.250 57.420 0.351 Moderately
Areas C Spherical 307.763 2462 28.520 0.000 28.520 1.000 Weakly
Areas D Spherical 176.150 1409 9.685 3.860 13.545 0.715 Moderately

Sand Areas A Spherical 257.373 2058 45.660 39.240 84.900 0.538 Moderately
Areas B Spherical 229.582 1836 29.220 65.670 94.890 0.308 Moderately
Areas C Spherical 295.357 2362 82.420 53.470 135.890 0.607 Moderately
Areas D Spherical 278.335 2907 9.120 17.760 26.880 0.339 Moderately

Silt Areas A Spherical 420.521 3364 8.600 8.440 17.040 0.505 Moderately
Areas B Spherical 111.077 888 5.880 16.980 22.860 0.257 Moderately
Areas C Spherical 645.454 5163 33.060 71.550 104.610 0.316 Moderately
Areas D Spherical 211.523 1692 0.718 2.750 3.468 0.207 Strongly
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Fig. 7   Spatial variability maps of organic matter (a), pH soil (b), CEC (c), K2O (d), P2O5 (e), clay (f), sand (g) and silt (h) derived from IDW
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Fig. 8   Spatial variability maps of organic matter (a), pH soil (b), CEC (c), K2O (d), P2O5 (e), clay (f), sand (g) and silt (h) derived by kriging 
ordinaire
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areas B, 30–44 (mg/kg) for areas C and 60–80 (mg/kg) for 
areas D, attributed at the irrigated plaine of Doukkala, this 
may be related to great wealth of the soil phosphorus in 
all the irrigated plaine of Doukkala. This wealth can be 
linked to an external supply of phosphorus by the chemical 
fertilizers. This may be related to unbalanced P fertilizer 
application (Gao et al. 2001). However, the distribution map 
of clay indicates that clay height value the ranged from 38 
to 54 (mg/kg) in the south in areas A and low to medium 
in north. Areas B was relatively, hight value in the north 
and south the ranged from 33 to 50 (mg/kg) in the, also 
clay was low to medium in most of the areas C and areas 
D. Additionally, soil texture is one of the most important 
properties that influence most of the soil functions such as 
cation exchange, nutrient and water retention (Rosemary 
et al. 2017) and leaching of plant nutrients. In other hand, 
interpolated maps of sand showed that the high value in the 
northeast in areas A, areas B and areas D, also low value the 
ranged from 30 to 46 in south areas A and the north areas 
B and areas C, Generally, the heterogeneity observed in the 
distribution map of Sand for 4 areas in different with the 
frequency distribution de ranged from 55 to 62 (mg/kg) in 
areas a 66–72 (mg/kg) in areas B 79–82 (mg/kg) for areas 
C. Moreover, in the south areas A showed the hight value of 
silt the ranged from 18 to 31, the frequency distribution the 
ranged 16–21 (mg/kg) were observed in almost the entire 
study for areas B, areas C, areas D indicate. Accordingly, 
several studies have shown that agricultural intensifica-
tion under irrigation frequently leads to soil degradation 
(Mathieu 1996; Rullan 2003; Badraoui et al. 1998). The 
quality of irrigation water, depending on the texture and 
drainage potential of the soil greatly influences the rate of 
soil degradation (Umali et al. 2012).

Conclusion

In the present study, classic statistical analysis showed all 
distribution of soil properties (OM, CEC, P2O5, K2O, clay, 
sand, and silt) except pH, coefficient of variation (CV) indi-
cated that OM, P2O5, K2O, CEC, and physical (texture) 
parameters indicating high variation. All properties except 
sand percentage did not follow normal distribution in the 
irrigated plain of Doukkala. Hence, it could be attributed to 
farm management practices such as fertilizer addition and 
intensive cultivation. However, geo-statistical analysis used 
to evaluate spatial variability, showed that heterogeneity 
observed in the distribution all area of parameters was con-
sidered to have between moderate, weak and strongly spa-
tial dependent, therefore, the range of the semi-variograms 
chemical physical (texture) properties was the distance (h)of 
spatial dependence varied from 618 to 9356 m, In addition, 

the distribution map of various soil parameters, the organic 
matter (a), pH soil, CEC, P2O5, K2O, clay, sand, and silt 
derived by kriging ordinaire (KO) and IDW indicate the het-
erogeneity observed in the distribution map of four study 
area. This study indicates that intrinsic factors, such as the 
texture, and extrinsic factors, such as soil fertilization and 
cultivation practices.
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