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Abstract
The major environmental impacts of urbanization have changed urban biophysical components which ultimately promoted 
land surface temperature (LST) as well as urban heat island (UHI). This study explores the upshot of land use land cover 
(LULC) and resultant effect on biophysical components to understand the heat island mechanism in the Kolkata Metropoli-
tan Area (KMA) for four selected time period of 1991, 2001, 2011 and 2017. Six satellite-derived biophysical components 
were selected for the present analysis: NDBI, NDVI, NDWI, MNDWI, NDBaI and SAVI. Selected bands of Landsat-5 TM 
and OLI-8 were used for this purpose. The result shows that the built-up area has been increased from 322.68 km2 in 1991 
to 982.86 km2 in 2017 and accordingly, LST also rises from 18.47 °C mean LST of 1991 to 23.30 °C mean LST of 2017. 
The correlation coefficient among the biophysical parameters and LST shows that the highest continuous increasing positive 
relationship between NDBI and LST (R = 0.71). Moreover, multiple linear regression model (MLR) is adapted to the predic-
tion on LST with the variation of biophysical parameters. Finally, we produced hot spot maps using Getis-Ord-Gi* statistics 
for the selected year to highlights the hot spot and cold spot area in KMA. The methodology presented in this paper can be 
broadly applied for the planning purposes because LST monitoring is an important parameter of sustainable urban planning.

Keywords  Land uses land cover change · Biophysical indices · LST · Multiple linear regression (MLR) · Hotspot-coldspot 
areas · Kolkata Metropolitan area

Introduction

Urbanization is the process characterized by urban land 
expansion and demographic changes as well as a drastic 
metamorphosis of land use pattern that effect on the physical 
boundaries of the cities (Grimm et al. 2008; Sun and Zhao 
2018). Unrestrained urbanization has resulted in intensive 
changes in the natural landscape (Haas and Ban 2014), urban 
ecosystem (Zhang et al. 2017), biodiversity (Li et al. 2016a, 

b), urban microclimate (Weng et al. 2008; Sannigrahi et al. 
2017), and energy flow (Decker et al. 2000) in various spa-
tio-temporal scale (Sun and Zhao 2018). According to the 
report of UN World Urbanization Prospects (United Nation 
2014), about 54% of the world total population were resid-
ing in the urban area in 2014 and it was projected to reach 
up to 66% in 2050. The cities of India are no exemption of 
this. The urban population of India is 31.16% (Census of 
India 2011) and it is estimated that it will reach 66% in 2050 
(United Nation 2014). Apart from this, as per Census of 
India 2011, the growth of urban population and urban land 
expansion of the large mega-cities are at an unpretending 
pace than the medium of small cities (Census of India 2011). 
According to Chen et al. (2014) the process of urbanization 
is the combined result of economic development, continu-
ous migration and various socio-environmental facilities in 
urban areas. However, the impromptu urbanization is the 
focal concern of the planners because, it has several implica-
tions and impacts (Sharma et al. 2013). At the present con-
text, urban land transformation and its impact on the urban 
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landscape and urban system are the most studied phenom-
enon (Jiang and Tian 2010; Ng et al. 2011; Kuang 2012; 
Scolozzi and Geneletti 2012; Liu et al. 2016). Comprehen-
sively studies have been done worldwide to quantify of envi-
ronmental alteration due to rapid urbanization (Kates et al. 
2001; Ren et al. 2003; Sharma et al. 2013; Hull et al. 2015).

The continuous and rapid urbanization can alter the num-
bers of physical and biological characteristics of urban land-
scape, including vegetation cover (Li and Liu 2017; Shifaw 
et al. 2018), water bodies (Yang et al. 2008; Popa et al. 2012; 
Sun et al. 2016; Ghosh et al. 2018), soil properties (Voogt 
and Oke 2003) and change of microclimate (Zhou et al. 
2004; Chen et al. 2006; Li et al. 2009; Pal and Ziaul 2017) 
due to the expansion of impervious surface i.e. built-up area 
(Sharma et al. 2015; Li et al. 2016a, b; Lu et al. 2017). It 
is indispensable to understand the impact of urbanization 
on the urban environment because, the sustainable urban 
growth can be achieved through the proper understanding 
of the coupling relationship between urbanization and its 
environmental impact (Li and Ma 2014). In this perspective, 
the aim of this present study is to quantify and analyze the 
spatio-temporal patterns of urbanization and urban biophysi-
cal components in the city Kolkata. Generally, biophysical 
components are defined as a set of indicators that are able 
to track the human impact on a given environment (Dietz 
et al. 2007; Sannigrahi et al. 2017). Oke (1987) stated that 
the increase of impervious surface due to rapid urbanization 
could alter the urban biophysical components that can sig-
nificantly affect Earth-Atmospheric energy process at micro 
scale. The mean average temperature at the local level is 
gradually increasing due to unprecedented change of landuse 
land cover (LULC) (Hoffmann et al. 2012).

Unpredicted and uncontrolled urban growth with 
increases of impervious area and haphazard development 
are the main features of Indian urbanization which causes 
significant decreases of agriculture land, vegetation covers, 

wetland and other natural water bodies and increased pollu-
tion, slum development and various social economic prob-
lems (Sudhira et al. 2004; Rahman et al. 2011; Punia and 
Singh 2012). Therefore, the modern remote sensing tech-
niques are considered as an invaluable tool for quantification 
and monitoring of urban land cover type with a higher level 
of accuracy (Bhatta 2009; Khan et al. 2017). The detailed 
and enhanced information can be obtained from remote sens-
ing data, with automatic and semi-automatic techniques and 
this information, i.e. images can be offered from the past. 
Consequently, the dynamic of the urban landscape can be 
easily monitored (Mushore et al. 2017; Santos et al. 2017). 
Landsat satellite imageries (such as MSS, TM, ETM+) are 
extensively used as the input database for various researches 
to extract the urban built-up area as well as estimation of 
other various biophysical elements (Yeh and Li 2001; Chen 
et al. 2006; Bhatta 2009; Sharma et al. 2013; Bhatti and 
Tripathi 2014; Sun and Zhao 2018). Researchers employ 
various remote sensing based indices to monitor urban 
expansion such as Normalized Difference Built-up Index 
(NDBI), Normalized Difference Vegetation Index (NDVI), 
Normalized Difference Water Index (NDWI), Normalized 
Difference Bareness Index (NDBal), Modified Normalized 
Difference Water Index (MNDWI) etc. and their impacts 
(Chen et al. 2006; Sharma et al. 2013; Li and Liu 2017). 
Table 1 highlighted the various indices and their application 
in urban research along with references.

The Land surface temperature (LST) is considered as 
one of the important biophysical parameters for the analy-
sis of urban health (Xiao and Weng 2007). The increase of 
impervious surface, i.e. built-up area due to modification 
and expansion of LULC in the urban area results in higher 
surface temperature (Qin et al. 2001; Amiri et al. 2009; Li 
et al. 2009; Zhou et al. 2011; Sharma et al. 2015; Wang et al. 
2018). Kalnay and Cai (2003) considered that LST is one 
of the important indicators for monitoring urban ecological 

Table 1   Different urban biophysical parameters and their applications in urban study

a These two parameters are introduced in this study as urban biophysical components and their role on controlling of land surface temperature 
(LST)

Indices Application References

NDVI Study of vegetation cover and dynamics, productivity, phonology biomass estimation, frac-
tal vegetation cover, urbanisation impact, analysis of surface temperature

Zhou et al. (2004), Jong et al. (2011), 
Liu et al. (2018), Ranagalage et al. 
(2018c)

NDBI Built up area extraction, urban sprawl monitoring and study of urban heat island effect 
(UHI)

Zha et al. (2003), Zhang et al. (2009), 
Sharma et al. (2015), Sharma et al. 
(2015)

NDWI Urban wetland, used for vegetation feature extraction and moisture Maki et al. (2004), Liu et al. (2018)
NDBal Extraction of bare land in urban area Chen et al. (2006), Sharma et al. (2015)
SAVIa Use for exclusion of soil background interference Huete (1988)
MNDWIa Enhance technique used to significantly demarcate between water bodies and others land 

use types
Xu (2006)
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performance. Weng et al. (2008) stated that LST is closely 
associated with urban biophysical attributes such as NDVI, 
NDBI, NDWI, and MNDWI. Usually, LST in the urban 
area is higher than other non-urban area and it is known 
as Urban Heat Island (UHI) effect (Chen et al. 2006). The 
UHI is related to the intensity of the built-up area (Trlica 
et al. 2017). Moreover, several studies have been carried out 
analyzing the relation between greenness (NDVI), imper-
vious land (NDBI) and land use and land cover changes 
(Chen et al. 2006; Weng et al. 2004; Xiao and Weng 2007; 
Zhou et al. 2011) with LST (Sandholt et al. 2002; Weng 
et al. 2006; Raynolds et al. 2008; Julien and Sobrino 2009; 
Estoque and Murayama 2017). Moreover, it is immensely 
important to assess the relationship among the various bio-
physical components with the variation of LULC. However, 
in this background, the present study is trying to evaluate 
and analyze the spatio-temporal patterns of LULC, dynam-
ics of biophysical composition and LST and also assess 
the urban footprint using mixed method of remote sensing 
technique and statistical calculation. Moreover, researchers 
attempted hot spot analysis, which is also useful to assess 
the high concentration of the LST visually (Adeyeri et al. 
2017; Tran et al. 2017).

So, there are extensive evidences of remote sensing based 
research on the urban biophysical composition and urban 
heat island phenomena (UHI) (Chen et al. 2006; Amriti et al. 
2009; Sharma et al. 2013; Sannigrahi et al. 2017). Thus the 
study highlights the spatio-temporal dynamics of urban land 
use and its associated bio-physical parameters such as veg-
etation cover, urban water bodies, soil moisture, built-up 
area as well as a change of land surface temperature (LST). 
The two explicit objectives of this research are (a) to assess 
the change of urban biophysical components with the change 
of land use, and (b) to find out the relationship between Land 
Surface Temperature (LST) and urban biophysical compo-
nents and their spatio-temporal patterns. Therefore, the pre-
sent study may be significant of the for the sustainable urban 
management.

Study area

Kolkata Urban Agglomeration (KUA) known as Kolkata 
Metropolitan Area (KMA) is the 3rd largest Urban Agglom-
eration (AU) in India (Census of India 2011), spreading 
over 1851 Km2 area situated on 22°00′19″ North latitude 
to 23°00′01″ North latitude and 88°00′04″ East latitude to 
88°00′33″ East longitudes (Fig. 1). It has developed as a lin-
ear and contiguous urban concentration in the North–South 
direction along the bank of the Hoogly River in both East-
ern and Western part. This urban agglomeration consists 
of 3 Municipal Corporation viz. Kolkata Municipal Cor-
poration (KMC), Howrah Municipal Corporation (HMC) 

and Chandannagar Municipal Corporation (CMC), and 38 
municipalities which are contagious with these 3 Municipal 
Corporations along with 77 Census towns i.e., non-munic-
ipal town and 16 outgrowths (UGs). Apart from this, the 
entire urban areas are surrounded by 445 rural villages con-
sists of the settlement, agricultural land, and green belt. The 
tropical wet and dry climate is mainly dominated over the 
area with 1650 mm monthly temperature ranging from 18 
to 35 °C. The population of this agglomeration is 14.72 Mil-
lion and the average population density is 7950 persons/Km2 
(Census of India 2011). The projected population of Kolkata 
urban agglomeration for 2021 will be 21.10 Million with 
1.8% annual growth rate (Census of India 2011). The high 
population density, compact urban growth and widespread 
transit network with low infrastructure only (6%) are the 
major spatial outlook of this agglomeration (Census of India 
2011). As a progressive metropolitan, KMA is habitually 
faced problems like air pollution, poverty, excessive migra-
tion, increasing slum population, traffic congestion and vari-
ous social economic problems (Bhatta 2009) due to rapid 
and unplanned urban growth (Dasgupta et al. 2013). Particu-
larly surrounded rural areas are becoming more vulnerable 
in terms of loss of vegetation, natural water bodies, soil and 
water pollution (Ramachandra et al. 2014; Mukherjee 2015; 
Mithun et al. 2016).

Materials and methods

Database

Landsat images of 1991, 2001, 2011 and 2017 are used for 
this study. Landsat Thematic Mapper (TM) images of 1991, 
2001 and 2011 and Operational Land Imager-8 (OLI-8) 
images for 2017 are used for measurement of urban bio-
physical parameters. The Thermal Infrared Sensor (TIRS) 
was also used for retrieval of the LST. The multi-temporal 
images were collected from the USA Geological Survey 
(http://earth​explo​rer.usgs.gov/). The collected images were 
pre-georeferenced to the UTM-Zone 45 North projection 
with WGS-84 datum (other information about collecting 
images are given in Table 2).

Image pre‑processing

The collected images were pre-processed using ERDAS 
Imagine 2014 software. Spectral enhancement was done 
by computing band-rationing combination with the help of 
vegetation indices to illustrate the relationship between vari-
ous biophysical parameters like built-up intensity (NDBI), 
greenness (NDVI), wetness (NDWI) water bodies (MNDWI) 
etc. with the thermal behaviour (LST) of an urban area. No 
further atmospheric correction was done as the cloud-free 

http://earthexplorer.usgs.gov/
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Fig. 1   Location of the study area along with different administrative boundaries and validation points

Table 2   Selected satellite data used for this analysis

Year, date and time Satellite Path and row Resolution Referencing system

1991, January 21 Landsat-5 TM 138/44 and 138/45 B, G, R, NIR, SWIR 1 and 2–30 m
TIR—120 m

UTM and WGS84

2001, January 12 Landsat-5 TM 138/44 and 138/45 B, G, R, NIR, SWIR 1 and 2–30 m
TIR—120 m

UTM and WGS84

2011, January 20 Landsat-5 TM 138/44 and 138/45 B, G, R, NIR, SWIR 1 and 2–30 m
TIR—120 m

UTM and WGS84

2017, January 08 Landsat-8 OLI and TIRS 138/44 B, G, R, NIR, SWIR 1 and 2–30 m
TIRS 1 and 2–100 m

UTM and WGS84
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images were selected for analysis (Deng and Wu 2013; 
Bhatti and Tripathi 2014; Khan et al. 2017). The boundary 
of the study was clipped initially to reduce null pixels at the 
processing stage and the careful observation was taken dur-
ing band combination from false color composition (FCC) 
(Zha et al. 2003). Landsat TM band 4 and 5 are most appro-
priate and functional to extract built-up area from other areas 
(Zha et al. 2003; Bhatti and Tripathi 2014; Khan et al. 2017). 
But OLI band is differing from TM bands, therefore, the 
spectral signatures of the built-up area should be checked 
(Bhatti and Tripathi 2014). At the same time, the other asso-
ciated signatures, i.e. vegetation, built-up area, water bodies, 
wetness etc. should be examined for various multi-temporal 
images (Khan et al. 2017). Red band (Band-3, wavelength 
0.63–0.69  µm) and Near-Infrared (NIR) band (Band-4, 
wavelength 0.76–0.90 µm) were used to identify vegetation 
cover in an area (Maxwell and Sylvester 2012). The built-
up area was estimated by Zhang et al. (2009) using Near 
Infrared band (NIR) (Band-4, wavelength 0.76–0.90 µm) and 
Shortwave middle-infrared (SMIR) (Band-5, Wavelength 
1.55–1.75 µm). But we confirmed the Digital Numbers (DN) 
of various land types, using 30 samples of DN values both 
for TM and OLI-8 bands, and plotted in Fig. 2 and it is 
shown that higher spectral reflectance of vegetation in both 
TM 4 and OLI 5 band. In this way, a positive value will be 
given by subtracting band 3 and 4 for TM and subtraction 
band 4 and 5 for OLI-8 which notably indicates the vegeta-
tion (Zha et al. 2003).

To produce thermal maps, noise reduction is required, 
especially for thermal infrared band (TIR) (Chen et  al. 
2006). The noise can be distressing through retrieval of LST 
and thus we adopt a self-adaptive filter method for reduc-
tion of non-periodic noise and fast fourier transform method 
(FTM) for removal of periodic noise. These tasks were per-
formed by ERDAS Imagine 2014 software. The DN values 
of thermal bands of Landsat OLI-8 (TIRS, band 10 and 11) 
were converted Top of Atmosphere (ToA) reflectance and 
at-satellite brightness temperature in °C was determined 

(USGS 2015). All the images were geometrically corrected 
and rectified using 450 ground control points (GCPs) col-
lected through GPS and Google Earth (Fig. 1). All the GCPs 
were validated by Root Means Square Error (RMSE) and the 
range of RMSE is 0.30 to 0.81 pixels which are accepted for 
further processing (Askne et al. 2003).

Method of land uses land cover (LULC) classification

The Landsat satellite data were used to LULC classifica-
tion. There have several of methods for the classification 
of urban LULC such as object-based classification (Drǎguţ 
and Blaschke 2006), algorithm-based classification (Mather 
2004), artificial neural network (ANN) and support vector 
machine (Mitra et al. 2004; Van der Linden et al. 2007) etc. 
But supervised classification is the most useful methods 
for extraction of LULC map particularly in the urban area 
(Sahana et al. 2018). The maximum likelihood (ML) classi-
fication algorithm was adopted for supervised LULC classi-
fication as the ML algorithm is most useful and well known 
parametric classifiers (Otukei and Blaschke 2010). The ML 
algorithm is based on Bayes’ theorem for computing the 
most likely class ( ωj) from a set of N classes to any spectral 
band i.e. feature vector ( x ) which have a highest posterior 
probability, Pr(ωj|x ) . Therefore, all posterior probability is 
calculated i.e. Pr(ωj|x ) , j ∈ [1]and highest value are selected 
with likely class, ωj . The calculation of Pr(ωj|x ) is:

Posterior probability with feature vectors ( x) should be 
classified with most likely class (ωj) . The major advantage 
of this classifier is that it considered variance–covariance 
values within the class distribution and therefore it is well 
performed than other parametric classifiers (Erbek et al. 
2004; ERDAS 2009). EARDAS Imagine 2014 is used to 
perform supervised classification. Therefore, classification 

(1)Pr(ωj|x ) =
Pr(ωj|x ) × Pr

(
ωj

)
Pr (x)

.

Fig. 2   Comparison of spectral signatures of built-up land, vegetation cover, water bodies, barren land and agricultural land between a optical 
bands of 1–5 and 7 of Landsat TM and b optical band of 2–6 and 7 of OLI-8
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scheme has been developed in two stages: first, LULC types 
have been determined (detailed LULC classification scheme 
are shown in Table 3) and, then, accuracy assessment has 
been done through ground truth. LULC change has been 
calculated using a change matrix technique using ArcGIS

Accuracy assessment

Accuracy assessment is done for LULC classes and LULC 
change of the study area. It indicates the degree of differ-
ence between classified images and reference data. Thus, to 
determine the quality of information extracted from the data, 
classification accuracy of 1991, 2001, 2011 and 2017 images 
were analyzed. We use some of the accuracy statistics, 
namely, the overall accuracy (OA), user’s accuracy (UA), 
producer’s accuracy (PA) and Kappa coefficient as accuracy 
statistics were derived from the error matrix to assess the 
classification accuracies (Congalton and Green 2009)

UA is measuring the commission error and represent the 
probability of classified pixel represent the category truly 
on the ground when PA represents the how the classification 
was fit (Zhou et al. 1998). The PA and UA are derived as:

Kappa coefficient is used for measures of inter-observer 
agreement for characterized items and widely used for 
LULC accuracy assessment (Foody 1992). Kappa coefficient 
(K) is calculated as:

(2)OA =
Number of true positive + Number of true negative

Pixels in the ground truth
× 100%.

(3)UA =
Row elementsdiagonal

Rowtotal

,

(4)PA =
Column elementsdiagonal

Columntotal
.

(5)K =
n
∑q

k=1
nkk−

∑q

k=1
nk+n+k

n
2−

∑n

k=1
nk+n+k

,

where n is the total no of pixels the references data, nkk is the 
total no of i class, nk is the total no of pixels for the ith class 
derived from the classified data, n+k is the total no of pixels 
for the ith class derived from the reference data, q is the total 
no of class. The value of K with more than 0.85 is consid-
ered for excellent agreement (Monserud and Leemans 1992).

Extraction of biophysical components

Normalized difference built‑up index (NDBI)

The NDBI is the important index to the extract built-up 
area i.e. impervious areas (Chen et al. 2006). It is efficiently 
used to extract built-up area from remote sensing data using 
the reflectance of Middle Infrared (MIR) and Near Infrared 
(NIR) (Zha et al. 2003). It is a common and useful technique 
used by the researchers for the identification of impervious 
surface (Zha et al. 2003; Zhang et al. 2009). The generalized 

equation of NDBI is

where MRI is the middle infrared band and (band 5 for TM 
and band 6 for OLI-8) and NIR is the near-infrared band 
(band 4 for TM and band 5 for OLI-8). The Value of NDBI 
range from − 1 to + 1 and values closer to 0 represents veg-
etation cover, the negative value represents water bodies and 
a positive value indicates the built-up area (Zha et al. 2003).

Normalized difference vegetation index (NDVI)

Increases of the built area can be easily comprehended by 
the loss of vegetation cover and NDVI is a useful technique 
to determine the greenness of any area (Sharma et al. 2013). 
It is a significant variable for the analysis of urban growth 
and urban micro-climatic phenomena (Chen et al. 2006). 

(6)NDBI =
MIR − NIR

MIR + NIR
,

Table 3   Various LULC classes and their descriptions

Code LULC types Description

1 High dense built-up area All commercial and residential areas, transport and other infrastructure
2 Moderate dense built up area Newly developed residential area, out growths, satellite towns, villages and 

transportation infrastructure
3 Vegetation and plantation Forest, trees, shrub, planted trees, garden and parks, grassland
4 Water bodies Rivers, wetlands, ponds, permanent open water
5 Agricultural land and Agricultural field, crop fields and all cultivated areas
6 Barren land Barren land, fallow land, dumping ground, open ground without grass cover
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Townshend and Justice (1986) calculated a method of NDVI 
extraction using reflectance of NIR and red band (R). It 
expressed as:

where NIR represents band 4 for Landsat TM and band 5 for 
OLI-8 and R represent band 3 for TM and band 4 for OLI-
8. The range of NDVI value is − 1 and + 1. The large value 
of NDVI indicates vegetation cover, small positive values 
indicate the built-up area or bare land and negative value, 
i.e. close to 0 indicates the water bodies (Zhang et al. 2009).

Normalized difference water index (NDWI)

NDWI is used for the assessment of liquid water present in 
vegetation as NDWI are directly proportional to vegetation, 
water content (Chen et al. 2006). The equation of NDWI 
was proposed by McFeeters (1996) using the reflectance of 
Green (G) and NIR band and it can be expressed as

where Green represents band 2 and NIR represent band 4 
for TM and band 3 and band 5 are green and NIR band 
respectively for OLI-8. The value of NDWI ranges is from 
− 1 to + 1. Actually, NDWI is significant over NDVI because 
NDWI is less sensitive to the atmospheric scattering (Gábor 
and Jombach 2010).

Modified normalized difference water index (MNDWI)

MNDWI can be useful for estimating water bodies signifi-
cantly without any built-up area and vegetation noise (Xu 
2006). Here this method is used for clear identification of 
urban water bodies and their changing patterns. MNDWI 
can be expressed as

Normalized difference bareness index (NDBaI)

The dynamics of NDBaI are considered as an important bio-
physical component for urban expansion. Chen et al. (2006) 
proposed the concept of NDBaI and extracted the bare land 
using the Eq.

where SWIR 1 (shortwave infrared) represents band 5 for 
TM and band 6 for OLI-8 and TIR (thermal infrared) rep-
resent band 6 for TM and band 10 and 11 for OLI-8. It has 

(7)NDVI =
NIR − R

NIR + R
,

(8)NDWI =
G − NIR

G + NIR
,

(9)MNDWI =
G −MIR

G +MIR
.

(10)NDBaI =
SWIR 1 − TIR

SWIR 1 + TIR
,

good contrast between bare land with vegetation and moist 
surface.

Soil adjusted vegetation index (SAVI)

SAVI as proposed by Huete (1988) to extract vegetation 
cover without the noise of soil background. Liu et al. (2018) 
used SAVI as significant indicators for land use mapping. 
The index of SAVI is calculated as

where L is the constant value and it is basically the denomi-
nator of NDVI formula.

Extraction of LST from thermal band

The effects of the urban growth can be reflected through the 
change of the surface temperature. We used Landsat image-
ries after necessary correction for the determination of the 
LST. The step-wise procedures of LST retrieval are given 
below:

1.	 Conversion of digital number (DN) to spectral radiance 
(Lλ)

	   The object having a temperature above absolute zero 
(K) emits energy of thermal electromagnetic appear-
ance. Using this principle, thermal sensors were con-
verted from sensor radiance. The spectral radiance (Lλ) 
can be given as (Markham and Barker 1985; Avdan and 
Jovanovska 2016; USGS 2016)

where L is the sensor-derived spectral reflectance, 
(W m− 2 sr− 1 µm− 1), Lmaxλ and Lminλ are the minimum 
and maximum spectral radiances for band 6 respec-
tively. QCAL is the digital number (DN) of each pixel. 
QCALmin is the minimum DN value of the image, here 
QCALmin = 0; and QCALmax is the maximum DN value of 
the image, here QCALmax = 255.

2.	 Conversion of spectral radiance (Lλ) to brightness tem-
perature (Tβ)

	   It is necessary to convert spectral radiance (Lλ) to 
reflectance (Tβ) for the correction of emissivity accord-
ing to land use variation. According to Nichol (1994), 
almost a value of 0.95 is given to vegetated area and 
0.92 for the non-vegetated area. The emissivity can be 
computed by using the formula of Artis and Carnahan 
(1982).

(11)SAVI =
(NIR − R) (1 + L)

(NIR + Red + L)
,

(12)
Lλ = Lminλ +

[
(Lmaxλ − Lminλ)

(QCAL max − QCALmin )
× QCAL

]
,
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where Tβ is the brightness temperature (K), Lλ rep-
resent spectral radiance of sensor (W m− 2 sr− 1 µm− 1) 
K1 and K2 are  the  cal ibra t ion constant , 
(K1 = 60.776 mW cm− 2 sr− 2 µm− 1 and K2 = 1260.56 K 
for Landsat band). An absolute zero (approx − 
273.15 °C) should be added to revise the temperature in 
terms of a degree Celsius (Xu and Chen 2004).

3.	 Emissivity correction through NDVI method
	   The retrieval of the temperature value is necessary for 

correction of spectral emissivity ( � ). It can be achieved 
through the nature of land use land cover change or by 
the computing of an emissivity value using NDVI of 
individual pixels. NDVI is important as the proportion 
of vegetation(Pv ) should be calculated using NDVI. The 
NDVI is calculated by using the Eq. (6). The Pv can be 
calculated as

where NDVIsoil and NDVIveg are the threshold values 
of soil pixel and the pixel of vegetation. The threshold 
values of NDVIs is 0.2 and NDVIV is 0.7 (Sobirno et al. 
2004).

4.	 Land surface emissivity calculation ( ϵ)
	   The calculation of land surface emissivity ( � ) is 

important to estimate LST and it is considered as a pro-
portionality factor of Plank’s Law i.e., blackbody radi-
ance that predicts emitted radiance (Jiménez-Muñoz 
et al. 2006). The emissivity ( � ) is calculated as

where �vegand �soil are the vegetation and soil emis-
sivity respectively, and C is the representation of sur-
face roughness and 0.005 is constant by the following 
equation

5.	 Retrieval of LST
	   Emissivity corrected LST is the last stage of the LST 

retrieval and it is computed as:

(13)Tβ =
K2

In
(

K1

Lλ

+ 1
) − 273.15,

(14)
Pv =

(
NDVI − NDVIsoil

NDVIveg + NDVIsoil

)2

,

(15)
�λ = �veg.λPv + �soil.λ

(
1 − Pv

)
+ Cv,

(16)

𝜀λ =

⎧⎪⎨⎪⎩

𝜀Sλ NDVI < NDVIsoil

𝜀veg⋅λPv + 𝜀soil⋅λ
�
1 − Pv

�
+ C NDVI ≤ NDVI ≥ NDVIveg

𝜀soil⋅λ + C NDVI > NDVIveg.

(17)LST =
T�[

1 + {(� ⋅ T�∕�)In ⋅ ��}
] ,

where LST means land surface temperature in °C, T� 
is the sensor brightness temperature (°C) derived from 
Eq. 12, � is the wavelength of emitted radiance in meter 
( � = 10.895�m) (Markham and Barker 1985), �� is the 
emissivity determined by the Eq. (14) and,

where � is the Boltzmann Constant (1.38×10−23 J K−1), 
h is the Planck’s constant (6.626×10−34 J K−1) and C is 
the velocity of light (2.998 × 108 m s−1).

Statistical techniques

In order to compare the relationship between urban biophys-
ical components and LST, we used Pearson’s correlation 
coefficient with R statistical programming. The 350 valid 
sample points were selected using systematic random sam-
pling from the altered and unaltered areas. The extracted 
values of these sample points were used for correlation sta-
tistics. The LST prediction model is considered as a sig-
nificant assignment for urban suitability analysis and urban 
sustainable planning. The regression model is considered as 
the most useful technique regarding this purpose (Adam and 
Smith 2014; Shi et al. 2018) because it is a very common, 
significant and suitable technique for factor based empiri-
cal down-scaling study (Crawley 2007). In this study, we 
used Multiple Linear Regression (MLR) model in which a 
dependent variable ( yi ) can be explained by a linear combi-
nation with more than two independent variables (xin) and 
it is expressed as:

In this model, �0 is the intercept or constant and�1 , �2 , 
... �n are called regression slopes or regression coefficient 
estimated by ordinary least square method. ∈i is the error 
term called residuals of models. The MLR model of four 
selected years was validated by Durbin-Watson value and 
multicollinearity test.

Hotspot analysis using Getis‑Ord Gi* statistics

Thermal Index is commonly used for LST to show the Urban 
Heat Island (UHI) effect and the impact of the change of 
urban biophysical composition (Mathew et al. 2017). But hot 
spot analysis is more useful to assess the high concentration 
of the LST visually (Adeyeri et al. 2017; Tran et al. 2017) 
Using the mean values of LST hot spot maps was produced 
over the study area in different periods. Hotspot analysis 
tool (Getis-Ord Gi*) in ArcGIS is used for this purpose. In 
general, the high clustered value considered as the hotspot, 
but it should be statistically significant (Getis and Ord 1992). 
Getis-Ord Gi* is calculated as:

(18)� = h
C

�
= 1.438 × 10−2mK,

(19)yi = �0 + �1xi1 + �2xi2 +…+ �nxin + ∈i.
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where xj is the attribute value for the feature j,�i,j is the 
spatial weight between feature i and j,n is equal to the total 
number of the feature.

and,

The output of Getis-Ord Gi* represented by z-score and, 
the largest positive value of z score indicates high clustering 
(Wulder and Boots 1998) i.e. hotspot and the largest nega-
tive value of z-score indicate the cold spot. In this study, we 
categorised seven classes of hot spot and cold spot according 
to their significant z-value: < 99% significant indicates high 
hot spot (z-score ≥ 2.58, 99–95% significant indicates hot 
spot (z-score = 2.58 to 1.96), 95%–90% significant indicates 
warm spot (z-score = 1.96 to 1.65), z-value of 1.65 to − 1.65 
indicates not significant, 90% significant indicates cool spot 
(z-score = − 1.65 to − 1.96), 90–95% significant indicates 
cold spot (z-score = − 1.96 to − 2.58) and > 95% significant 
indicates highly cold spot (z-score ≤ − 2.58) (Tran et al. 
2017; Ranagalage et al. 2018a, b). The brief methodologi-
cal highlights are shown in Fig. 3.

Results and discussion

Analysis of land uses land cover (LULC) change

Supervised land classification with maximum likelihood 
(ML) classification algorithm was employed to classify 
LULC and change pattern as it is more suitable and accu-
rate in urban areas. First, we classify the land use types for 
Kolkata Metropolitan Area (KMA) into six major categories 
(a) highly dense built-up area, (b) moderately dense built-
up area, (c) vegetation and plantation, (d) water bodies, (e) 
agricultural land and (f) Barren land. Wetland and river are 
considered underwater bodies and similarly open place and 
fallow lands are considered under barren land. Considering 
the aim of the research we have analyzed the LULC change 
maps for the 4 selected years, i.e. 1991, 2001, 2011 and 
2017. It is seen that KMA is experiencing rapid change of 
its LULC dynamics in last 25 years. All the classified maps 
were validated using Kappa statistics, producers accuracy, 

(20)
G∗

i
=

∑n

j=1
𝜑i,j xj − x̄

∑n

j=1
𝜑i,j

S

�
n
∑n

j=1
𝜑2
i,j
−
�∑n

j=1
𝜑i,j

�2

n−1

,

(21)X̄ =

∑n

j=1
xi

n
,

(22)S =

�∑n

j=1
xj2 − (X̄)

2

n
.

users accuracy and overall accuracy. The overall accuracy 
for LULC classifications are 90.22%, 92.00%, 94.22% and 
96.78% for the 1991, 2001, 2011 and 2017 respectively. 
Similarly, Kappa coefficients for the four classified LULC 
maps are 0.882 (in 1991), 0.904 (in 2001), 0.930 (in 2011) 
and 0.951 (in 2017) respectively, which indicates that the 
output LULC maps can be significantly used. The producer 
accuracy and user’s accuracy of each LULC categories 
are shown in Table 4. Thus the calculated parameters and 
change patterns can be used for further analysis. The patterns 
of LULC and their area are tabulated which offers a com-
prehensive database for analysis in spatio-temporal dimen-
sions (Table 5). It is seen that the total built-up area has 
been continuously increasing between 1991 and 2017. The 
built-up area has been increased from 322.68 to 982.86 Km2 
with a significant encroachment of open space, agricultural 
land and vegetation area. Thus the barren land, vegetation 
cover and agricultural land have significantly decreased from 
1991 to 2017 are − 10.83%, − 16.08% and − 12.09% respec-
tively. Similarly, water bodies, particularly wetland area also 
decreased (− 1.34%). The patterns of land use at different 
time periods were shown in Fig. 4.

So, the results revealed that the drastic positive change 
occurs in the built-up area as it is continuously increasing in 
different time nodes (i.e. 1991, 2001, 2011 and 2017). The 
growth of population and various developmental activities 
tend to the expansion of urban area is not only the city core, 
but also the periphery of KMA (Sahana et al. 2018). Conse-
quently, vegetation cover, agricultural land, and barren land 
continuously decreasing.

Dynamics of bio‑physical indices

The six major biophysical parameters were used for 
the analysis of urban dynamics and the spatio-temporal 
urbanization footprint. NDBI, NDVI, MNDWI, NDBaI, 
SAVI and NDWI are considered as the major components 
of the urban landscape. It is seen that the NDBI which 
designates the built-up area and it is gradually increas-
ing with different time periods. The range of NDBI 
value of 1991 was − 0.07 to 0.64 with the mean value 
of − 0.042 (SD = 0.137). The mean value of NDBI is 
increasing with the rapid urbanization and the value of 
mean NDBI were 0.017 (SD = 0.159), 0.031 (SD = 0.183) 
and − 0.104 (SD = 0.098) for the year of 2001, 2011 and 
2017 respectively. The range of NDBI value in 2017 is 
0–0.53. The expansion of the built-up area has been con-
tinuously extended in Northern, South-eastern and West-
ern direction (Fig. 5). Consequently, NDVI and SAVI are 
gradually decreasing in response to built-up expansion. 
The decreasing pattern of NDVI is evidently identified 
by the NDVI maps. The mean value of NDVI are 0.121 
(SD = 0.148), 0.098 (SD = 0.124), 0.083 (SD = 0.077) and 
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Fig. 3   Methodological work flow of this study
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0.075 (SD = 0.125) for the year 1991, 2001, 2011 and 2017 
respectively. The mean value of SAVI is also represent-
ing a decreasing trend. Therefore, the vegetation cover of 
KMA is continuously decreasing. Here we applied SAVI 
as an enhanced accurate method of vegetation estimation 
(Shifaw et al. 2018). The mean value of SAVI are 0.152 
(SD = 0.185), 0.142 (SD = 0.178), 0.129 (SD = 0.224) and 
0.117 (SD = 0.105) respectively. The MNDWI, NDWI 
and NDBaI are also following the similar trend which 
indicates urban expansion in an exceeding manner with 
the loss of biophysical components. The mean value of 
MNDWI decreased from − 0.126 in 1991 to − 0.020 in 
2017 (SD = 0.217). The bareness index (NDBaI) is also 
continuously decreasing i,e. − 0.534 (SD = 0.008) in 1991 
to − 0.264 (SD = 0.081) in 2017 due to the encroachment 
of built-up area which is validated by LULC maps. How-
ever, the change of these biophysical indices demonstrated 
the rapid urbanizing situation in the KMA in a small time 
period. For the demonstration of the dynamics of various 
biophysical components, we carried out correlation statis-
tics using 350 sample points (discussed in Sect. 3.7). The 
analysis shows that NDBI is negatively correlated with 
NDVI, NDWI, MNDWI and SAVI. It is seen that the cor-
relation coefficient between NDVI and NDBI are increased 
from − 0.02 in 1991 (which is not significant) to − 0.47 in 
2017 (which is significant with p < 0.05) that indicates the 

impact of built-up expansion. SAVI, NDWI and MNDWI 
are following the increasing negative relationship with 
NDBI (Fig. 5). Hence this analysis concluded that water 
bodies, open land and vegetation cover are gradually trans-
formed into built-up areas. Therefore, environmental com-
ponents are highly reactive to the stimuli of urbanization.

The relationship between urban biophysical 
composition and LST

The rapid change of urban environment due to urbaniza-
tion could be effected on the urban landscape. The land sur-
face temperatures (LST) are gradually increasing with the 
increases of the urban impervious surface (UIA) i.e built-up 
area and the phenomena are known as Urban Heat Island 
effect (UHI) (Owen et al. 1998). Identifying the change 
of LST is one of the major objectives of this research. To 
assess this, we performed Pearson’s correlation statistics to 
show the relationship between LST and other selected bio-
physical components. It is evident from Fig. 5 that NDVI, 
MNDWI, SAVI, NDWI, and NDBaI are more dynamic over 
the built-up area. The LST is radically controlled by surface 
moisture content, vegetation cover, surface water bodies and 
the amount of impervious surface etc. (Guo et al. 2016). 
Accordingly, LST has varied in different places across 
the study area. The mean LST are 18.47 °C (SD = 1.495), 

Table 4   Accuracy assessment table for the classified LULC maps of 1991, 2001, 2011 and 2017

LULC Codes: 1, high dense built-up; 2, moderate dense built-up; 3, vegetation and plantation; 4, agricultural land; 5, water bodies; 6, barren 
land

Year User’s accuracy (%) Producer’s accuracy (%) Overall 
accuracy 
(%)

Kappa 
Coef-
ficient

1 2 3 4 5 6 1 2 3 4 5 6

1991 90.59 91.30 87.36 89.47 92.54 90.91 96.25 86.30 89.41 86.08 88.57 95.24 90.22 0.882
2001 91.11 92.00 92.68 88.00 95.38 93.65 96.47 90.79 91.57 90.41 87.32 95.16 92.00 0.904
2011 95.79 97.50 90.24 90.28 98.36 93.33 98.91 93.98 94.87 89.04 95.24 91.80 94.22 0.930
2017 95.10 95.29 94.81 97.06 98.25 96.72 96.04 94.19 97.33 94.29 98.25 96.72 96.78 0.951

Table 5   Area under various LULC classes and changes of area from 1991 to 2017 in KMA

Types 1991 2001 2011 2017 Rate of change (%) 
from 1991 to 2017

Area (Km2) % of Area Area (Km2) % of Area Area (Km2) % of Area Area (Km2) % of Area

High dense built-up 64.80 3.45 204.48 11.08 282.42 16.71 362.55 21.21 17.76
Moderate dense 

built-up
257.88 13.72 297.53 16.12 431.25 25.52 620.31 36.29 22.57

Vegetation and 
plantation

582.42 30.98 505.38 27.39 406.36 24.05 254.70 14.90 − 16.08

Agricultural land 484.68 25.78 447.37 24.24 317.30 18.78 234.07 13.69 −T12.09
Water bodies 157.97 8.40 141.31 7.66 100.52 5.95 120.64 7.06 − 1.34
Barren land 332.32 17.68 249.36 13.51 151.86 8.99 117.03 6.85 − 10.83
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18.39 °C (SD = 1.370), 21.04 °C (SD = 1.719) and 23.30 °C 
(SD = 0.093) in 1991, 2001, 2011 and 2017 respectively. 
Therefore, it is seen that, mean LST is gradually increasing 
over the last 25 years. Here it should be elucidated that, we 
only measured the changes of LST over different time peri-
ods and thus we considered only winter season (January) 
for this purpose because, the intensity of UHI effect can be 
clearly depicted in this season (Sharma et al. 2015). The 
highest value of LST is gradually increasing i,e. 25.83 °C, 
26.68 °C, 28.35 °C and 29.78 °C in 1991, 2001, 2011 and 
2017 respectively (Fig.  6). Among the six biophysical 
parameters, NDVI, SAVI, NDWI and MNDWI are nega-
tively correlated with LST. The distribution of vegetation 

cover and water bodies can reduce the surface heat of a 
landscape (Deng and Wu 2013; Li et al. 2016a, b; Shiflett 
et al. 2017). But the degree of these correlations is gradu-
ally decreased from 1991 to 2017. The correlation between 
NDVI and LST was (R) − 0.56 and − 0.51 in 1991 and 2001 
respectively (Fig. 7), which are significant with p value 0.01 
and also similar to the result of Yue et al. (2007), Zhu et al. 
(2013) and Guo et al. (2015). However, it should be illus-
trated that the value of the correlation (R) between NDVI 
and LST is gradually decreasing from − 0.51 in 2001 to 
− 0.38 in 2017 due to a considerable decrease of vegetation 
cover due to unremitting urban expansion. Similarly, the cor-
relation between SAVI and LST have significantly decreased 

Fig. 4   Land use land cover maps of KMA showing the patterns of land use dynamics in four different time periods i.e. 1991, 2001, 2011 and 
2017
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from 1991 to 2017. The patterns of correlation between 
MNDWI and LST are − 0.45, − 0.44, − 0.40 and − 0.41 in 
1991, 2001, 2011 and 2017 respectively, which indicate a 
decrease of water bodies and increase LST (Fig. 7).

We introduced NDBI and NDBaI to accurately demar-
cate the built-up area and bare land respectively because the 
spectral reflectance of built-up area and bare land are too 
difficult to separate. However, NDBaI is positively related 
to LST and the value of the correlation coefficient (R) is 

0.49, 0.50, 0.47 and 0.46 in 1991, 2001, 2011 and 2017 
respectively. But the relationship between NDBI and LST 
are significantly positive with a range of 0.60–0.95 (Chen 
et al. 2006; Sannigrahi et al. 2017). In this study, the range 
between NDBI and LST are 0.53 to 0.71 (p ≤ 0.01). The 
value of correlation coefficient is gradually increasing i,e. 
0.53 in 1991, 0.58 in 2001, 0.67 in 2011 and 0.71 in 2017 
respectively (Fig. 7). Accordingly, LST significantly varied 
with the variation of urban biophysical composition. The, 

Fig. 5   Composition of urban biophysical elements and their spatio-temporal dynamics over the KMA
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cross-sectional profiles of LST are also showing the changes 
of LST in different landuses over four selected periods 
(Fig. 8). The core area are shows higher LST than surround-
ing rural due to UHI effect (Ranagalage et al. 2018a, b).

Multiple linear regression (MLR) model for LST 
prediction

The LST is contrasted with the variation of LULC and its 
spatio-temporal dynamics. No doubt, urban biophysical 

parameters are considered as the predictor variables of the 
LST. LST is positively correlated with the built-up areas 
and bare land and negatively correlated with water bod-
ies and vegetation. Thus, it is significant to study all the 
predictors which are controlling of LST rather than single 
variable. The multiple linear regression (MLR) model has 
been used to find out the relationship between dependency 
and all independent variables and their role in controlling 
the LST (Connors et al. 2013). MLR is a significant tool 
that can easily predict LST and its changing pattern using 

Fig. 5   (continued)
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the selected control’s variables, i.e NDBI, NDBaI, NDWI, 
MNDWI, NDVI, and SAVI. MLR has been done for four 
selected time periods to characterize the variability of LST 
with the changeability of biophysical composition. The 
Table 6 shows the results of MLR. It can be explained from 
the table that, the coefficient of NDBI is always an impor-
tant factor in predicting LST in different years. The MLR 
model of the year 1991, we got the correlation coefficient, 

R = 0.715 and coefficient of determination, R2 = 0.512, i.e. 
51.20%, and the predicted R2 = 51.75%. Similarly, The 
correlation coefficient of the variables for the year 2001, 
R = 0.751 and the correlation of determination, R2 = 0.564, 
i.e. 56.40% and predicted R2 = 54.89%. So the correlation 
coefficient value of the MLR model with two time periods 
(i.e. 1991 and 2001) are not well fitted to the data. That indi-
cated independent variables are not significantly describing 

Fig. 6   LST maps of KMA 
in different time periods. 
The mean LST are 18.47 °C, 
18.39 °C, 21.04 °C and 
23.30 °C in 1991, 2001, 2011 
and 2017 respectively shows a 
continuing rising trend
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the dependent variable. Actually, the built-up areas are not 
significantly increasing and vegetation and water bodies 
remarkably existed. Therefore, the variation of LST cannot 
be significantly represented by the correlation coefficient 
values. But the results of 2011 and 2017 indicate a signifi-
cant correlation coefficient among the variables (> 60%). 
The correlation coefficient of the year is R = 0.791 in 2011 
and coefficient of determination, R2 = 0.626 i.e. 62.60% and 
the predicted R2 = 60.16%, which represent that controlling 
variables are significantly defined the patterns and distri-
bution of LST with the p-value of < 0.001. Similarly the 
R-value of the year 2017 is 0.864 and the R2 = 0.716 i.e. 
71.60% and the predicted R2 = 69.93%. So the coefficient 
value indicates a good fit for the linear model. It represents 
71.60% of the variance of the dependent variables (Table 6). 
Consequently, it can be explained that, rapidly increasing 
built-up area, decreasing vegetation and water bodies are the 
causes for raising the LST in the study area.

Assessment of model fit

We performed numerous statistical test to validate and 
predict the applicability of the selected MLR model. We 
performed a t-test for the selected years and the value is 
(ti) > 2.0 with � < 0.001 significance level that signifies 
the importance of selected variables of the model. The 
Durbin-Watson (D–W) values are 1.743, 1.795, 1.866 and 
1.876 for the year of 1991, 2001, 2011 and 2017 respec-
tively. It shows that, as the D-W values are close to 2, 
therefore, the residuals are independent. The linearity of 
each model was checked by fitting value versus residual 
values, observation order versus residual order and fre-
quency histogram of residual (Fig. 9). The Centered Lev-
erage value and the Cook’s distance are in an acceptable 
range. Thus the regression model does not affect by Outli-
ers. Variance inflation factors (VIF) and Tolerance value 
are used to measure the multicollinearity. The normal 
probability plots of the linear regression model indicate 
the residual called error a term that is normally distributed 

Fig. 7   Correlation coefficient graph to showing the relationship between of urban biophysical parameters and LST in different time periods 
(***significance level = p < 0.01)
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and follows a straight line, particularly the model for the 
year of 2011 and 2017 (Fig. 9). It signifies that the distri-
bution is a good fit and the model can be accepted.

Hotspot analysis of LST in KMA

The hot spot analysis has been done to indicate the area 
affected by increasing LST. The hot spot maps were pre-
pared for four selected time periods and each of the maps 
was significant of p < 0.0001. The hot spot maps show that 

maximum hot spot was founded in the built-up area and 
the low spot was mainly dominated over the vegetation and 
water bodies which indicated the maximum clustering of 
high and low LST pixels in those areas respectively. It is 
clearly seen that the vegetation and water bodies have a sig-
nificant role in controlling LST. Hotspot map of 1991 clearly 
indicates that the high values of LST are mainly concen-
trated over the core built-up areas and cool spot were domi-
nated over the water bodies study area. The maps for respec-
tive years clearly visualize the change of the cold spot area 

Fig. 8   LST profiles of three selected rural–urban gradients, characterized by different LULC in four selected time periods. The marking a–e indi-
cates, various LULC and their respective LST. The comparisons of LST graph indicated contineously rising of LST

Table 6   Multiple linear regression equation showing the R2 and predicted R2 values of predictors variables of LST

Year Regression equation R R2 R2 (predicted) p-value

1991 LST = 18.51 + 2.090 NDBI + 0.858 NDBaI − 7.157 NDWI − 3.979 MNDWI − 13.903 
NDVI − 8.130 SAVI

0.715 0.512 51.75% < 0.001

2001 LST = 17.726 + 2.726 NDBI + 1.360 NDBaI − 1.912 NDWI − 4.143 MNDWI − 4.004 
NDVI − 2.794 SAVI

0.752 0.564 54.89% < 0.001

2011 LST = 14.469 + 0.886 NDBI + 1.772 NDBaI − 11.570 NDWI − 3.570 MNDWI − 2.726 
NDVI − 3.483 SAVI

0.791 0.626 60.16% < 0.001

2017 LST = 11.126 + 3.141 NDBI − 8.847 NDBaI − 25.385 NDWI − 44.00 MNDWI − 28.341 
NDVI − 18.891 SAVI

0.846 0.716 69.73% < 0.001
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in hot and highly hot-spot area (Fig. 10). Accordingly, with 
the increasing of built-up area, the hot spot areas are also 
extended from the core area to peripheral areas. However, 
the hotspot analysis can clearly depict the existing situation 
of LST in KMA and its related vulnerability. Thus, hot spot 
maps can be helpful for assessment of LST exposure as well 
as ecological assessment can also be possible for sustainable 
urban growth.

Conclusion

In this study, we have assessed the spatiotemporal pattern 
of land use dynamics and its response to urban biophysical 
compositions. Simultaneously, we have been trying to assess 
the relationship between urban biophysical components and 
the rising trend of the LST. As a megacity and 3rd largest 
urban agglomeration, KMA is facing a continuous influx 
of population and resultant continuous expansion of the 
built-up area. LULC maps of KMA show that KMA faces 
the rapid change of LULC after 2001. The built-up area of 

the KMA is rapidly increasing from 322.68 Km2 in 1991 to 
982.86 Km2 in 2017. The urban biophysical parameters sig-
nificantly respond to the change of LULC. It is seen from the 
analysis that, vegetation cover, agricultural land and water 
bodies are significantly decreased. Consequently, LST of the 
entire study area is continuously increasing from 18.47 °C 
mean LST of 1991 to 23.30 °C mean LST in 2017.

This analysis is based on modern comprehensive 
approaches combining of geospatial and statistical methods. 
Remote sensing and GIS-based analysis are useful and effec-
tive for such a study. Among the existing biophysical indices, 
which are already used by the scholars, we have introduced 
two related parameters i.e. SAVI and NDBaI in this study. 
The methodological pathway was clear to recognize and suc-
cessfully convene with the objectives. The statistical tools 
combining correlation statistics, MLR and Getis-Ord-Gi* 
statistics have been successfully investigated the targeted 
analysis. The result shows that among the six biophysical 
parameters NDBI is considered the most important control-
ling variables as the correlation between NDBI and LST are 
gradually increasing from 1991 to 2017. MLR is adopted for 
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Fig. 9   Results of MLR representing normal probability plots, residuals, versus order and versus fits for four selected time periods a 1991, b 
2001, c 2011 and d 2017
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prediction of LST using selected bio-physical factors. The 
result of the MLR of 2017 shows that LST is significantly 
predicted by the predictor variables (R2 = 71.60%). Thus, it 
is established that the change of LST is gradually increasing 
with the changes in biophysical components.

A continuous, suitable and conservation policy actions 
should be taken to minimize urbanization impacts. At the 
issue of policy action, KMA comes under the Kolkata 
Municipal Development Authority (KMDA), but the KMDA 
consists of several legal institutions, such as KMC, HMC, 
CMC, West Bengal Housing, and Infrastructure Develop-
ment Corporation (WBHIDCO), various municipal offices 
and punched offices. The management plans should be 
taken by collaborating these authorities for sustainable 
urban growth. Moreover, some initiatives have been taken 
by KMDA, for example, Land Use and Development Control 
Plan including demarcation of development control zones, 
housing regulation, conservation of green space etc. (KMDA 
2016). However, some management options can be summed 
up for sustainable development of KMA:

(a)	 Proper land use planning and regulation should be 
implemented without destroying natural biodiversity.

(b)	 The conservation of open place and green space should 
be strictly maintained to reduce the impact of the LST.

(c)	 Construction of housing and building materials should 
be scientifically used and well planned for reduction of 
surface temperature.

(d)	 The proper zoning system should be done according to 
the adjoining ecosystem and their resilience capacity.

(e)	 Moreover, a comprehensive plan should be taken and 
must be implemented rather than a township plan.
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