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Abstract

Auditing and forensic analysis of how each prediction is calculated are key attributes of transparent open-box learning
networks (TOB). It provides the full calculation and input metric contributions for each of the predictions it derives. There
are two stages in executing TOB predictions (stage 1 matches and ranks using squared-error analysis; stage 2 optimizes and
conducts sensitivity analysis). Neither stage involves generating or extrapolating correlations between the input variables.
Both stages of the calculation generate accurate predictions for datasets with multiple, highly-dispersed and non-linear influ-
encing inputs. The transparent way in which generates predictions leads to better understanding of the interplays between
the input variables. Such attributes have direct relevance to the complex systems modelled in the coal industry [e.g., gas
calorific value (GCV) prediction and coal petrology—grindability relationships]. The algorithm is applied here to predict
GCA for a large published database (6339 records) of US coals including proximate and ultimate analysis metrics. The
TOB predicts GCV with accuracy (RMSE < 0.3 MJ/kg; R?>0.99). The transparency of the TOB method contrasts with the
hidden relationships involved in many neural-network based prediction systems. Worked examples are provided to show the
detailed prediction calculations associated with individual data points. The TOB approach applied to predicting coal GCV
can help to verify the source of specific samples (e.g. specific mines or coal basins) using readily understandable underlying
calculations available for audit and display. The TOB is therefore also suitable for identifying the provenance of specific
coal samples based on proximate and/or ultimate analysis.

Keywords Transparent GCA prediction - Learning network for coal GCA - Predicting non-linear systems without deriving
correlations - Auditing prediction calculations - Forensic interrogation of coal learning network

Introduction and artificial intelligence algorithms that are widely used

to derive predictions for dataset of variable size covering

Predictions of dependent-variable values from complex sys-
tems of multiple non-linear influencing variables with highly
dispersed distributions are key requirements for the coal
industry. Predicting gross calorific value of various grades
of coal (Mesroghli et al. 2009) and relationships between
its petrological factors and grinding properties (Bagherieh
et al. 2008) are common examples. Empirical correlations
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regional and/or local coal sources. Many of these methods
provide meaningfully accurate predictions where the under-
lying inputs are related in highly non-linear and irregular
ways. Often, the metric of interest for commercial valuation
is expensive to measure repeatedly by laboratory testing,
making such prediction tools cost effective. This is the case
with proximate and ultimate coal analysis. Artificial intel-
ligence tools are therefore growing in their deployment for
such applications (Schmidhuber 2015).

A problem with many machine-learning algorithms is
that they lack transparency. They do not reveal easily how
each prediction they generate is derived. This is because
they typically involve hidden, complex and multi-dimen-
sional correlations. This means that they typically do not
provide straightforward and auditable input—output relation-
ships between the variables involved their predictions. For
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this reason, some are reluctant to rely on machine-learning
algorithms, where such information is of critical importance
(e.g., commercial valuation or error analysis for specific
value intervals; both of which are relevant to GCV analysis
of coal samples).

This opaqueness leads to many practitioners being scepti-
cal about the predictions derived from neural-network meth-
ods, particularly their claims to accuracy when applied to rela-
tively limited data sets. They are often viewed as black boxes
for this reason (Heinert 2008) and their inability to reveal
the details of their underlying calculations can be frustrating.
This is despite their ability, based on a range of statistical-
accuracy measures, to achieve impressive levels of prediction
accuracy for a wide range of complex systems. Indeed, some
algorithms are prone to the pitfalls of overfitting (Lever et al.
2016) i.e., their hidden correlations are too dependent on a
particular set of data, introducing doubt regarding their ability
to fit additional data records as they become available. This
is particularly a problem for datasets covering a range of the
prediction-metric intermittently, i.e., significant gaps in the
value range covered by the underlying dataset.

Locally-weighted learning methods (Atkeson et al. 1997)
combined with lazy learning principles (Birattari et al.
1999), originating from the much earlier recognition of the
benefit of nearest-neighbour prediction methods (Fix and
Hodges 1951; Cover and Hart 1967), can be configured to
provide transparency. However, these approaches tend to be
applied more to pattern recognition algorithms (Garcia et al.
2012; Chen and Shah 2018) rather than non-linear regression
predictions, where the application of the more-opaque neural
networks now dominate. Moreover, such approaches often
seek to linearize highly non-linear systems on a localized or
neighbourhood basis (Bontempi et al. 1999). Nevertheless,
there is the potential for such approaches to be configured
with transparency in mind (Shakhnarovich et al. 2006).

The transparent open-box (TOB) learning-network algo-
rithm (Wood 2018) overcomes many of the issues mentioned
by not relying upon hidden correlations to calculate its pre-
dictions. It applies a matching technique between a tuning
and training data subsets. The degree of match between the
data records is quantified using squared-error analysis. The
TOB stage 1 prediction establishes a set of high-ranking

Setup learning network Step1 —> Step2 —>
& prepare it for Setup 2D data Sort_& rank
TOB calculations array data in array

v

Generate TOB Stage 1
dependent-variable
predictions for
tuning subset:

Q fixed & equal weights
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Calculate squared errors
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Summary of Setting up and Applying the Transparent Open Box (TOB) Learning Network
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Fig. 1 Diagrammatic representation of the steps and stages in applying the transparent open-box (TOB) learning network algorithm (Wood
2018). See Appendix 1 (TOB method) for a detailed description of each stage and step including the mathematical formulations
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matching records from which an initial prediction is made.
The TOB stage 2 then applies an optimizer to identify the
optimum weights to assign to each input to improve its pre-
diction accuracy. The transparent calculations used in TOB
stages 1 and 2 are readily available to audit, and the level
of accuracy it achieves compares favorably with the more-
opaque artificial-intelligence (AI) techniques (e.g., adaptive
neuro-fuzzy inference systems, multi-layer perceptron and
radial-basis function artificial neural networks, least squares
support vector machines, and hybrids of those with evolu-
tionary optimization algorithms).

The AI methods mentioned do not need to be totally
opaque. Simulation methodologies can provide a degree of
transparency (Elkatatny et al. 2016). Variable importance
algorithms can also establish the covariances between the
influencing variables of Al methods. Auret and Aldrich
(2012) achieve this with a random-forest algorithm. The
TOB method goes further than this because it facilitates
drilling down into the underlying variables to obtain the
exact calculations involved in each of its predictions.

Here, the TOB method is applied to a 6339-record data
set for US coals including both proximal and ultimate influ-
encing variables to predict GCV (Appendix 1, supplemen-
tary file). Highly-accurate predictions are achieved using a
small tuning data subset (~ 1.5% of the full dataset). Matches
are achieved through error analysis in a training subset that
constitutes about 97% of the entire database. The remaining
1.5% of the data records are not involved in the training or
tuning process. They are used as a testing-data subset to
independently test the TOB’s prediction performance. The
dataset involves nine influencing variables that contribute
through various applied weightings to predict GCV as the
dependent variable.

Although a coal GCV dataset is used to demonstrate the
benefits of the TOB learning network to the coal industry,
there are other coal-related systems for which ANN is fre-
quently used as prediction tool that could equally benefit
from its application. For example, coal petrography and
petrology influencing variables in relation to a measure
of coal grindability as a dependent variable (Trimble and
Hower 2003; Bagherieh et al. 2008).

TOB method

TOB stages 1 and 2 comprise of 14 steps (Wood 2018).
These steps are summarized in a flow diagram (Fig. 1). Stage
1 builds upon lazy learning (Birattari et al. 1999) and nearest
neighbour (Chen and Shah 2018) principles but with very
specific error drivers. Stage 2 goes far beyond such princi-
ples by linking the selection of variable weightings to an
optimizer, providing a more flexible and versatile weighting
regime than typically associated with k-nearest neighbour
classifiers (Samworth 2012).

The details and mathematical formulations involved in
each of the 14 steps required to establish and implement a
TOB learning network are described in Appendix 1.TOB
Stage-1 predictions (steps 1-10) are often found to be quite
accurate (e.g., comparable to those provided by typical
k-learning algorithms). However, they typically can be much
improved upon by applying TOB stage 2.

The TOB learning network can be successfully applied
using spreadsheets (e.g. Excel workbooks) for mid-sized
data sets. Fully-coded algorithm formats or hybrid VBA plus
spreadsheet setups can speed up deployment for such data-
sets. For large datasets it is appropriate to deploy the TOB

Table 1 Statistical summary of dataset compiled for gross calorific value (GCV) of 6339 US coals with each record linking measured proximate

and ultimate analysis variables to their measured GCV value (MJ/kg)

COALQUAL dataset used for gross calorific value (GCV) interval 6-35 MJ/kg prediction

Compiled dataset: ~ Moisture (%) Volatiles (%) Fixed carbon (%) Ash(%) H(%) C(%) N (%) O(%) S%) GCV MJkg)
6339 data records

Variable descriptor ~ #1 #2 #3 #4 #5 #6 #7 #8 #9 Dependent
Min 0.40 3.80 4.10 0.90 1.70 18.80 0.20 0.20 0.07 6.54
Max 57.20 55.70 87.00 24.90 9.50 89.60 5.60 5990 12.80 35.46
Mean 8.79 32.40 48.38 10.43 5.34 65.58 1.29 15.50 1.86 27.07
Standard deviation  10.63 6.15 11.10 5.20 0.68 12.30 0.34 11.96 1.66 5.39
20-percentile 2.00 27.90 40.20 5.80 4.87 56.47 1.00 7.00 0.60 2297
40-percentile 2.92 31.90 46.37 8.27 5.17 6571 1.25 9.00 090 2745
60-percentile 5.10 34.68 51.02 11.01 540  70.82 1.40 12.43 1.66 29.54
80-percentile 14.20 37.32 56.90 14.90 5.70 75.77 1.59 24.02 3.11 3146

The dataset is that compiled by Matin and Chelgani (2016) with records filtered from the US Geological Survey Coal Quality (COALQUAL)
database (Version 2.0), open file report 97-134 (Bragg et al. 1997). Variables #1 to #9, inclusive, represent the input variables to the TOB model

Includes all data records in the Training, Tuning and Testing subsets
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algorithm in a fully-coded configuration, e.g., in Octave,
Python, MatLab, R, VBA, etc.

A hybrid VBA-Excel spreadsheet configuration is used
here to predict the gas calorific value (GCV) from a pub-
lished dataset of coals from the United States (6339 data
records).

Dataset compiled to predict coal gross
calorific value (GCV)

There are numerous well-established published correlations
based on linear and multi-variable regressions, particularly
for coals from the United States (US), based on proximate
and/or ultimate analysis (Given et al. 1986; Neavel et al.
1986; Singh and Kakati 1994; Channiwala and Parikh 2002;
Majumder et al. 2008; Mathews et al. 2014). Several of these
provide predictions with low absolute errors and correla-
tion coefficients (R?) > 0.9 between measured and predicted
GCV. However, as many of the variables involved in proxi-
mate and ultimate analysis vary in a non-linear manner, pre-
diction improvements have been achieved by applying non-
linear regression or machine-learning algorithms such as
artificial neural networks (ANN), support vector regression
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(SVR) or adaptive network based fuzzy inference system
(ANFIS) (Patel et al. 2007; Mesroghli et al. 2009; Chelgani
et al. 2010, 2011; Yalcin Erik and Yilmaz 2011; Kavsek
et al. 2013; Tan et al. 2015; Feng et al. 2015). These are
mainly based on proximate analysis of relatively small data
sets of coals from India and China but achieve high levels of
prediction accuracy with R?>0.99 between measured and
predicted GCV in some cases.

Tan et al. (2015) also demonstrate a GCV prediction per-
formance with R?>0.99 for their SVR algorithm using the
many thousands of samples of US coal analysis provided by
the US Geological Survey Coal Quality (COALQUAL) data-
base (Bragg et al. 1997). Matin and Chelgani (2016) dem-
onstrated that the random forest algorithm (Breiman 2001;
Auret and Aldrich 2012) establishing covariances between
the influencing variables, could produce highly accurate pre-
dictions of GCV (R2 >0.97 for proximate data; R?>0.99 for
ultimate data) using a filtered version of the COALQUAL
(version 2) database. Matin and Chelgani (2016) filtered out
coal records with >25% ash as being unsuitable for use in
power production and those with analysis that did not sum
to 100.

This left 6339 data records of the COALQUAL database
which they used to test their random forest algorithm. It is
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Fig.2 a—-d Proximate analysis variable relationships with gross calorific value for the 6339 data records for US coals compiled from the US
Geological Survey Coal Quality (COALQUAL) database version 2.0, open file report 97-134 (Bragg et al. 1997)

@ Springer



Modeling Earth Systems and Environment (2019) 5:395-419

399

these 6339 data records that are used here to test the TOB
algorithm. It should be noted that the COALQUAL dataset
has now been updated and extended (> 13,000 coal records)
by the issue of version 3 (Palmer et al. 2015), but for the
current purpose it is deemed more useful to use the filtered
version 2 dataset for which published GCV-prediction per-
formances are available for comparison. Matin and Chelgani
omitted fixed carbon (FC) and oxygen (O) values from the
GCV-influencing variables they included in their predic-
tion model, because they were derived from other variables
in the proximate or ultimate analysis. These variables are

included in the TOB analysis as they are valuable for data-
record matching purposes.

The compiled-US-coal-GCV dataset used here to dem-
onstrate the prediction capability of the TOB method
spans a significant range of GCV. It also incorporates sig-
nificant ranges of input-variable distributions (proximate
and ultimate analysis) as shown in (Table 1). The details
for each of the 6339 data records are provided in a sup-
plementary file (see “Appendix”). This includes the values
of all variables and links to the sample numbers listed in
the extracts from the COALQUAL version 2 data base
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Fig.3 a-f Ultimate Analysis variable relationships with gross calorific value for the 6339 data records for US coals compiled from the US Geo-
logical Survey Coal Quality (COALQUAL) database version 2.0, open file report 97-134 (Bragg et al. 1997)
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(Bragg et al. 1997) as complied by Matin and Chelgani
(2016). From the supplementary file it is possible to locate
the exact COALQUAL sample number and US State of
origin of each.

It is clear from Table 1 that the data set is skewed
towards the higher end of the GCV range; nearly 80% of
the samples fall in the GCV range 23-35.5 MJ/kg. This
means that the lower end of the GCV scale (i.e., < 15 MJ/
kg) is sparsely sampled; representing about 4.5% of the
data records. This feature of the dataset is addressed in the
learning networks constructed.

The highly dispersed and non-linear relationships
between each of the input variables (#1 to #9) and the
dependent variable GCV are illustrated in Figs. 2 and 3.
For the proximate analysis variables (Fig. 2), moisture
content and fixed carbon show the best correlations GCV;
the former a negative correlation (R>=0.8216), and the
latter a positive correlation (R>=0.77). On the other hand,
Ash and Volatiles show poor correlations with GCV and
greater dispersal (Fig. 2). The dispersal in the Ash versus

Fig.4 Predicted versus meas-
ured GCV (MJ/kg) for 92 TOB-
tuning subset records with 6155

GCYV relationship gradually reduces in this dataset for
GCYV values > 25 MJ/kg. For the ultimate analysis vari-
ables (Fig. 3), carbon and oxygen show the best correla-
tions GCV; the former a positive correlation (R2 =0.9847),
and the latter a negative correlation (R*=0.8345). The
other variables in Fig. 3 show significant dispersion and
non-linearity, particularly S.

TOB predictions of coal gross calorific value
(GCV) from the compiled 6339-record GCV
dataset

The GCV dataset is divided into subsets (training=6155
records; tuning =92 records; and, testing =91 records).
Some 97% of the 6339 records (full data set evaluated)
reside in the training subset. Allocation of records for tun-
ing and testing is spread arbitrarily across the entire range of
data values. It is best to avoid random allocations as this is
likely to lead to clustering and gaps in specific data ranges.
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Steps 2 and 6 of the method (Appendix 1) help to distribute
the records for tuning and testing systematically (e.g., using
a specified ranking-interval spacing to select from the ranked
and sorted dataset), but avoids being subjectively selective.

This allocation was achieved initially ranking the full
dataset in ascending (or descending) order of GCV val-
ues and then by selecting every 70th data record from the
full data set to be put to one side during the tuning process
and allocated to the testing subset. Two additional records
were also added to the testing subset: one close to the lower
GCV limit; and, one close to the upper GCV limit. A simi-
lar approach was then taken in the selection of the tuning
subset records from the remaining dataset, i.e., every 70th
data record from the combined training and tuning subset
(ranked in order of GCV values) was allocated to the tuning
subset. Two additional records are then added to the tuning
subset: one close to the lower GCV limit; and, one close to

35.4645
29.5238
29.0936

Max h

GCV M/
Stage 1 Provisionally Predicted GCV for data record: #2738
Actual Measured GCV for data record: #2738

Dependent
variable
kg)

2 the upper GCV limit. This approach ensures a full spread
_ of GCV values, representative of the entire data range, in
& both the testing and tuning subsets. Such a spread cannot be
@ o guaranteed by using random sampling. For the learning net-
% work to be tuned across its entire dependent variable range
= it is essential that the tuning subset is distributed relatively
3 evenly across that range.
'E z Table 2 provides TOB-prediction results for coal GCV
% dataset. The optimum GCV-prediction performance is
5 assessed by comparing actual and predicted GCV values.
= This is initially calculated for the tuning-subset records
E © = and achieves RMSE =0.33462 MJ/kg; R%=0.9963 with
§ 4 optimized Q=9 (i.e. the nine-highest ranking data record
S o matches from the training subset are used in the TOB stage-2
8 . % predictions). The TOB stage-2 variable weights established
e ° for the optimum solution (most accurate predictions) were:
E g w#l =5.304E—-04, w#2=8.317E-03, w#3 =0, w#4=1.576
E = 5 E—-03' w#5=0; w#6=1.0; w#7=2.062E—03, w#8 =0, and
g < ;":‘“ w#9 =4.348E—03. The very small weights applied to sev-
gla E eral of the input variables have significant influence on the
; 2 O g prediction accuracy achieved. Section 6 addresses this point.
3| |E 8 Suffice it to say here that it does not follow that the higher
E § g the weight applied to a variable in the TOB method, the
% % g more significant that variable is in determining the predicted
EREREG E values.
§ “‘? g 5 Table 2 compares the prediction achieved with sub-
S le 3 optimal values of Q (i.e., Q=2 to 10) with the optimal
é _5 .‘g g value of Q=9. The results show that accurate GCV pre-
>‘-‘~ % = = dictions can be achieved using most Q values in that range
9|2 - g (R*=0.9944 for Q=2; compared to 0.9963 for Q=9).
AR e % 4 “E This suggests that for this learning network the value of Q
g z L%’ é‘% g § % plays a subordinate role, as high degrees of accuracy are
§ = o i achieved for all values of Q tested. This is further empha-
;’ § L= g £ _ % sized by the low range of root mean square (RMSE) values
2 g % =235 g3 2 0f 0.33462 (Q=9) to 0.41393 MJ/kg (Q=2) MJ/kg. These
Slald 2887 £
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Table 4 (continued)

Example of how the GCV prediction calculation of each data record in the TOB network can be audited in detail after stage 2

Optimized and independently weighted sum of squares errors (WSSE)

Stage 2

29.3975

Stage 2 Optimized Prediction of GCV for data record: #2738

Actual Measured GCV for data record: #2738

29.0936

values indicate that the dataset is not noticeably under-
fitted when Q=2.

The TOB stage 1 predictions (Q=10 and Wn=0.5;
see the left side of Table 2) also show credible accuracy
(RMSE =0.48381 MJ/kg; R?=0.9923). The data-record-
matching conducted by TOB Stage 1 is, clearly, an essential
contributing component to the optimum GCV predictions.

Testing-subset predictions (Table 2: lower two rows)
applying optimum Q and Wn values achieves very slightly
higher accuracy in GCV prediction than the tuning set
GCV predictions. Testing subset accuracy metric values
are: RMSE =0.30556 MJ/kg and R>=0.9970 (Table 2).
The accuracy of the TOB method’s predictions compares
favourably with those achieved by other machine learning
and empirical correlation methods applied to this dataset
(Matin and Chelgani 2016) and other data sets (Feng et al.
2015; Tan et al. 2015).

Figures 4 and 5 display the optimum TOB predictions for
coal GCV the tuning and testing subsets, respectively. It is
apparent from these graphs that the data coverage for coals
in the GCV < 15 range is only sparsely sampled by both
tuning and testing subsets. In order to verify that the TOB
network can produce consistent predictions of meaningful
accuracy in this sparser data area a separate TOB network
is sampled to analyse and tune that section of the GCV dis-
tribution more extensively.

Auditing and interrogating TOB predictions

Matching of data records rather than establishing correla-
tions between input variables is the basis of the TOB meth-
odology. It is constrained in its predictions by the range
covered by the lowest and highest GCV values; it cannot
extrapolate beyond that range (in contrast to many other Al
methods).

For many machine-learning algorithms and empirical cor-
relations it makes sense to apply their optimum coefficients
to the data records in the training set as well as the tuning
and/or testing sets used to verify their accuracy. When apply-
ing the TOB algorithm predictions are made only for data
records that are not already present in the training subset.
Predictions for records already in the TOB training set would
achieve exact matches (RMSE =0) and provide no insight
to the accuracy of the method. This is a fundamental and
distinguishing difference between the TOB methodology and
most other Al methods (except K-learning-type methods).

As there are no hidden or difficult-to-access interme-
diate correlations involved in TOB the underlying cal-
culations in each prediction are accessible Indeed, a key
benefit of the TOB algorithm is that it allows each predic-
tion calculation step to be readily analysed. Tables 3, 4,
5 and 6 provide examples of how this is achieved and the
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Table 5 (continued)

Example of How the GCV Prediction Calculation of Each Data Record in the TOB network can be Audited in Detail after Stage 1

Evenly Weighted Sum of Squares Errors (WSSE)

Stage 1

Dependent

Vols FixC Ash

Moist

Top-

Rank of

variable GCV
(MJ/kg)

ranking

matches

matched
records

(in

training

subset)

35.4645
20.5842

Max h

Stage 1 Provisionally Predicted GCV for data record: #193

Actual Measured GCV for data record: #193

20.9061

information it provides. These tables detail the TOB pre-
dictions (stages 1 and 2 presented separately) for record #
2738 (Tables 3, 4) and record # 193 (Tables 5, 6). Tables 3
and 5 focus on the TOB-stage-1 calculations (Q = 10;
Wn=0.5). Tables 4 and 6 focus on TOB-stage-2 predic-
tions (2<Q < 10; 0<Wn<1). The left side of the tables
displays the ten high-matching records established by TOB
stage 1 for data records #193 and #2738. The upper half
of the tables displays the nine input-variable values (#1 to
#9) and the dependent variable (GCV). These values are all
expressed in normalized terms (ranging from — 1 to +1).
The matching records are listed in order of the matching
rank; the first is the closest match; the one listed 10th is the
10th -best match of all the records, from the 6155 records
in the GCV training set.

The lower half of Tables 3, 4, 5 and 6 applies the Q and
Whn values to the squared errors calculated for the variables.
The column fourth from the right (in the lower half each
table) lists the sum of the weighted-squared errors (SumE).
For stage 1 (Q=10) the values of ten matching records are
involved in the calculation of SumE; for stage 2 (Optimum
Q=06) the values of only six matching records are involved
in the calculation of SumE. In both cases it is the last three
columns to the right in the lower half of these tables that
detail the actual and relative contributions of each of the
high-matching records to the prediction. It is the sum of
the contributions in the right end column (lower half of the
tables) that provides the prediction in normalized terms. the
lowest two rows (right side numbers) in each of Tables 3, 4,
5 and 6 provide a comparison with of the actual predicted
GCV (transformed from the normalized scale) and the meas-
ured GCV for the data record being analysed.

The last three columns of Tables 3, 4, 5 and 6 (lower half
of those tables) are the key calculations to focus upon. These
use the SumE values to generate GCV predictions for the
data record in question. The formulas provided in the head-
ing of each of those three columns explains the calculations
made.

For record #2738 (Tables 3, 4) each of the top-ten
high-ranking records contributes small amounts to the
prediction, but the higher the ranked match the greater its
contribution to that prediction. The rank#1 match contrib-
utes 14.2% to the prediction whereas the rank #10 match
only contributes 6.7% to the GCV prediction for record
2738. The GCV prediction achieved is quite accurate; <
+0.5 MJ/kg above the measured value of 29.1 MJ/kg. In
TOB stage 2 (Table 4) for record 2738 only the top nine
match records contribute to the GCV prediction because
the optimized Q value selected is 9. Also, as the weight-
ings for each variable are not equal for the optimized
solution the relative contributions of those top-ranking
matches are no longer governed only by the closeness of
their match with the record 2738 variables. This is clear
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Table 6 (continued)

Example of how the GCV prediction calculation of each data record in the TOB network can be audited in detail after stage 2

Optimized and independently weighted sum of squares errors (WSSE)

Stage 2

20.4335

Stage 2 Optimized Prediction of GCV for data record: #193

Actual Measured GCV for data record: #193

20.9061

as the prediction is now dominated by record match ranks
#8 and #3 (41.6% and 40.0% contributions, respectively,
to the GCV prediction; see lower half Table 4 column sec-
ond from the right). The optimization adjustment for this
record generates a better stage-2 prediction, i.e., ~+0.3
above the 29.1 MJ/kg measured GCV value for record
2738.

The TOB stage 2 prediction is not always better than
the TOB stage 1 prediction, but that is the case most of
the time as the optimizer is minimizing the RMSE across
the entire tuning or testing subsets. The second example,
for testing subset data record 193, shows a case where the
stage 1 TOB prediction outperforms the stage 2 TOB predic-
tion. The stage 1 prediction (Table 5) is ~-0.32 MJ/kg less
than the measured GCV value for that record of 20.9 MJ/
kg, whereas the stage 2 prediction (Table 6) is ~0.47 MJ/
kg less than the measured value. In the stage#1 prediction
all ten top-matching records contribute between ~7.0% and
14.3% to the prediction (rank # 1 contributes the most, but
it does not dominate the prediction). In contrast, the stage
#2 prediction is dominated by ranked-matches #1 (59.6%),
#9(13.4%) and #6 (10.1%). When a prediction has more sig-
nificant input from the lower of the top-ranking matches,
the accuracy of that prediction is sometimes impaired. Both
stage 1 and stage 2 predictions are credible predictions for
record 193 but influenced by those top-ten ranking matches
quite differently.

For both examples, the important role of those variables
with very-low-Wn (> 0) values in determining the stage 2
predictions is apparent. If those variable weights were zero,
they would not contribute to the improved accuracy of the
optimized solution.

The details provided by Tables 3, 4, 5 and 6 highlight
just how deeply it is possible to interrogate both the stage-1
and stage-2 predictions and its high level of prediction
transparency. Moreover, it is able to provide almost foren-
sic insight into the similarity between each record tested
against each record in the training subset. This can be use-
ful in the case of trying to identify the exact provenance
of a certain coal (e.g. a specific basin or even a specific
mine can sometimes be identified by the closeness of the
high-ranking matches). Hence, in some cases it is not only
the prediction of the dependent variable value that can be
derived from this learning network, but this can be accom-
panied by provenance information. Other machine learn-
ing algorithms and empirical relationships that are under-
pinned by correlations cannot easily deliver this level of
detail into the degree of similarity with specific records in
their training subsets.
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Table 7 Statistical summary of data subset (283 records) compiled for gross calorific value (GCV) between >6 and <15 MJ/kg of US coals
with each record linking measured proximate and ultimate analysis variables to their measured GCV value (MJ/kg)

COALQUAL dataset used for gross calorific value (GCV) interval > 6 to < 15 MJ/kg prediction

Compiled dataset: ~ Moisture (%) Volatiles (%) Fixed carbon (%) Ash (%) H(%) C(%) N(%) O (%) S (%) GCV MJ/kg)
283 data records

Variable descriptor ~ #1 #2 #3 #4 #5 #6 #7 #8 #9 Dependent
Min 18.30 18.50 7.80 3.50 2.90 18.80  0.20 3220 0.10 6.54

Max 57.20 40.00 35.75 24.30 8.20 42.10 1.20 59.90 8.40 14.99
Mean 38.64 25.55 24.46 11.36 6.62 34.62 0.62 4585 093 13.30
Standard deviation  6.11 2.72 4.20 5.39 0.74 3.81 0.16 4.88 0.91 1.46
20-percentile 34.40 23.60 21.92 6.54 6.12 31.90 0.50 4234 035 12.24
40-percentile 37.98 24.80 24.30 8.55 6.60 3450 0.60 45.80 0.50 13.35
60-percentile 40.72 25.90 26.02 11.70 6.90 36.37 0.60 47.80 0.80 13.98
80-percentile 43.20 27.20 27.65 17.18 7.20 37.61 0.70 49.60 1.30 14.49

This data subset is extracted from the low GCV end of that compiled by Matin and Chelgani (2016) with records filtered from the US Geological
Survey Coal Quality (COALQUAL) database (Version 2.0), open file report 97—134 (Bragg et al. 1997)

Includes all data records in the Training, Tuning and Testing subsets

Analysis of a more sparsely populated data
subset (GCV >6 to <15 MJ/kg)

To provide more insight into the more sparsely populated
GCV < 15 MJ/kg range of the compiled dataset, a separate
TOB network is evaluated using just the 283 samples in the
data base with GCV < 15 MJ/kg. The statistical summary
of the measured variables for these 283 records (which
are also included in the dataset described in Table 1) is
provided in Table 7.

This more-focused TOB divides its data records,
using the same methodology as already described (train-
ing records =235; tuning records =24 records; testing
records =24 records). This TOB tunes this GCV inter-
val with 24 data records, whereas in the larger-dataset
TOB previously described only involved 5 data records
to tune that GCV interval. Table 8 describes the details
of the tuned and optimized prediction performance of
this focused TOB, with sensitivities, demonstrating high
prediction accuracy as illustrated (Fig. 6) for its testing
subset (RMSE =0.2944; R>=0.9644). The accuracy is
not as high as for the larger dataset (see Fig. 5) due to the
greater spacing of training-subset data records (i.e. more
sparsely distributed data) for the GCV interval < 15 MJ/kg.
This highlights a key positive feature of the TOB learning
network approach, i.e., it is resistant to over-fitting sparse
data sets. As the spacing between datapoints in the train-
ing set increases, the statistically accessed accuracy of its
predictions tends to decrease. Although such behaviour is
intuitive that is not necessarily the outcome with empiri-
cal calculations or learning networks driven by complex
correlations between the variables, which are prone to
over-fitting.

@ Springer

Table 8 reveals that the best prediction performance
for this focused TOB network is for Q =9. The sensitivity
analysis shows that RMSE increases and R? decreases as
the value of Q decreases below the value of 9 with R? fall-
ing below 0.96 for Q values below 8. However, for Q=3
the prediction accuracy is also good and superior to values
of Q=2 or Q=4. This is true for both tuning and testing
subsets (Table 8). Indeed Q =3 represents a local mini-
mum, which the Solver evolutionary optimizer selected as
its optimum (became trapped at) on most of its runs. This
bimodal optimization outcome suggests that for some data
records better predictions are achieved for Q =3. Closer
inspection of data record #3452, highlighted on Fig. 6 for
the optimum Q =9 tuned setting as having a relatively low
accuracy in comparison to most other records in the test-
ing subset.

Tables 9 and 10 describe the detailed calculation of
the GCV TOB stages 1 and 2 predictions for data record
#3452, respectively. In the stage 1 prediction (Table 9)
the matching record ranked#1 (record #3106) contributes
32.95% to the GCV prediction, with the other high—rank-
ing—matched records contributing progressively less until
matched record ranked #10 (record#21) contributes just
6.0% to the GCV prediction. For this stage 1 prediction,
the top—three matched records contribute >50% to that
calculation. This achieves a prediction of high accuracy,
i.e., —0.3 below the measured GCV value of 12.67 MJ/kg.

For data record #3452 the TOB-stage-2 prediction
(Table 10) generates a significantly less-accurate prediction
than that achieved by the stage-1 prediction (Table 9). The
reason for this is that in the TOB stage 2 solution, with Q=9
and variable weights applied, the top-3 matched records only
contribute about 18% to the prediction. On the other hand,
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Fig.6 Predicted versus
measured GCV (MJ/kg) for 24
testing subset data records used

GCV >6 and <15 MJ/kg (TOB Testing Subset)

Measured versus Predicted

to test the TOB model with 283 —_ 1
records (GCV > 6 and < 15 MJ/ 215 P
kg) in the training subset. The = ﬁm%ﬁ
24 testing data records were = 14 E'@.EE
excluded from the TOB training 8 13 ol
process. Data record #3452 with - ‘m..-"-'. Data record
a relatively poor fit between £12 ey A #3452
measured and predicted GCV is § 1 I aat )
highlighted and its TOB predic- & =
tion is considered in detail in 10 «'i,"." RMSE = 0.2943792
Table 9 9 y = 0.9398x + 0.8264
R?= 0.9644
8
8 10 11 12 13 14 15 16

the matched record #8 (record # 3110) contributes 68%
to the GCV prediction. This achieves a prediction of less
impressive accuracy, i.e., —0.64 below the measured GCV
value of 12.67 MJ/kg. In this case, considering the analysis
just described and the sensitivity analysis of Table 8, a case
could be made for applying a Q=3 cut off for the predic-
tion of this data record. This approach highlights how the
transparency of the TOB learning network’s calculation
aids the analysis of outlier data records (i.e., those for which
predictions fall significantly off trend). It makes it possible
identify, in detail, the reasons for such outlying prediction
values. It also often provides the justification for potential
adjustments that might be made to improve /correct the pre-
dictions for such problematic data records.

Auditing TOB predictions and conducting sensitiv-
ity analysis (e.g. varying Q values from the optimum and
changing the data-subset allocation percentages) focused
on specific data-records facilitates rigorous outlier analy-
sis; something that is difficult with most other Al methods
not easily possible with correlation-based machine learning
algorithms or empirical calculations. This TOB strength is
particularly beneficial for datasets for which details of spe-
cific data-record predictions are important (e.g. for com-
mercial valuation purposes or detailed sample provenance
purposes; both of which apply to GCV and commercial coal
datasets). This feature could also be usefully applied to other
commercially-important characteristics of coal (e.g., predict-
ing coal grindability from multiple input variables based on
coal petrological properties).

Although the coal dataset studied here is relatively large,
and the TOB algorithm clearly copes well with such num-
bers of data records, as a “big data” tool, the TOB algorithm
may have some limitations with very large datasets. Clearly,
the algorithm has to contain and manage a large training data
base, whereas the performance (i.e., computational speed)
of the algorithm is also likely to progressively deteriorate as

@ Springer

Measured GCV (MJ/kg)

the intrinsic dimensionality of the variable space increases.
Further studies are required to establish the limits of appli-
cability of the algorithm to such “big data” sets. However,
although computational time is likely to deteriorate for very
large data sets, the transparency provided by the TOB algo-
rithm may compensate for this. As stage 2 of the algorithm
focuses on just a few of the best matches (i.e., up to ten or
so) the collective influence of a significant number of vari-
ables would remain fully transparent.

The COALQUAL dataset lends itself to further studies
on the impacts of sparse data coverage on TOB prediction
performance. A future study will conduct sensitivity analysis
that progressively excludes percentages of the dataset from
the training data subset used for model tuning (i.e. adding
those excluded data records to the testing subset). This will
quantify how sparse the training data subset can become
before it ceases to yield meaningfully accurate predictions
for the dependent variable.

Conclusions

The transparent open-box (TOB) learning network algorithm
provides credible and reliable predictions of dependent vari-
ables, such as coal gross calorific value (GCV), that involve
complex, highly dispersed and non-linear datasets for the
influencing variables. Its high-prediction accuracy, demon-
strated in this study, when applied to predict GCV from nine
influencing variables from proximate and ultimate analysis
from a large published data set (6339 data records of US
coals) testifies to such capabilities. The method could be
easily applied to more limited datasets, e.g., those based
upon only the easier to obtain proximate analysis variables.

TOB’s prediction performance for this published coal
data set compares favourably to that reported by other arti-
ficial-intelligence algorithms and empirical correlations,
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Table 9 (continued)

(5

Evenly weighted sum of squares errors (WSSE)

Example of how the GCV prediction calculation of each data record in the TOB network can be audited in detail after stage 1

Stage 1

Springer

Dependent
variable

Vols FixC Ash

Moist

Rank of Top-
Matches

(in

ranking

GCV (MJ/
kg)

matched
records

training
subset)

0.0206
0.0297
0.0381
0.3695

0.0622
0.0611
0.0602

1

7.9511
7.8155
7.6920

1.629E-02 7.432E—-02 4.340E-01

1.156E-03 7.120E—04 3.684E-05 3.200E—01
1.900E-02 2.613E-01

1.354E-02

5.829E-03 2.120E-03

3107
3110

21

8
9

4.415E-01

1.065E-02 8.000E—02

2.234E-03 3.639E—-02 2.007E-02 9.061E-03 2.848E—03

1.909E-02 2.492E—02

4.486E—01

1.254E-03 2.265E—03 2.848E—03 5.894E—-02 2.000E—-02 3.154E-03 3.162E-01

Initial (Stage 1) Q Value and Weight Assumptions

10

127.8703
Total (Z)

3.451E+00
Total (X)

10

Normal-

Sum

ized
Prediction
6.5361

of F

Min h

14.9934
12.3272
12.6697

Max h

Stage 1 provisionally predicted GCV for data record: #3452

Actual measured GCV for data record: #3452

with the added benefit that it is more easily audited and
generally more transparent. The TOB algorithm does not
develop any correlations when calculating its predictions.
Instead, it establishes (in TOB stage 1) the closest matches
with ten data records in its large associated training sub-
set. In TOB stage 2 the algorithm improves its prediction,
based on statistical measures of accuracy for tuning and
testing data subsets (i.e., minimizing root mean squared
error between predicted and measured GCV values). It
achieves this by applying an optimizer to select the number
of those matches (2 <Q < 10) and applying tuned weights
to the errors associated with each input variable.

The calculations involved in the predictions derived
from the TOB algorithm are individually auditable.
Standard Solver optimizers or customized evolutionary or
non-linear optimization algorithms can be used to success-
fully and transparently achieve the TOB stage 2 optimized
predictions. Such flexibility and access to the underlying
calculations is not possible with most other artificial-
intelligence prediction methods or empirical calculations.

An additional valuable feature of the TOB algorithm
is the ease with which sensitivity analysis can be con-
ducted by modifying its Q value. In particular, the Q-value
sensitivities can help to identify whether the algorithm is
over-fitting or underfitting a dataset. These positive attrib-
utes make the TOB algorithm a suitable prediction-per-
formance benchmark with which to compare the predic-
tions of other machine-learning and empirical correlation
algorithms. It typically provides complementary results
to other algorithms with respect to insight to the underly-
ing dataset. Indeed, in some cases, where the dataset cov-
ers coals from many different regions and mines the TOB
algorithm has the ability, through its record matching stage
1 routine, to identify the provenance of specific samples.

The detailed calculations shown for example data records
demonstrate exactly how the predictions of the TOB algo-
rithm can be audited and assessed. These detailed calcula-
tions are not complex, rather they highlight the prediction
mechanisms involved and the key roles played by the opti-
mized Q value and the input variable weights in producing
the stage 2 optimized predictions. The ability to interro-
gate and verify in detail specific predictions is increasingly
important for providing user confidence in prediction algo-
rithms. By revealing useful information about the relative
importance of identified training-subset records in terms of
their contributions to specific predictions, and the problem-
atic nature of other data records (e.g., outlying values of
certain metrics not replicated in other data records), the TOB
method provides such user confidence. In some applications
it may be worth sacrificing a small degree of accuracy in
order to obtain such insight and confidence associated with
the predictions to be deployed.
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Table 10 (continued)

14.9934
12.0289
12.6697

Max h

Example of How the GCV Prediction Calculation of Each Data Record in the TOB network can be Audited in Detail after Stage 2

@ Springer

Stage 2 Optimized Prediction of GCV for data record: #3452

Actual Measured GCV for data record: #3452

Appendix 1: TOB learning network method
details

TOB stage 1 (data matching and provisional
prediction)

Step 1 Set up a 2-D array of N input variables and one
dependent variable to be predicted for each of M data records.

Step 2 Arrange the data records in a systematic order
defined by the prediction variable’s values (e.g. ascending
or descending value order).

Step 3 Derive maximum and minimum values (and other
standard statistics, such as mean and standard deviation) for
all records in the dataset (Table 1).

Step 4 Normalize the data in the array so each variable
spans a range from minus 1 to plus 1 (=1, +1). This is
achieved by using Eq. (1)

X; %= 2% [(X; — Xmin)/(Xmax — Xmin)| — 1 (1)

where: X;: variable X value for the ith data record, Xmin:
minimum value of variable X, Xmax: maximum value of
variable X.

Step 5 Generate statistical analysis of the normalized val-
ues to check that the variables are all correctly normalized.

Step 6 Distribute the data records between training, tun-
ing and testing subsets. Sensitivity analysis is conducted to
establish the optimum percentage of data records to allocate
to each data subset. Firstly, the data records to be used for
testing are extracted from the complete data set and placed
to one side. Sensitivity analysis then helps to divide the
remaining data records between the training and tuning
subsets in proportions that achieve an acceptable prediction
accuracy. For most data sets the training subset is likely to
hold more than 75% of the data records. For large datasets of
several thousand data records the sensitivity analysis often
reveals that the training subset can be a much larger percent-
age without compromising prediction accuracy.

Step 7 The variable squared error (VSE) between each varia-
ble in the J data records of the tuning-data subset and the K data
records in the training-data subset are calculated using Eq. (2):

VSEX);, = [X,(tr) - X)) @

where: X, (tr) = variable X value for the kth training-subset
data record, X;(7u) = variable X value for the jth tuning-
subset data record, VSE(X),, = squared error value for vari-
able X for the jth tuning-subset data record versus the kth
training-subset data record.

Y VSE is then established as the sum of the VSE values
for each variable for each data record match using Eq. (3):

n=N+1

Y VSE, = ) VSE(Xn) x (Wn) 3)

n=1
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where: VSE(Xn);, = squared error for variable Xn for the jth
tuning-subset data record versus the kth training-subset data
record. }; VSE; = sum of the squared errors for all N+ /
variables for that data record match.

Wn =weight (0 < Wn<=1) applied VSE of each of the
N+ 1 variables involved. These weights are all set to the
same values (e.g. 1) in TOB stage 1 to avoid any bias in the
initial training of the prediction network.

Step 8 Select and rank (lowest in Y VSE is ranked number
1) the top-Q-matching data records in the training subset for
each tuning subset data record. Q=10 is typically sufficient
for TOB stage 1. However, Q could be adjusted to higher or
lower values, if necessary to improve prediction accuracy.

Step 9 The Q-selected training-subset data records (i.e.
best matches) for the jth tuning-subset data record each con-
tribute a fraction to the prediction of the dependent variable.
That fraction is proportional to the relative ) VSE scores
of those Q records for the jth data record That fraction is
calculated with Eq. (4) to Eq. (6) and

=0
fy =D, VSE, / lZ > VSE,-r] @)
r=1

where: g = gth top-ranking training-subset record for the
]th tuning-subset data record. f, = fractional contribution of
" top-ranking records for the ]th tuning-subset data record.
The constraint defined by Eq. (5) applies the sum of the f
values applied to each matching data record.

2 =1 5)

The matching training-subset data record with the low-
est ), VSE; value should contribute most to the dependent-
variable predlctlon for the jth tuning-subset data record. To
achieve this (1 — f) is the multiplier applied in Eq. (6) to each
of the Q top-matching records.

q=0

redtcted
(Xyar), [ vat), * (1=1,) ] (6)
g=1
Where:
(X Nt )p redicted = dependent variable for the gth data record
in the tralmrgllg s[}lbset
(XN +1)pre el = Stage — 1 TOB predicted value for the

dependent variable for the jth tuning-set data record.

This prediction is provisional because equal weights (Wn)
are applied to the variables in TOB stage 1.

Step 10 Measures of statistical accuracy are calculated
for the TOB stage 1 predictions. The measures used include:
coefficient of determination (R?); mean square error (MSE);

and, root mean square error (RMSE). These are calculated
with Eq. (7) to Eq. (9), respectively.
ZJ—J Xuclual 2
R =1~ — )

j—] actual __ yPredicted
(Xave X] )

predicted
X; )

j=J
MSE = Z (Xaclual X;Jredicted)z (8)
RMSE = \/MSE ©

where: X;=dependent variable (i.e. (Xy +1) in Eq. (6)) for
the jth tuning-subset data record; Xj‘.””‘“’ = actual (or directly

measured) value of the dependent variable for the jth tuning-
subset data record; X”"“““** = predicted value of the depend-

ent variable for the jth tuning-subset data record;
XZS;"“I = average actual value of the dependent variable for
all J data records in the tuning subset.

TOB stage 2 (optimization)

Step 11 Optimization is performed to minimize RMSE
(Eq. 9) collectively for the J data records in the tuning sub-
set. This is achieved by adjusting optimization control met-
rics while applying certain constraints.

The two optimization control metrics are:

1. Varying the values applied to the N input-variable
weights (W,). Small non-zero values to weights applied
to certain variables can and do have a significant impact
on the accuracy of the predictions derived.

2. Varying the number (Q) of top matching records in
Eqgs. (4), (5) and (6). For most data sets: 2<Q < 10.
The optimizer is allowed to select the best integer value
of Q to minimize RMSE. It does this by systematically
changing the value of Q in the three equations men-
tioned and by comparing the RMSE value for the predic-
tions generated for each integer value of Q evaluated in
the range 2 < Q < 10. For examples, if Q is set to “4”,
the predictions for all of the tuning subset data records
only use the top-4 matching records from the training
subset related to each tuning subset record in making
their predictions. In this way the optimization algorithm
identified which value of Q leads to the most accurate
predictions for the tuning subset as a whole.

Here, the Generalized Reduced Gradient (GRG) algo-

rithm option of the standard “Solver” optimizer in Micro-
soft Excel (Frontline Solvers 2018) is used, in conjunction

@ Springer
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with visual basic for application (VBA) code, to conduct
the optimization process. Other evolutionary optimizers
could be applied to achieve similar outcomes. For mid-sized
dataset calculating the TOB predictions in Excel facilitates
the display all the intermediate calculations in a conveni-
ent format.

The top-matching data records in the training subset for
each tuning-subset data record are carried forward from
TOB stage 1 for selection by TOB stage 2. Equation (3) is
re-evaluated by varying W, in each iteration of the optimizer.
Additionally, TOB stage-2 ) VSE;, scores are derived with
Eq. (4) by varying Q (2<Q<10) in each iteration of the
optimizer, contrasting with the fixed value of Q used in TOB
stage 1.

Step 12 Calculate TOB stage-2 RMSE and R? values for
the predictions provided by the optimum step 11 solution.
Compare the TOB stage-2 predictions with the TOB stage-1
predictions to assess the prediction improvements achieved,
if any. Running sensitivity analysis with different values of Q
(i.e. Q=2 to 10) often provides insight to potential underfit-
ting or overfitting issues with the data set.

Step 13 Calculate TOB stage-1 and stage-2 predictions
for the independent testing data subset using the optimum
values established for Wn and Q in step 11. Calculate and
evaluate the RMSE and R? values for the predictions calcu-
lated for the testing data. Reviewing the intermediate steps
in the calculations often provides useful insight to the vari-
ables that have the most influence on prediction accuracy (it
is often not those with the highest Wn values). It also helps
perform outlier analysis (i.e., understanding why some data
records lead to less-accurate predictions).

Step 14 Consider whether the prediction accuracy
achieved by the method is sufficiently meaningful for it to
be relied upon. Also, evaluate how its prediction accuracy
compares with other machine-learning tools.

Appendix 2: Details of data records
in the dataset

Supplementary data associated with the coal proximate
and ultimate analysis data set to which the TOB network is
applied (Matin and Chelgani 2016; Bragg et al. 1997) can
be found, in the online version. The data in the supplemen-
tary Excel file is listed in one sheet as the complete dataset
(6339 data records) and another with those records sorted in
ascending order of GCV. To further aid transparency, other
sheets in that file list the actual data records assigned to
the training, tuning and testing subsets used for the analysis
presented. This enables readers to view exactly how the TOB
network was configured for the analysis described.

@ Springer
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