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Abstract
Auditing and forensic analysis of how each prediction is calculated are key attributes of transparent open-box learning 
networks (TOB). It provides the full calculation and input metric contributions for each of the predictions it derives. There 
are two stages in executing TOB predictions (stage 1 matches and ranks using squared-error analysis; stage 2 optimizes and 
conducts sensitivity analysis). Neither stage involves generating or extrapolating correlations between the input variables. 
Both stages of the calculation generate accurate predictions for datasets with multiple, highly-dispersed and non-linear influ-
encing inputs. The transparent way in which generates predictions leads to better understanding of the interplays between 
the input variables. Such attributes have direct relevance to the complex systems modelled in the coal industry [e.g., gas 
calorific value (GCV) prediction and coal petrology–grindability relationships]. The algorithm is applied here to predict 
GCA for a large published database (6339 records) of US coals including proximate and ultimate analysis metrics. The 
TOB predicts GCV with accuracy (RMSE ≤ 0.3 MJ/kg;  R2 > 0.99). The transparency of the TOB method contrasts with the 
hidden relationships involved in many neural-network based prediction systems. Worked examples are provided to show the 
detailed prediction calculations associated with individual data points. The TOB approach applied to predicting coal GCV 
can help to verify the source of specific samples (e.g. specific mines or coal basins) using readily understandable underlying 
calculations available for audit and display. The TOB is therefore also suitable for identifying the provenance of specific 
coal samples based on proximate and/or ultimate analysis.

Keywords Transparent GCA prediction · Learning network for coal GCA  · Predicting non-linear systems without deriving 
correlations · Auditing prediction calculations · Forensic interrogation of coal learning network

Introduction

Predictions of dependent-variable values from complex sys-
tems of multiple non-linear influencing variables with highly 
dispersed distributions are key requirements for the coal 
industry. Predicting gross calorific value of various grades 
of coal (Mesroghli et al. 2009) and relationships between 
its petrological factors and grinding properties (Bagherieh 
et al. 2008) are common examples. Empirical correlations 

and artificial intelligence algorithms that are widely used 
to derive predictions for dataset of variable size covering 
regional and/or local coal sources. Many of these methods 
provide meaningfully accurate predictions where the under-
lying inputs are related in highly non-linear and irregular 
ways. Often, the metric of interest for commercial valuation 
is expensive to measure repeatedly by laboratory testing, 
making such prediction tools cost effective. This is the case 
with proximate and ultimate coal analysis. Artificial intel-
ligence tools are therefore growing in their deployment for 
such applications (Schmidhuber 2015).

A problem with many machine-learning algorithms is 
that they lack transparency. They do not reveal easily how 
each prediction they generate is derived. This is because 
they typically involve hidden, complex and multi-dimen-
sional correlations. This means that they typically do not 
provide straightforward and auditable input–output relation-
ships between the variables involved their predictions. For 
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this reason, some are reluctant to rely on machine-learning 
algorithms, where such information is of critical importance 
(e.g., commercial valuation or error analysis for specific 
value intervals; both of which are relevant to GCV analysis 
of coal samples).

This opaqueness leads to many practitioners being scepti-
cal about the predictions derived from neural-network meth-
ods, particularly their claims to accuracy when applied to rela-
tively limited data sets. They are often viewed as black boxes 
for this reason (Heinert 2008) and their inability to reveal 
the details of their underlying calculations can be frustrating. 
This is despite their ability, based on a range of statistical-
accuracy measures, to achieve impressive levels of prediction 
accuracy for a wide range of complex systems. Indeed, some 
algorithms are prone to the pitfalls of overfitting (Lever et al. 
2016) i.e., their hidden correlations are too dependent on a 
particular set of data, introducing doubt regarding their ability 
to fit additional data records as they become available. This 
is particularly a problem for datasets covering a range of the 
prediction-metric intermittently, i.e., significant gaps in the 
value range covered by the underlying dataset.

Locally-weighted learning methods (Atkeson et al. 1997) 
combined with lazy learning principles (Birattari et  al. 
1999), originating from the much earlier recognition of the 
benefit of nearest-neighbour prediction methods (Fix and 
Hodges 1951; Cover and Hart 1967), can be configured to 
provide transparency. However, these approaches tend to be 
applied more to pattern recognition algorithms (Garcia et al. 
2012; Chen and Shah 2018) rather than non-linear regression 
predictions, where the application of the more-opaque neural 
networks now dominate. Moreover, such approaches often 
seek to linearize highly non-linear systems on a localized or 
neighbourhood basis (Bontempi et al. 1999). Nevertheless, 
there is the potential for such approaches to be configured 
with transparency in mind (Shakhnarovich et al. 2006).

The transparent open-box (TOB) learning-network algo-
rithm (Wood 2018) overcomes many of the issues mentioned 
by not relying upon hidden correlations to calculate its pre-
dictions. It applies a matching technique between a tuning 
and training data subsets. The degree of match between the 
data records is quantified using squared-error analysis. The 
TOB stage 1 prediction establishes a set of high-ranking 

Fig. 1  Diagrammatic representation of the steps and stages in applying the transparent open-box (TOB) learning network algorithm (Wood 
2018). See Appendix 1 (TOB method) for a detailed description of each stage and step including the mathematical formulations
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matching records from which an initial prediction is made. 
The TOB stage 2 then applies an optimizer to identify the 
optimum weights to assign to each input to improve its pre-
diction accuracy. The transparent calculations used in TOB 
stages 1 and 2 are readily available to audit, and the level 
of accuracy it achieves compares favorably with the more-
opaque artificial-intelligence (AI) techniques (e.g., adaptive 
neuro-fuzzy inference systems, multi-layer perceptron and 
radial-basis function artificial neural networks, least squares 
support vector machines, and hybrids of those with evolu-
tionary optimization algorithms).

The AI methods mentioned do not need to be totally 
opaque. Simulation methodologies can provide a degree of 
transparency (Elkatatny et al. 2016). Variable importance 
algorithms can also establish the covariances between the 
influencing variables of AI methods. Auret and Aldrich 
(2012) achieve this with a random-forest algorithm. The 
TOB method goes further than this because it facilitates 
drilling down into the underlying variables to obtain the 
exact calculations involved in each of its predictions.

Here, the TOB method is applied to a 6339-record data 
set for US coals including both proximal and ultimate influ-
encing variables to predict GCV (Appendix 1, supplemen-
tary file). Highly-accurate predictions are achieved using a 
small tuning data subset (~ 1.5% of the full dataset). Matches 
are achieved through error analysis in a training subset that 
constitutes about 97% of the entire database. The remaining 
1.5% of the data records are not involved in the training or 
tuning process. They are used as a testing-data subset to 
independently test the TOB’s prediction performance. The 
dataset involves nine influencing variables that contribute 
through various applied weightings to predict GCV as the 
dependent variable.

Although a coal GCV dataset is used to demonstrate the 
benefits of the TOB learning network to the coal industry, 
there are other coal-related systems for which ANN is fre-
quently used as prediction tool that could equally benefit 
from its application. For example, coal petrography and 
petrology influencing variables in relation to a measure 
of coal grindability as a dependent variable (Trimble and 
Hower 2003; Bagherieh et al. 2008).

TOB method

TOB stages 1 and 2 comprise of 14 steps (Wood 2018). 
These steps are summarized in a flow diagram (Fig. 1). Stage 
1 builds upon lazy learning (Birattari et al. 1999) and nearest 
neighbour (Chen and Shah 2018) principles but with very 
specific error drivers. Stage 2 goes far beyond such princi-
ples by linking the selection of variable weightings to an 
optimizer, providing a more flexible and versatile weighting 
regime than typically associated with k-nearest neighbour 
classifiers (Samworth 2012).

The details and mathematical formulations involved in 
each of the 14 steps required to establish and implement a 
TOB learning network are described in Appendix 1.TOB 
Stage-1 predictions (steps 1–10) are often found to be quite 
accurate (e.g., comparable to those provided by typical 
k-learning algorithms). However, they typically can be much 
improved upon by applying TOB stage 2.

The TOB learning network can be successfully applied 
using spreadsheets (e.g. Excel workbooks) for mid-sized 
data sets. Fully-coded algorithm formats or hybrid VBA plus 
spreadsheet setups can speed up deployment for such data-
sets. For large datasets it is appropriate to deploy the TOB 

Table 1  Statistical summary of dataset compiled for gross calorific value (GCV) of 6339 US coals with each record linking measured proximate 
and ultimate analysis variables to their measured GCV value (MJ/kg)

The dataset is that compiled by Matin and Chelgani (2016) with records filtered from the US Geological Survey Coal Quality (COALQUAL) 
database (Version 2.0), open file report 97–134 (Bragg et al. 1997). Variables #1 to #9, inclusive, represent the input variables to the TOB model
Includes all data records in the Training, Tuning and Testing subsets

COALQUAL dataset used for gross calorific value (GCV) interval 6–35 MJ/kg prediction

Compiled dataset: 
6339 data records

Moisture (%) Volatiles (%) Fixed carbon (%) Ash (%) H (%) C (%) N (%) O (%) S (%) GCV (MJ/kg)

Variable descriptor #1 #2 #3 #4 #5 #6 #7 #8 #9 Dependent

Min 0.40 3.80 4.10 0.90 1.70 18.80 0.20 0.20 0.07 6.54
Max 57.20 55.70 87.00 24.90 9.50 89.60 5.60 59.90 12.80 35.46
Mean 8.79 32.40 48.38 10.43 5.34 65.58 1.29 15.50 1.86 27.07
Standard deviation 10.63 6.15 11.10 5.20 0.68 12.30 0.34 11.96 1.66 5.39
20-percentile 2.00 27.90 40.20 5.80 4.87 56.47 1.00 7.00 0.60 22.97
40-percentile 2.92 31.90 46.37 8.27 5.17 65.71 1.25 9.00 0.90 27.45
60-percentile 5.10 34.68 51.02 11.01 5.40 70.82 1.40 12.43 1.66 29.54
80-percentile 14.20 37.32 56.90 14.90 5.70 75.77 1.59 24.02 3.11 31.46
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algorithm in a fully-coded configuration, e.g., in Octave, 
Python, MatLab, R, VBA, etc.

A hybrid VBA-Excel spreadsheet configuration is used 
here to predict the gas calorific value (GCV) from a pub-
lished dataset of coals from the United States (6339 data 
records).

Dataset compiled to predict coal gross 
calorific value (GCV)

There are numerous well-established published correlations 
based on linear and multi-variable regressions, particularly 
for coals from the United States (US), based on proximate 
and/or ultimate analysis (Given et al. 1986; Neavel et al. 
1986; Singh and Kakati 1994; Channiwala and Parikh 2002; 
Majumder et al. 2008; Mathews et al. 2014). Several of these 
provide predictions with low absolute errors and correla-
tion coefficients  (R2) > 0.9 between measured and predicted 
GCV. However, as many of the variables involved in proxi-
mate and ultimate analysis vary in a non-linear manner, pre-
diction improvements have been achieved by applying non-
linear regression or machine-learning algorithms such as 
artificial neural networks (ANN), support vector regression 

(SVR) or adaptive network based fuzzy inference system 
(ANFIS) (Patel et al. 2007; Mesroghli et al. 2009; Chelgani 
et al. 2010, 2011; Yalcin Erik and Yilmaz 2011; Kavsek 
et al. 2013; Tan et al. 2015; Feng et al. 2015). These are 
mainly based on proximate analysis of relatively small data 
sets of coals from India and China but achieve high levels of 
prediction accuracy with  R2 > 0.99 between measured and 
predicted GCV in some cases.

Tan et al. (2015) also demonstrate a GCV prediction per-
formance with  R2 > 0.99 for their SVR algorithm using the 
many thousands of samples of US coal analysis provided by 
the US Geological Survey Coal Quality (COALQUAL) data-
base (Bragg et al. 1997). Matin and Chelgani (2016) dem-
onstrated that the random forest algorithm (Breiman 2001; 
Auret and Aldrich 2012) establishing covariances between 
the influencing variables, could produce highly accurate pre-
dictions of GCV  (R2 > 0.97 for proximate data;  R2 > 0.99 for 
ultimate data) using a filtered version of the COALQUAL 
(version 2) database. Matin and Chelgani (2016) filtered out 
coal records with > 25% ash as being unsuitable for use in 
power production and those with analysis that did not sum 
to 100.

This left 6339 data records of the COALQUAL database 
which they used to test their random forest algorithm. It is 

Fig. 2  a–d Proximate analysis variable relationships with gross calorific value for the 6339 data records for US coals compiled from the US 
Geological Survey Coal Quality (COALQUAL) database version 2.0, open file report 97–134 (Bragg et al. 1997)
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these 6339 data records that are used here to test the TOB 
algorithm. It should be noted that the COALQUAL dataset 
has now been updated and extended (> 13,000 coal records) 
by the issue of version 3 (Palmer et al. 2015), but for the 
current purpose it is deemed more useful to use the filtered 
version 2 dataset for which published GCV-prediction per-
formances are available for comparison. Matin and Chelgani 
omitted fixed carbon (FC) and oxygen (O) values from the 
GCV-influencing variables they included in their predic-
tion model, because they were derived from other variables 
in the proximate or ultimate analysis. These variables are 

included in the TOB analysis as they are valuable for data-
record matching purposes.

The compiled-US-coal-GCV dataset used here to dem-
onstrate the prediction capability of the TOB method 
spans a significant range of GCV. It also incorporates sig-
nificant ranges of input-variable distributions (proximate 
and ultimate analysis) as shown in (Table 1). The details 
for each of the 6339 data records are provided in a sup-
plementary file (see “Appendix”). This includes the values 
of all variables and links to the sample numbers listed in 
the extracts from the COALQUAL version 2 data base 

Fig. 3  a–f Ultimate Analysis variable relationships with gross calorific value for the 6339 data records for US coals compiled from the US Geo-
logical Survey Coal Quality (COALQUAL) database version 2.0, open file report 97–134 (Bragg et al. 1997)
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(Bragg et al. 1997) as complied by Matin and Chelgani 
(2016). From the supplementary file it is possible to locate 
the exact COALQUAL sample number and US State of 
origin of each.

It is clear from Table  1 that the data set is skewed 
towards the higher end of the GCV range; nearly 80% of 
the samples fall in the GCV range 23–35.5 MJ/kg. This 
means that the lower end of the GCV scale (i.e., < 15 MJ/
kg) is sparsely sampled; representing about 4.5% of the 
data records. This feature of the dataset is addressed in the 
learning networks constructed.

The highly dispersed and non-linear relationships 
between each of the input variables (#1 to #9) and the 
dependent variable GCV are illustrated in Figs. 2 and 3. 
For the proximate analysis variables (Fig. 2), moisture 
content and fixed carbon show the best correlations GCV; 
the former a negative correlation  (R2 = 0.8216), and the 
latter a positive correlation  (R2 = 0.77). On the other hand, 
Ash and Volatiles show poor correlations with GCV and 
greater dispersal (Fig. 2). The dispersal in the Ash versus 

GCV relationship gradually reduces in this dataset for 
GCV values > 25 MJ/kg. For the ultimate analysis vari-
ables (Fig. 3), carbon and oxygen show the best correla-
tions GCV; the former a positive correlation  (R2 = 0.9847), 
and the latter a negative correlation  (R2 = 0.8345). The 
other variables in Fig. 3 show significant dispersion and 
non-linearity, particularly S.

TOB predictions of coal gross calorific value 
(GCV) from the compiled 6339‑record GCV 
dataset

The GCV dataset is divided into subsets (training = 6155 
records; tuning = 92 records; and, testing = 91 records). 
Some 97% of the 6339 records (full data set evaluated) 
reside in the training subset. Allocation of records for tun-
ing and testing is spread arbitrarily across the entire range of 
data values. It is best to avoid random allocations as this is 
likely to lead to clustering and gaps in specific data ranges. 

Fig. 4  Predicted versus meas-
ured GCV (MJ/kg) for 92 TOB-
tuning subset records with 6155 
records in the training subset

Fig. 5  Predicted versus meas-
ured GCV (MJ/kg) for 91 TOB-
tuning subset records with 6155 
records in the training subset. 
The data records of the testing 
subset were excluded from the 
tuning and training subsets
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Steps 2 and 6 of the method (Appendix 1) help to distribute 
the records for tuning and testing systematically (e.g., using 
a specified ranking-interval spacing to select from the ranked 
and sorted dataset), but avoids being subjectively selective.

This allocation was achieved initially ranking the full 
dataset in ascending (or descending) order of GCV val-
ues and then by selecting every 70th data record from the 
full data set to be put to one side during the tuning process 
and allocated to the testing subset. Two additional records 
were also added to the testing subset: one close to the lower 
GCV limit; and, one close to the upper GCV limit. A simi-
lar approach was then taken in the selection of the tuning 
subset records from the remaining dataset, i.e., every 70th 
data record from the combined training and tuning subset 
(ranked in order of GCV values) was allocated to the tuning 
subset. Two additional records are then added to the tuning 
subset: one close to the lower GCV limit; and, one close to 
the upper GCV limit. This approach ensures a full spread 
of GCV values, representative of the entire data range, in 
both the testing and tuning subsets. Such a spread cannot be 
guaranteed by using random sampling. For the learning net-
work to be tuned across its entire dependent variable range 
it is essential that the tuning subset is distributed relatively 
evenly across that range.

Table 2 provides TOB-prediction results for coal GCV 
dataset. The optimum GCV-prediction performance is 
assessed by comparing actual and predicted GCV values. 
This is initially calculated for the tuning-subset records 
and achieves RMSE = 0.33462 MJ/kg;  R2 = 0.9963 with 
optimized Q = 9 (i.e. the nine-highest ranking data record 
matches from the training subset are used in the TOB stage-2 
predictions). The TOB stage-2 variable weights established 
for the optimum solution (most accurate predictions) were: 
w#1 = 5.304E−04, w#2 = 8.317E−03, w#3 = 0, w#4 = 1.576 
E−03′ w#5 = 0; w#6 = 1.0; w#7 = 2.062E−03, w#8 = 0, and 
w#9 = 4.348E−03. The very small weights applied to sev-
eral of the input variables have significant influence on the 
prediction accuracy achieved. Section 6 addresses this point. 
Suffice it to say here that it does not follow that the higher 
the weight applied to a variable in the TOB method, the 
more significant that variable is in determining the predicted 
values.

Table 2 compares the prediction achieved with sub-
optimal values of Q (i.e., Q = 2 to 10) with the optimal 
value of Q = 9. The results show that accurate GCV pre-
dictions can be achieved using most Q values in that range 
 (R2 = 0.9944 for Q = 2; compared to 0.9963 for Q = 9). 
This suggests that for this learning network the value of Q 
plays a subordinate role, as high degrees of accuracy are 
achieved for all values of Q tested. This is further empha-
sized by the low range of root mean square (RMSE) values 
of 0.33462 (Q = 9) to 0.41393 MJ/kg (Q = 2) MJ/kg. These 
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values indicate that the dataset is not noticeably under-
fitted when Q = 2.

The TOB stage 1 predictions (Q = 10 and Wn = 0.5; 
see the left side of Table 2) also show credible accuracy 
(RMSE = 0.48381 MJ/kg;  R2 = 0.9923). The data-record-
matching conducted by TOB Stage 1 is, clearly, an essential 
contributing component to the optimum GCV predictions.

Testing-subset predictions (Table 2: lower two rows) 
applying optimum Q and Wn values achieves very slightly 
higher accuracy in GCV prediction than the tuning set 
GCV predictions. Testing subset accuracy metric values 
are: RMSE = 0.30556 MJ/kg and  R2 = 0.9970 (Table 2). 
The accuracy of the TOB method’s predictions compares 
favourably with those achieved by other machine learning 
and empirical correlation methods applied to this dataset 
(Matin and Chelgani 2016) and other data sets (Feng et al. 
2015; Tan et al. 2015).

Figures 4 and 5 display the optimum TOB predictions for 
coal GCV the tuning and testing subsets, respectively. It is 
apparent from these graphs that the data coverage for coals 
in the GCV < 15 range is only sparsely sampled by both 
tuning and testing subsets. In order to verify that the TOB 
network can produce consistent predictions of meaningful 
accuracy in this sparser data area a separate TOB network 
is sampled to analyse and tune that section of the GCV dis-
tribution more extensively.

Auditing and interrogating TOB predictions

Matching of data records rather than establishing correla-
tions between input variables is the basis of the TOB meth-
odology. It is constrained in its predictions by the range 
covered by the lowest and highest GCV values; it cannot 
extrapolate beyond that range (in contrast to many other AI 
methods).

For many machine-learning algorithms and empirical cor-
relations it makes sense to apply their optimum coefficients 
to the data records in the training set as well as the tuning 
and/or testing sets used to verify their accuracy. When apply-
ing the TOB algorithm predictions are made only for data 
records that are not already present in the training subset. 
Predictions for records already in the TOB training set would 
achieve exact matches (RMSE = 0) and provide no insight 
to the accuracy of the method. This is a fundamental and 
distinguishing difference between the TOB methodology and 
most other AI methods (except K-learning-type methods).

As there are no hidden or difficult-to-access interme-
diate correlations involved in TOB the underlying cal-
culations in each prediction are accessible Indeed, a key 
benefit of the TOB algorithm is that it allows each predic-
tion calculation step to be readily analysed. Tables 3, 4, 
5 and 6 provide examples of how this is achieved and the Ta
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information it provides. These tables detail the TOB pre-
dictions (stages 1 and 2 presented separately) for record # 
2738 (Tables 3, 4) and record # 193 (Tables 5, 6). Tables 3 
and 5 focus on the TOB-stage-1 calculations (Q = 10; 
Wn = 0.5). Tables 4 and 6 focus on TOB-stage-2 predic-
tions (2 ≤ Q ≤ 10; 0 ≤ Wn ≤ 1). The left side of the tables 
displays the ten high-matching records established by TOB 
stage 1 for data records #193 and #2738. The upper half 
of the tables displays the nine input-variable values (#1 to 
#9) and the dependent variable (GCV). These values are all 
expressed in normalized terms (ranging from − 1 to + 1). 
The matching records are listed in order of the matching 
rank; the first is the closest match; the one listed 10th is the 
10th -best match of all the records, from the 6155 records 
in the GCV training set.

The lower half of Tables 3, 4, 5 and 6 applies the Q and 
Wn values to the squared errors calculated for the variables. 
The column fourth from the right (in the lower half each 
table) lists the sum of the weighted-squared errors (SumE). 
For stage 1 (Q = 10) the values of ten matching records are 
involved in the calculation of SumE; for stage 2 (Optimum 
Q = 6) the values of only six matching records are involved 
in the calculation of SumE. In both cases it is the last three 
columns to the right in the lower half of these tables that 
detail the actual and relative contributions of each of the 
high-matching records to the prediction. It is the sum of 
the contributions in the right end column (lower half of the 
tables) that provides the prediction in normalized terms. the 
lowest two rows (right side numbers) in each of Tables 3, 4, 
5 and 6 provide a comparison with of the actual predicted 
GCV (transformed from the normalized scale) and the meas-
ured GCV for the data record being analysed.

The last three columns of Tables 3, 4, 5 and 6 (lower half 
of those tables) are the key calculations to focus upon. These 
use the SumE values to generate GCV predictions for the 
data record in question. The formulas provided in the head-
ing of each of those three columns explains the calculations 
made.

For record #2738 (Tables  3, 4) each of the top-ten 
high-ranking records contributes small amounts to the 
prediction, but the higher the ranked match the greater its 
contribution to that prediction. The rank#1 match contrib-
utes 14.2% to the prediction whereas the rank #10 match 
only contributes 6.7% to the GCV prediction for record 
2738. The GCV prediction achieved is quite accurate; < 
+0.5 MJ/kg above the measured value of 29.1 MJ/kg. In 
TOB stage 2 (Table 4) for record 2738 only the top nine 
match records contribute to the GCV prediction because 
the optimized Q value selected is 9. Also, as the weight-
ings for each variable are not equal for the optimized 
solution the relative contributions of those top-ranking 
matches are no longer governed only by the closeness of 
their match with the record 2738 variables. This is clear Ta
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as the prediction is now dominated by record match ranks 
#8 and #3 (41.6% and 40.0% contributions, respectively, 
to the GCV prediction; see lower half Table 4 column sec-
ond from the right). The optimization adjustment for this 
record generates a better stage-2 prediction, i.e., ~+0.3 
above the 29.1 MJ/kg measured GCV value for record 
2738.

The TOB stage 2 prediction is not always better than 
the TOB stage 1 prediction, but that is the case most of 
the time as the optimizer is minimizing the RMSE across 
the entire tuning or testing subsets. The second example, 
for testing subset data record 193, shows a case where the 
stage 1 TOB prediction outperforms the stage 2 TOB predic-
tion. The stage 1 prediction (Table 5) is ~-0.32 MJ/kg less 
than the measured GCV value for that record of 20.9 MJ/
kg, whereas the stage 2 prediction (Table 6) is ~ 0.47 MJ/
kg less than the measured value. In the stage#1 prediction 
all ten top-matching records contribute between ~ 7.0% and 
14.3% to the prediction (rank # 1 contributes the most, but 
it does not dominate the prediction). In contrast, the stage 
#2 prediction is dominated by ranked-matches #1 (59.6%), 
#9(13.4%) and #6 (10.1%). When a prediction has more sig-
nificant input from the lower of the top-ranking matches, 
the accuracy of that prediction is sometimes impaired. Both 
stage 1 and stage 2 predictions are credible predictions for 
record 193 but influenced by those top-ten ranking matches 
quite differently.

For both examples, the important role of those variables 
with very-low-Wn (> 0) values in determining the stage 2 
predictions is apparent. If those variable weights were zero, 
they would not contribute to the improved accuracy of the 
optimized solution.

The details provided by Tables 3, 4, 5 and 6 highlight 
just how deeply it is possible to interrogate both the stage-1 
and stage-2 predictions and its high level of prediction 
transparency. Moreover, it is able to provide almost foren-
sic insight into the similarity between each record tested 
against each record in the training subset. This can be use-
ful in the case of trying to identify the exact provenance 
of a certain coal (e.g. a specific basin or even a specific 
mine can sometimes be identified by the closeness of the 
high-ranking matches). Hence, in some cases it is not only 
the prediction of the dependent variable value that can be 
derived from this learning network, but this can be accom-
panied by provenance information. Other machine learn-
ing algorithms and empirical relationships that are under-
pinned by correlations cannot easily deliver this level of 
detail into the degree of similarity with specific records in 
their training subsets.
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Analysis of a more sparsely populated data 
subset (GCV > 6 to < 15 MJ/kg)

To provide more insight into the more sparsely populated 
GCV < 15 MJ/kg range of the compiled dataset, a separate 
TOB network is evaluated using just the 283 samples in the 
data base with GCV < 15 MJ/kg. The statistical summary 
of the measured variables for these 283 records (which 
are also included in the dataset described in Table 1) is 
provided in Table 7.

This more-focused TOB divides its data records, 
using the same methodology as already described (train-
ing records = 235; tuning records = 24 records; testing 
records = 24 records). This TOB tunes this GCV inter-
val with 24 data records, whereas in the larger-dataset 
TOB previously described only involved 5 data records 
to tune that GCV interval. Table 8 describes the details 
of the tuned and optimized prediction performance of 
this focused TOB, with sensitivities, demonstrating high 
prediction accuracy as illustrated (Fig. 6) for its testing 
subset (RMSE = 0.2944;  R2 = 0.9644). The accuracy is 
not as high as for the larger dataset (see Fig. 5) due to the 
greater spacing of training-subset data records (i.e. more 
sparsely distributed data) for the GCV interval < 15 MJ/kg. 
This highlights a key positive feature of the TOB learning 
network approach, i.e., it is resistant to over-fitting sparse 
data sets. As the spacing between datapoints in the train-
ing set increases, the statistically accessed accuracy of its 
predictions tends to decrease. Although such behaviour is 
intuitive that is not necessarily the outcome with empiri-
cal calculations or learning networks driven by complex 
correlations between the variables, which are prone to 
over-fitting.

Table 8 reveals that the best prediction performance 
for this focused TOB network is for Q = 9. The sensitivity 
analysis shows that RMSE increases and  R2 decreases as 
the value of Q decreases below the value of 9 with  R2 fall-
ing below 0.96 for Q values below 8. However, for Q = 3 
the prediction accuracy is also good and superior to values 
of Q = 2 or Q = 4. This is true for both tuning and testing 
subsets (Table 8). Indeed Q = 3 represents a local mini-
mum, which the Solver evolutionary optimizer selected as 
its optimum (became trapped at) on most of its runs. This 
bimodal optimization outcome suggests that for some data 
records better predictions are achieved for Q = 3. Closer 
inspection of data record #3452, highlighted on Fig. 6 for 
the optimum Q = 9 tuned setting as having a relatively low 
accuracy in comparison to most other records in the test-
ing subset.

Tables 9 and 10 describe the detailed calculation of 
the GCV TOB stages 1 and 2 predictions for data record 
#3452, respectively. In the stage 1 prediction (Table 9) 
the matching record ranked#1 (record #3106) contributes 
32.95% to the GCV prediction, with the other high−rank-
ing−matched records contributing progressively less until 
matched record ranked #10 (record#21) contributes just 
6.0% to the GCV prediction. For this stage 1 prediction, 
the top−three matched records contribute > 50% to that 
calculation. This achieves a prediction of high accuracy, 
i.e., −0.3 below the measured GCV value of 12.67 MJ/kg.

For data record #3452 the TOB-stage-2 prediction 
(Table 10) generates a significantly less-accurate prediction 
than that achieved by the stage-1 prediction (Table 9). The 
reason for this is that in the TOB stage 2 solution, with Q = 9 
and variable weights applied, the top-3 matched records only 
contribute about 18% to the prediction. On the other hand, 

Table 7  Statistical summary of data subset (283 records) compiled for gross calorific value (GCV) between > 6 and < 15 MJ/kg of US coals 
with each record linking measured proximate and ultimate analysis variables to their measured GCV value (MJ/kg)

This data subset is extracted from the low GCV end of that compiled by Matin and Chelgani (2016) with records filtered from the US Geological 
Survey Coal Quality (COALQUAL) database (Version 2.0), open file report 97–134 (Bragg et al. 1997)
Includes all data records in the Training, Tuning and Testing subsets

COALQUAL dataset used for gross calorific value (GCV) interval > 6 to < 15 MJ/kg prediction

Compiled dataset: 
283 data records

Moisture (%) Volatiles (%) Fixed carbon (%) Ash (%) H (%) C (%) N (%) O (%) S (%) GCV (MJ/kg)

Variable descriptor #1 #2 #3 #4 #5 #6 #7 #8 #9 Dependent

Min 18.30 18.50 7.80 3.50 2.90 18.80 0.20 32.20 0.10 6.54
Max 57.20 40.00 35.75 24.30 8.20 42.10 1.20 59.90 8.40 14.99
Mean 38.64 25.55 24.46 11.36 6.62 34.62 0.62 45.85 0.93 13.30
Standard deviation 6.11 2.72 4.20 5.39 0.74 3.81 0.16 4.88 0.91 1.46
20-percentile 34.40 23.60 21.92 6.54 6.12 31.90 0.50 42.34 0.35 12.24
40-percentile 37.98 24.80 24.30 8.55 6.60 34.50 0.60 45.80 0.50 13.35
60-percentile 40.72 25.90 26.02 11.70 6.90 36.37 0.60 47.80 0.80 13.98
80-percentile 43.20 27.20 27.65 17.18 7.20 37.61 0.70 49.60 1.30 14.49



411Modeling Earth Systems and Environment (2019) 5:395–419 

1 3

Ta
bl

e 
8 

 P
re

di
ct

io
n 

ac
cu

ra
cy

 v
er

su
s T

O
B

 o
pt

im
iz

at
io

n 
co

nt
ro

l m
et

ric
s (

Q
 a

nd
 W

n)
 fo

r t
he

 2
83

-r
ec

or
d 

G
C

V
 d

at
a 

se
t c

ov
er

in
g 

th
e 

ra
ng

e 
G

C
V

 >
 6 

an
d 

<
 15

 M
J/k

g

Tr
an

sp
ar

en
t o

pe
n 

bo
x 

(T
O

B
) l

ea
rn

in
g 

ne
tw

or
k 

re
su

lts
 a

nd
 v

ar
ia

bl
e 

w
ei

gh
tin

gs
 in

 th
e 

pr
ed

ic
tio

n 
of

 g
as

 c
al

or
ifi

c 
va

lu
e 

(G
C

V
) o

f c
oa

l f
or

 in
te

rv
al

 >
 6 

to
 <

 15
 M

J/k
g 

fro
m

 p
ro

xi
m

at
e 

an
d 

ul
tim

at
e 

da
ta

 v
ar

ia
bl

es
 (d

at
as

et
 w

ith
 2

83
 re

co
rd

s)

Va
ria

bl
e 

de
sc

rip
-

tio
n

Va
ria

bl
e 

nu
m

be
r

Pr
e-

op
ti-

m
iz

at
io

n 
eq

ua
l 

w
ei

gh
t-

in
gs

B
es

t s
ol

u-
tio

n 
so

lv
er

 
G

RG
 

m
ul

ti-
st

ar
t

B
es

t s
ol

u-
tio

n 
so

lv
er

 
ev

ol
u-

tio
na

ry
 

al
go

rit
hm

Se
ns

iti
vi

ty
 a

na
ly

si
s w

ith
 Q

 c
on

str
ai

ne
d 

to
 in

te
ge

rs
 p

ro
gr

es
si

ve
ly

 fr
om

 1
0 

to
 2

 (a
ll 

ca
se

s r
un

s w
ith

 fo
r t

he
 2

4 
re

co
rd

s o
f 

th
e 

tu
ni

ng
 su

bs
et

 w
ith

 th
e 

So
lv

er
 G

RG
 o

pt
im

iz
er

 c
on

fig
ur

ed
 in

 th
e 

sa
m

e 
w

ay
)

Q
 c

on
-

st
ai

ne
d 

to
In

te
ge

r c
on

str
ai

nt
s

2 
to

 1
0

2 
to

 1
0

10
9

8
7

6
5

4
3

2

Q
 se

le
ct

ed
 

fo
r s

ol
u-

tio
n

In
te

ge
r #

10
9

3
10

9
8

7
6

5
4

3
2

Pr
ed

ic
tio

n 
pe

rfo
rm

an
ce

 o
f o

pt
im

um
 a

nd
 c

on
str

ai
ne

d 
op

tim
um

 so
lu

tio
ns

 a
pp

lie
d 

to
 th

e 
tu

ni
ng

 su
bs

et
 (2

4 
re

co
rd

s:
 ~

 8
.5

%
 o

f t
ot

al
 d

at
as

et
)

R
M

SE
M

J/k
g

0.
56

07
2

0.
27

46
0

0.
31

03
2

0.
28

00
2

0.
27

46
0

0.
31

34
4

0.
34

57
3

0.
34

46
9

0.
35

41
4

0.
33

87
0

0.
30

78
5

0.
41

02
0

R
2

fr
ac

tio
n

0.
89

25
0.

96
86

0.
96

15
0.

96
85

0.
96

86
0.

96
35

0.
95

13
0.

94
89

0.
94

59
0.

95
05

0.
96

14
0.

94
03

W
ei

gh
tin

gs
 (0

 ≤
 w

 ≤
 1)

 A
pp

lie
d 

to
 c

on
str

ai
ne

d 
op

tim
um

 so
lu

tio
ns

 fo
r t

he
 tu

ni
ng

 su
bs

et
M

oi
stu

re
 

(%
)

#1
0.

5
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

Vo
la

til
es

 
(%

)
#2

0.
5

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00

Fi
xe

d 
ca

r-
bo

n 
(%

)
#3

0.
5

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00

A
sh

 (%
)

#4
0.

5
0.

00
0E

 +
 00

3.
84

7E
-0

2
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

H
 (%

)
#5

0.
5

2.
01

8E
-0

1
9.

45
8E

-0
1

1.
68

8E
-0

1
1.

69
1E

-0
1

1.
94

4E
-0

1
2.

04
4E

-0
1

0.
00

0E
 +

 00
9.

52
5E

-0
2

2.
91

9E
-0

1
1.

08
4E

-0
1

2.
78

7E
-0

1
C

 (%
)

#6
0.

5
1.

00
0E

 +
 00

2.
00

7E
-0

2
1.

00
0E

 +
 00

8.
37

9E
-0

1
9.

99
2E

-0
1

1.
00

0E
 +

 00
1.

00
0E

 +
 00

7.
50

4E
-0

1
1.

00
0E

 +
 00

1.
00

0E
 +

 00
1.

00
0E

 +
 00

N
 (%

)
#7

0.
5

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

1.
82

8E
-0

3
8.

57
6E

-0
3

4.
54

2E
-0

3
5.

44
0E

-0
3

0.
00

0E
 +

 00
O

 (%
)

#8
0.

5
0.

00
0E

 +
 00

1.
11

0E
-0

1
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
4.

40
0E

-0
2

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

S 
(%

)
#9

0.
5

0.
00

0E
 +

 00
3.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

0.
00

0E
 +

 00
0.

00
0E

 +
 00

1.
76

3E
-0

2
2.

73
1E

-0
2

3.
67

0E
-0

2
7.

80
9E

-0
2

3.
80

6E
-0

2
R

at
io

 o
f #

6 
w

ei
gh

t t
o 

#5
 

w
ei

gh
t

1
4.

95
0.

02
5.

92
4.

95
5.

14
4.

89
N

/A
7.

88
3.

43
9.

23
3.

59

Pr
ed

ic
tio

n 
pe

rfo
rm

an
ce

 o
f o

pt
im

um
 so

lu
tio

n 
va

ria
bl

e 
w

ei
gh

tin
gs

 a
nd

 Q
 v

al
ue

 a
pp

lie
d 

to
 th

e 
te

sti
ng

 su
bs

et
 (2

4 
re

co
rd

s:
 ~

 8
.5

%
 o

f t
ot

al
 d

at
as

et
)

R
M

SE
M

J/k
g

0.
51

25
3

0.
29

43
8

0.
33

07
6

0.
28

81
4

0.
29

43
8

0.
33

06
7

0.
37

21
0

0.
37

81
0

0.
35

19
6

0.
35

03
0

0.
34

31
4

0.
39

72
7

R
2

fr
ac

tio
n

0.
91

16
0.

96
44

0.
95

72
0.

96
63

0.
96

44
0.

95
81

0.
94

4
0.

94
19

0.
94

98
0.

95
03

0.
95

34
0.

93
57



412 Modeling Earth Systems and Environment (2019) 5:395–419

1 3

the matched record #8 (record # 3110) contributes 68% 
to the GCV prediction. This achieves a prediction of less 
impressive accuracy, i.e., − 0.64 below the measured GCV 
value of 12.67 MJ/kg. In this case, considering the analysis 
just described and the sensitivity analysis of Table 8, a case 
could be made for applying a Q = 3 cut off for the predic-
tion of this data record. This approach highlights how the 
transparency of the TOB learning network’s calculation 
aids the analysis of outlier data records (i.e., those for which 
predictions fall significantly off trend). It makes it possible 
identify, in detail, the reasons for such outlying prediction 
values. It also often provides the justification for potential 
adjustments that might be made to improve /correct the pre-
dictions for such problematic data records.

Auditing TOB predictions and conducting sensitiv-
ity analysis (e.g. varying Q values from the optimum and 
changing the data-subset allocation percentages) focused 
on specific data-records facilitates rigorous outlier analy-
sis; something that is difficult with most other AI methods 
not easily possible with correlation-based machine learning 
algorithms or empirical calculations. This TOB strength is 
particularly beneficial for datasets for which details of spe-
cific data-record predictions are important (e.g. for com-
mercial valuation purposes or detailed sample provenance 
purposes; both of which apply to GCV and commercial coal 
datasets). This feature could also be usefully applied to other 
commercially-important characteristics of coal (e.g., predict-
ing coal grindability from multiple input variables based on 
coal petrological properties).

Although the coal dataset studied here is relatively large, 
and the TOB algorithm clearly copes well with such num-
bers of data records, as a “big data” tool, the TOB algorithm 
may have some limitations with very large datasets. Clearly, 
the algorithm has to contain and manage a large training data 
base, whereas the performance (i.e., computational speed) 
of the algorithm is also likely to progressively deteriorate as 

the intrinsic dimensionality of the variable space increases. 
Further studies are required to establish the limits of appli-
cability of the algorithm to such “big data” sets. However, 
although computational time is likely to deteriorate for very 
large data sets, the transparency provided by the TOB algo-
rithm may compensate for this. As stage 2 of the algorithm 
focuses on just a few of the best matches (i.e., up to ten or 
so) the collective influence of a significant number of vari-
ables would remain fully transparent.

The COALQUAL dataset lends itself to further studies 
on the impacts of sparse data coverage on TOB prediction 
performance. A future study will conduct sensitivity analysis 
that progressively excludes percentages of the dataset from 
the training data subset used for model tuning (i.e. adding 
those excluded data records to the testing subset). This will 
quantify how sparse the training data subset can become 
before it ceases to yield meaningfully accurate predictions 
for the dependent variable.

Conclusions

The transparent open-box (TOB) learning network algorithm 
provides credible and reliable predictions of dependent vari-
ables, such as coal gross calorific value (GCV), that involve 
complex, highly dispersed and non-linear datasets for the 
influencing variables. Its high-prediction accuracy, demon-
strated in this study, when applied to predict GCV from nine 
influencing variables from proximate and ultimate analysis 
from a large published data set (6339 data records of US 
coals) testifies to such capabilities. The method could be 
easily applied to more limited datasets, e.g., those based 
upon only the easier to obtain proximate analysis variables.

TOB’s prediction performance for this published coal 
data set compares favourably to that reported by other arti-
ficial-intelligence algorithms and empirical correlations, 

Fig. 6  Predicted versus 
measured GCV (MJ/kg) for 24 
testing subset data records used 
to test the TOB model with 283 
records (GCV > 6 and < 15 MJ/
kg) in the training subset. The 
24 testing data records were 
excluded from the TOB training 
process. Data record #3452 with 
a relatively poor fit between 
measured and predicted GCV is 
highlighted and its TOB predic-
tion is considered in detail in 
Table 9



413Modeling Earth Systems and Environment (2019) 5:395–419 

1 3

Ta
bl

e 
9 

 E
xa

m
pl

e 
au

di
t o

f t
he

 c
al

cu
la

tio
n 

de
ta

ils
 fo

r t
he

 T
O

B
 st

ag
e 

1 
G

C
V

 p
re

di
ct

io
n 

as
so

ci
at

ed
 w

ith
 sp

ec
ifi

c 
da

ta
 re

co
rd

s. 
Th

is
 c

al
cu

la
tio

n 
is

 fo
r t

he
 T

O
B

 p
re

di
ct

io
n 

fo
r d

at
a 

re
co

rd
 1

93
 (p

ar
t o

f 
th

e 
te

sti
ng

 su
bs

et
)

Ex
am

pl
e 

of
 h

ow
 th

e 
G

C
V

 p
re

di
ct

io
n 

ca
lc

ul
at

io
n 

of
 e

ac
h 

da
ta

 re
co

rd
 in

 th
e 

TO
B

 n
et

w
or

k 
ca

n 
be

 a
ud

ite
d 

in
 d

et
ai

l a
fte

r s
ta

ge
 1

St
ag

e 
1

Ev
en

ly
 w

ei
gh

te
d 

su
m

 o
f s

qu
ar

es
 e

rr
or

s (
w

SS
E)

R
an

k 
of

 
M

at
ch

es
 

(in
 

tra
in

in
g 

su
bs

et
)

To
p-

ra
nk

in
g 

m
at

ch
ed

 
re

co
rd

s

M
oi

st
Vo

ls
Fi

xC
A

sh
H

C
N

O
S

D
ep

en
de

nt
 

va
ria

bl
e 

G
C

V
 (M

J/
kg

)

Te
st re
co

rd
34

52
−

0.
19

28
−

0.
75

81
0.

20
21

0.
61

54
0.

20
75

0.
01

29
−

0.
20

00
−

0.
55

96
−

0.
03

61
0.

45
05

Th
e 

sa
m

e 
to

p 
te

n 
m

at
ch

es
 

es
ta

bl
is

he
d 

by
 T

O
B

 st
ag

e 
1 

ar
e 

us
ed

 in
 T

O
B

 st
ag

e 
2 

w
ith

 
di

ffe
re

nt
 w

ei
gh

ts
 a

nd
 Q

 v
al

ue
 

ap
pl

ie
d

R
an

ki
ng

Re
co

rd
s

#1
#2

#3
#4

#5
#6

#7
#8

#9
G

C
V

1
31

06
−

0.
17

74
−

 0
.5

90
7

0.
00

89
0.

67
31

0.
13

21
0.

03
00

−
0.

40
00

−
 0

.5
16

2
−

 0
.2

53
0

0.
20

30
2

34
53

−
0.

40
36

−
 0

.1
90

7
0.

11
63

0.
53

85
0.

13
21

0.
27

90
0.

00
00

−
 0

.6
89

5
−

 0
.1

32
5

0.
64

47
3

34
49

−
0.

51
16

−
 0

.2
83

7
0.

15
92

0.
77

88
−

 0
.0

18
9

0.
21

89
0.

00
00

−
 0

.8
62

8
0.

10
84

0.
55

67
4

34
40

−
0.

23
91

−
 0

.6
00

0
−

 0
.0

91
2

0.
93

27
0.

13
21

−
 0

.1
58

8
−

 0
.6

00
0

−
 0

.4
80

1
−

 0
.5

18
1

0.
11

44
5

34
59

−
0.

01
29

−
 0

.6
27

9
0.

06
62

0.
32

69
0.

24
53

0.
12

45
−

 0
.6

00
0

−
 0

.2
63

5
−

 0
.5

90
4

0.
28

82
6

56
22

−
0.

06
43

−
 0

.2
18

6
−

 0
.1

19
9

0.
25

00
0.

28
30

−
 0

.0
21

5
0.

00
00

−
 0

.2
20

2
−

 0
.2

28
9

0.
21

56
7

34
60

−
0.

32
85

−
 0

.6
16

7
0.

49
62

0.
32

60
0.

15
85

0.
51

16
−

 0
.2

40
0

−
 0

.5
65

3
−

 0
.6

62
7

0.
80

58
8

31
07

−
0.

08
48

−
 0

.6
93

0
0.

03
76

0.
56

73
0.

24
53

0.
00

43
−

 1
.0

00
0

−
 0

.3
79

1
−

 0
.4

21
7

0.
33

11
9

31
10

−
0.

12
60

−
 0

.4
88

4
0.

00
18

0.
48

08
0.

28
30

0.
15

88
−

 0
.6

00
0

−
 0

.3
64

6
−

 0
.7

59
0

0.
48

51
10

21
−

0.
38

82
−

 0
.5

34
9

0.
25

22
0.

68
27

0.
13

21
0.

35
62

−
 0

.4
00

0
−

 0
.6

39
0

−
 0

.8
31

3
0.

63
37

N
or

m
al

iz
ed

 v
al

ue
s (

Sc
al

e:
 −

1 
to

 +
 1)

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

in
pu

t 
va

ria
bl

es
 

eq
ua

lly
 

w
ei

gh
te

d
R

an
ki

ng
Re

co
rd

s
w

SS
E#

1
w

SS
E#

2
w

SS
E#

3
w

SS
E#

4
w

SS
E#

5
w

SS
E#

6
w

SS
E#

7
w

SS
E#

8
w

SS
E#

9
Su

m
 o

f 
w

ei
gh

te
d 

sq
ua

re
d 

er
ro

rs
 

(S
um

E)

Y
 =

 
X

/S
um

E
F 

=
 

Y
/Z

C
on

tri
bu

-
tio

ns
 to

 
pr

ed
ic

-
tio

n
F*

G
C

V
 

(o
f 

re
co

rd
)

1
31

06
1.

19
0E

−
04

1.
40

2E
−

02
1.

86
6E

−
02

1.
66

4E
−

03
2.

84
8E

−
03

1.
47

4E
−

04
2.

00
0E

−
02

9.
38

4E
−

04
2.

35
2E

−
02

8.
19

1E
−

02
42

.1
27

3
0.

32
95

0.
06

69
2

34
53

2.
22

2E
−

02
1.

61
0E

−
01

3.
68

7E
−

03
2.

95
9E

−
03

2.
84

8E
−

03
3.

54
0E

−
02

2.
00

0E
−

02
8.

44
5E

−
03

4.
64

5E
−

03
2.

61
2E

−
01

13
.2

11
5

0.
10

33
0.

06
66

3
34

49
5.

08
1E

−
02

1.
12

5E
−

01
9.

21
7E

−
04

1.
33

6E
−

02
2.

56
3E

−
02

2.
12

2E
−

02
2.

00
0E

−
02

4.
59

8E
−

02
1.

04
5E

−
02

3.
00

9E
−

01
11

.4
68

1
0.

08
97

0.
04

99
4

34
40

1.
07

1E
−

03
1.

25
0E

−
02

4.
30

4E
−

02
5.

03
4E

−
02

2.
84

8E
−

03
1.

47
4E

−
02

8.
00

0E
−

02
3.

15
4E

−
03

1.
16

1E
−

01
3.

23
8E

−
01

10
.6

56
7

0.
08

33
0.

00
95

5
34

59
1.

61
9E

−
02

8.
48

0E
−

03
9.

24
2E

−
03

4.
16

1E
−

02
7.

12
0E

−
04

6.
22

6E
−

03
8.

00
0E

−
02

4.
38

2E
−

02
1.

53
6E

−
01

3.
59

9E
−

01
9.

58
96

0.
07

50
0.

02
16

6
56

22
8.

26
1E

−
03

1.
45

5E
−

01
5.

18
4E

−
02

6.
67

5E
−

02
2.

84
8E

−
03

5.
89

4E
−

04
2.

00
0E

−
02

5.
75

8E
−

02
1.

85
8E

−
02

3.
72

0E
−

01
9.

27
64

0.
07

25
0.

01
56

7
34

60
9.

21
2E

−
03

9.
99

6E
−

03
4.

32
5E

−
02

4.
18

8E
−

02
1.

20
3E

−
03

1.
24

4E
−

01
8.

00
0E

−
04

1.
66

8E
−

05
1.

96
3E

−
01

4.
27

0E
−

01
8.

08
22

0.
06

32
0.

05
09



414 Modeling Earth Systems and Environment (2019) 5:395–419

1 3

with the added benefit that it is more easily audited and 
generally more transparent. The TOB algorithm does not 
develop any correlations when calculating its predictions. 
Instead, it establishes (in TOB stage 1) the closest matches 
with ten data records in its large associated training sub-
set. In TOB stage 2 the algorithm improves its prediction, 
based on statistical measures of accuracy for tuning and 
testing data subsets (i.e., minimizing root mean squared 
error between predicted and measured GCV values). It 
achieves this by applying an optimizer to select the number 
of those matches (2 ≤ Q ≤ 10) and applying tuned weights 
to the errors associated with each input variable.

The calculations involved in the predictions derived 
from the TOB algorithm are individually auditable. 
Standard Solver optimizers or customized evolutionary or 
non-linear optimization algorithms can be used to success-
fully and transparently achieve the TOB stage 2 optimized 
predictions. Such flexibility and access to the underlying 
calculations is not possible with most other artificial-
intelligence prediction methods or empirical calculations.

An additional valuable feature of the TOB algorithm 
is the ease with which sensitivity analysis can be con-
ducted by modifying its Q value. In particular, the Q-value 
sensitivities can help to identify whether the algorithm is 
over-fitting or underfitting a dataset. These positive attrib-
utes make the TOB algorithm a suitable prediction-per-
formance benchmark with which to compare the predic-
tions of other machine-learning and empirical correlation 
algorithms. It typically provides complementary results 
to other algorithms with respect to insight to the underly-
ing dataset. Indeed, in some cases, where the dataset cov-
ers coals from many different regions and mines the TOB 
algorithm has the ability, through its record matching stage 
1 routine, to identify the provenance of specific samples.

The detailed calculations shown for example data records 
demonstrate exactly how the predictions of the TOB algo-
rithm can be audited and assessed. These detailed calcula-
tions are not complex, rather they highlight the prediction 
mechanisms involved and the key roles played by the opti-
mized Q value and the input variable weights in producing 
the stage 2 optimized predictions. The ability to interro-
gate and verify in detail specific predictions is increasingly 
important for providing user confidence in prediction algo-
rithms. By revealing useful information about the relative 
importance of identified training-subset records in terms of 
their contributions to specific predictions, and the problem-
atic nature of other data records (e.g., outlying values of 
certain metrics not replicated in other data records), the TOB 
method provides such user confidence. In some applications 
it may be worth sacrificing a small degree of accuracy in 
order to obtain such insight and confidence associated with 
the predictions to be deployed.
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Appendix 1: TOB learning network method 
details

TOB stage 1 (data matching and provisional 
prediction)

Step 1 Set up a 2-D array of N input variables and one 
dependent variable to be predicted for each of M data records.

Step 2 Arrange the data records in a systematic order 
defined by the prediction variable’s values (e.g. ascending 
or descending value order).

Step 3 Derive maximum and minimum values (and other 
standard statistics, such as mean and standard deviation) for 
all records in the dataset (Table 1).

Step 4 Normalize the data in the array so each variable 
spans a range from minus 1 to plus 1 (− 1, +1). This is 
achieved by using Eq. (1)

where: Xi: variable X value for the ith data record, Xmin: 
minimum value of variable X, Xmax: maximum value of 
variable X.

Step 5 Generate statistical analysis of the normalized val-
ues to check that the variables are all correctly normalized.

Step 6 Distribute the data records between training, tun-
ing and testing subsets. Sensitivity analysis is conducted to 
establish the optimum percentage of data records to allocate 
to each data subset. Firstly, the data records to be used for 
testing are extracted from the complete data set and placed 
to one side. Sensitivity analysis then helps to divide the 
remaining data records between the training and tuning 
subsets in proportions that achieve an acceptable prediction 
accuracy. For most data sets the training subset is likely to 
hold more than 75% of the data records. For large datasets of 
several thousand data records the sensitivity analysis often 
reveals that the training subset can be a much larger percent-
age without compromising prediction accuracy.

Step 7 The variable squared error (VSE) between each varia-
ble in the J data records of the tuning-data subset and the K data 
records in the training-data subset are calculated using Eq. (2):

where: Xk(tr) = variable X value for the kth training-subset 
data record, Xj(tu) = variable X value for the jth tuning-
subset data record, VSE(X)jk = squared error value for vari-
able X for the jth tuning-subset data record versus the kth 
training-subset data record.

∑VSE is then established as the sum of the VSE values 
for each variable for each data record match using Eq. (3):

(1)Xi ∗= 2 ∗
[(

Xi − Xmin
)

∕(Xmax − Xmin)
]

− 1

(2)VSE(X)jk =
[

Xk(tr) − Xj(tu)
]2

(3)
∑

VSEjk =

n=N+1
∑

n=1

VSE(Xn)jk ∗ (Wn)

Ta
bl

e 
10

  
(c

on
tin

ue
d)

Ex
am

pl
e 

of
 H

ow
 th

e 
G

C
V

 P
re

di
ct

io
n 

C
al

cu
la

tio
n 

of
 E

ac
h 

D
at

a 
Re

co
rd

 in
 th

e 
TO

B
 n

et
w

or
k 

ca
n 

be
 A

ud
ite

d 
in

 D
et

ai
l a

fte
r S

ta
ge

 2

M
ax

 h
14

.9
93

4
St

ag
e 

2 
O

pt
im

iz
ed

 P
re

di
ct

io
n 

of
 G

C
V

 fo
r d

at
a 

re
co

rd
: #

34
52

12
.0

28
9

A
ct

ua
l M

ea
su

re
d 

G
C

V
 fo

r d
at

a 
re

co
rd

: #
34

52
12

.6
69

7



417Modeling Earth Systems and Environment (2019) 5:395–419 

1 3

where: VSE(Xn)jk = squared error for variable Xn for the jth 
tuning-subset data record versus the kth training-subset data 
record. 

∑

VSEjk = sum of the squared errors for all N + 1 
variables for that data record match.

Wn = weight (0 < Wn < = 1) applied VSE of each of the 
N + 1 variables involved. These weights are all set to the 
same values (e.g. 1) in TOB stage 1 to avoid any bias in the 
initial training of the prediction network.

Step 8 Select and rank (lowest in ∑VSE is ranked number 
1) the top-Q-matching data records in the training subset for 
each tuning subset data record. Q = 10 is typically sufficient 
for TOB stage 1. However, Q could be adjusted to higher or 
lower values, if necessary to improve prediction accuracy.

Step 9 The Q-selected training-subset data records (i.e. 
best matches) for the jth tuning-subset data record each con-
tribute a fraction to the prediction of the dependent variable. 
That fraction is proportional to the relative ∑VSE scores 
of those Q records for the jth data record That fraction is 
calculated with Eq. (4) to Eq. (6) and

 where: q = qth top-ranking training-subset record for the 
jth tuning-subset data record. fq = fractional contribution of 
qth top-ranking records for the jth tuning-subset data record.

The constraint defined by Eq. (5) applies the sum of the f 
values applied to each matching data record.

The matching training-subset data record with the low-
est 

∑

VSEjkvalue should contribute most to the dependent-
variable prediction for the jth tuning-subset data record. To 
achieve this (1 − f) is the multiplier applied in Eq. (6) to each 
of the Q top-matching records.

Where:
(

XN+1

)predicted

j
 = dependent variable for the qth data record 

in the training subset.
(

XN+1

)predicted

j
 = Stage − 1 TOB predicted value for the 

dependent variable for the jth tuning-set data record.
This prediction is provisional because equal weights (Wn) 

are applied to the variables in TOB stage 1.
Step 10 Measures of statistical accuracy are calculated 

for the TOB stage 1 predictions. The measures used include: 
coefficient of determination  (R2); mean square error (MSE); 

(4)fq =
∑

VSEjq

/[

r=Q
∑

r=1

∑

VSEjr

]

(5)
q=Q
∑

q=1

fq = 1

(6)
(

XN+1

)predicted

j
=

q=Q
∑

q=1

[

(

XN+1

)

q
∗
(

1 − fq
)

]

and, root mean square error (RMSE). These are calculated 
with Eq. (7) to Eq. (9), respectively.

where: Xj = dependent variable (i.e. 
(

XN+1

)

j
 in Eq. (6)) for 

the jth tuning-subset data record; Xactual
j

 = actual (or directly 

measured) value of the dependent variable for the jth tuning-
subset data record; Xpredicted

j
 = predicted value of the depend-

ent variable for the jth tuning-subset data record; 
Xactual
ave

 = average actual value of the dependent variable for 
all J data records in the tuning subset.

TOB stage 2 (optimization)

Step 11 Optimization is performed to minimize RMSE 
(Eq. 9) collectively for the J data records in the tuning sub-
set. This is achieved by adjusting optimization control met-
rics while applying certain constraints.

The two optimization control metrics are:

1. Varying the values applied to the N input-variable 
weights (Wn). Small non-zero values to weights applied 
to certain variables can and do have a significant impact 
on the accuracy of the predictions derived.

2. Varying the number (Q) of top matching records in 
Eqs. (4), (5) and (6). For most data sets: 2 ≤ Q ≤ 10. 
The optimizer is allowed to select the best integer value 
of Q to minimize RMSE. It does this by systematically 
changing the value of Q in the three equations men-
tioned and by comparing the RMSE value for the predic-
tions generated for each integer value of Q evaluated in 
the range 2 ≤ Q ≤ 10. For examples, if Q is set to “4”, 
the predictions for all of the tuning subset data records 
only use the top-4 matching records from the training 
subset related to each tuning subset record in making 
their predictions. In this way the optimization algorithm 
identified which value of Q leads to the most accurate 
predictions for the tuning subset as a whole.

Here, the Generalized Reduced Gradient (GRG) algo-
rithm option of the standard “Solver” optimizer in Micro-
soft Excel (Frontline Solvers 2018) is used, in conjunction 

(7)R2 = 1 −

∑j=J

j=1
(Xactual

j
− X

predicted

j
)
2

∑j=J

j=1
(Xactual

ave
− X

predicted

j
)
2

(8)MSE =
1

J

j=J
∑

j=1

(Xactual
j

− X
predicted

j
)2

(9)RMSE =
√

MSE
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with visual basic for application (VBA) code, to conduct 
the optimization process. Other evolutionary optimizers 
could be applied to achieve similar outcomes. For mid-sized 
dataset calculating the TOB predictions in Excel facilitates 
the display all the intermediate calculations in a conveni-
ent format.

The top-matching data records in the training subset for 
each tuning-subset data record are carried forward from 
TOB stage 1 for selection by TOB stage 2. Equation (3) is 
re-evaluated by varying Wn in each iteration of the optimizer. 
Additionally, TOB stage-2 

∑

VSEjq scores are derived with 
Eq. (4) by varying Q (2 < Q ≤ 10) in each iteration of the 
optimizer, contrasting with the fixed value of Q used in TOB 
stage 1.

Step 12 Calculate TOB stage-2 RMSE and R2 values for 
the predictions provided by the optimum step 11 solution. 
Compare the TOB stage-2 predictions with the TOB stage-1 
predictions to assess the prediction improvements achieved, 
if any. Running sensitivity analysis with different values of Q 
(i.e. Q = 2 to 10) often provides insight to potential underfit-
ting or overfitting issues with the data set.

Step 13 Calculate TOB stage-1 and stage-2 predictions 
for the independent testing data subset using the optimum 
values established for Wn and Q in step 11. Calculate and 
evaluate the RMSE and R2 values for the predictions calcu-
lated for the testing data. Reviewing the intermediate steps 
in the calculations often provides useful insight to the vari-
ables that have the most influence on prediction accuracy (it 
is often not those with the highest Wn values). It also helps 
perform outlier analysis (i.e., understanding why some data 
records lead to less-accurate predictions).

Step 14 Consider whether the prediction accuracy 
achieved by the method is sufficiently meaningful for it to 
be relied upon. Also, evaluate how its prediction accuracy 
compares with other machine-learning tools.

Appendix 2: Details of data records 
in the dataset

Supplementary data associated with the coal proximate 
and ultimate analysis data set to which the TOB network is 
applied (Matin and Chelgani 2016; Bragg et al. 1997) can 
be found, in the online version. The data in the supplemen-
tary Excel file is listed in one sheet as the complete dataset 
(6339 data records) and another with those records sorted in 
ascending order of GCV. To further aid transparency, other 
sheets in that file list the actual data records assigned to 
the training, tuning and testing subsets used for the analysis 
presented. This enables readers to view exactly how the TOB 
network was configured for the analysis described.
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