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Abstract
Understanding and analyzing the changes in vegetation cover is very important in several aspects including climatic changes, 
water budget, ecological balance and specially to undertake necessary conservation measures. The concept of neural network 
has gained much significance in the analysis of vegetation dynamics using remote sensing satellite data. In the current study 
an attempt has been made to predict the vegetation dynamics using MODIS NDVI time series data sets and long short term 
memory network, an advanced technique adapted from the artificial neural network. The dataset of 861 NDVI images from 
January 2000 to June 2016 is used for making the time series. The data is segregated into three sets which comprises of 
training set (70%), validation set (20%), and testing set (10%). To check the reliability of the experiment we have finalised 
two different regions after extensive research for investigation. These include different terrains in the Great Nicobar Islands, 
one region along the coast where vegetation has severe ecological damage due to 2004 Indian Ocean tsunami and the other, 
an interior region which remained imperturbable during the tsunami. Long short term memory network, an advanced neural 
network is trained with these NDVI values for both the regions separately to predict the future vegetation dynamics. To 
measure the accuracy of the LSTM network, root mean square error is calculated. The resulting plots from both the experi-
ments indicate that the long short-term memory neural network follows the series in addition to coinciding with the required 
time series. Also, an unanticipated change in the trend of the NDVI series were well adapted by the network and was able to 
predict the future NDVI values with good accuracy maintaining RMSE less than 0.03 without providing any supplementary 
data. By adopting the prescribed method in the paper, anticipation of vegetation changes can be done accurately much ahead 
of time and take proactive measures accordingly to safeguard and improve the vegetation in any area.

Keywords  Time series · Normalized Difference Vegetation Index · Long short term memory · Great Nicobar · Neural 
networks

Introduction

Analysing the vegetation dynamics is important in the con-
text of their sustainability. Vegetation structure changes rap-
idly due to various reasons influenced by both anthropogenic 
and natural factors, potentially resulting in the degradation 
and destruction. Vegetation phenology is impacted by life-
cycle patterns, season and climatic conditions resulting in 
changes of their spectral reflectance patterns (Rußwurm and 
Korner 2017). Spatio-temporal mapping and monitoring of 

vegetation helps in assessing the health of vegetation and 
imply better management practices to safeguard them. The 
availability of the spatio-temporal satellite data aids in 
visualizing changing vegetation dynamics in due course 
of time. Further, development of vegetation indices using 
remote sensing satellite data provides better insights about 
the growth patterns, seasonal changes and health conditions 
of the vegetation (Wang et al. 2016).

Normalised Difference Vegetation Index (NDVI) is one of 
the most widely acknowledged indices for vegetation related 
studies (Xue and Su 2017). NDVI is a numerical indica-
tor of the greenness of vegetation derived using the visible 
and near infrared (NIR) bands (Jeevalakshmi et al. 2016; 
Eslamian and Eslamian 2017). Typically, the NDVI values 
are normalized between + 1 and − 1, and a higher NDVI 
value indicates greener and denser vegetation (Peckham 
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and Jordan 2007). The negative NDVI value denotes other 
non-vegetated classes like water, urban areas, barren lands, 
snow, etc (Anonymous 2000). The generalized annual NDVI 
profile for vegetation increases with the plant growth and 
reaches a peak or plateau (Jose et al. 2002). Later the profile 
falls off eventually with plant death or leaf senescence. Thus, 
NDVI series provides a means to describe plant phenology 
(Viovy et al. 1992; Wang et al. 2016). However, the pheno-
logical changes in concurrence with time appear to be very 
minimal or obscure, as observed in the vegetation of tropical 
rainforest due to subtle climatic variations (Valtonen et al. 
2013).

The analysis of time series is widely used approach in 
many studies as they work with data of high temporal reso-
lution and low spatial resolution (Petitjean et al. 2014; Kho-
rasani et al. 2016). The availability of time series NDVI 
data enhances information about the vegetation conditions 
as well as in assessing and monitoring its changes (Ivits et al 
2013). Interim changes are better inferred by time series 
analyses which cannot be accounted using low temporal 
satellite data. Time series includes any temporary changes 
and thus provides better analysis than any other datasets, 
as the analysis is based on observations of particular time 
frame. Major seasonal changes and inter-annual patterns can 
be well defined by analyzing the time series data of vegeta-
tion and surface water bodies (Haas et al. 2009; Tulbure and 
Broich 2013; Cordeiro et al. 2016; Rembold et al. 2015). 
NDVI time series analysis offers more accurate and efficient 
results in detecting the change in vegetation cover (Lyu and 
Mou 2016; Agone and Bhamare 2012), land use and land 
cover (LULC) classification (Gómez et al. 2016; Anderson 
1976), estimation and prediction of vegetation, mapping 
forest disturbance (Kennedy et al. 2010), etc. Time series 
analysis also enables to estimate and model biomass (Gómez 
et al. 2014), analyze forest degradation (Shimabukuro et al. 
2014) and assess forest carbon sinks (Gómez et al. 2012).

Various types of remotely sensed imagery and processing 
methods have been introduced and used to predict NDVI 
time series. Autoregressive integrated moving average 
(ARIMA) models are used for forecasting NDVI time series 
(Stepchenko 2016; Manobavan et al. 2002). These models 
use the adjoining data to predict the next values in the time 
series, but as these models are parametric and assumption 
of the data to be linear and stationary, makes them inappro-
priate for precise prediction of time series. Markov chain 
model simply constructs a probability mass function incre-
mentally across the possible next states (Stepchenko and 
Chizhov 2015a, b). It is memory-less as it considers only the 
present state of the process to predict future. It is a simple 
and effective method for prediction, but uses a fixed window 
(Kriminger and Latchman 2011).

Neural networks have become popular in the analysis 
of remote sensing data with the increase in availability of 

satellite data, as they are non-parametric unlike most of the 
statistical methods (Foody 2006; Mas and Flores 2008). 
Many studies have shown that neural networks work well as 
they are non-linear models and perform well with noisy data 
as well (Atkinson and Tatnall 1997). Some of the applica-
tions of neural networks in remote sensing are land cover 
mapping (Zhou and Yang 2008), forest change detection 
(Gopal and Woodcock 1996), and predicting vegetation 
changes (Kang et al. 2016). Different neural networks from 
the Multiple Layer Perceptron (MLP) (Atkinson and Tatnall 
1997), Artificial Neural Network (ANN) (Silva et al. 2014; 
Miller et al. 1995; Wagh et al. 2016) to advanced neural net-
works like Back-propagation (BP) neural networks (Zhang 
and Chang 2015) and Convolution Neural Networks (Mag-
giori et al. 2016) are used for classification of remote sensing 
satellite imagery (Atkinson and Tatnall 1997).

ANNs can be used for forecasting NDVI index (Kang 
et al. 2016; Nay et al. 2016), but as ANNs have no memory 
to store the information of the past data in the time series, 
results are less efficient. Recurrent neural network (RNN), 
which has memory can also be used for predicting the time 
series (Stepchenko and Chizhov 2015a, b; Stepchenko 
2016), by training the RNN with some past NDVI values 
but vanishing gradient problem of RNNs makes them less 
suitable (Bengio et al. 1994). Further, they require a sub-
stantial amount of preceding values as input to the network 
for prediction of the succeeding values and thus involve lot 
of computational overhead compared to Long Short-Term 
Memory (LSTM) network. The LSTM is a variant of RNN, 
which has an internal memory to store the information 
received till time t, for a long time in the model (Skymind 
2016; Budama 2015). This property of LSTM makes them 
very much preferable for predicting the time series. LSTM is 
a deep learning neural network which is highly preferred in 
predicting time series due to its long-term memory (Gamboa 
2017).

Monitoring vegetation changes is inevitable in the con-
text of current climatic change conditions and rapid human 
interventions. Vegetation, especially island ecosystems are 
vulnerable to both human induced disturbances and natural 
forces like tsunami and volcanic eruptions. Seasonal changes 
are common in vegetation. However, it is also effected by 
climate change and may lead to drastic change due to catas-
trophes (Verbesselt et al. 2010). Change detection methods 
help in assessing the change in vegetation (de Beurs and 
Henebry 2005) and the methods available so far are able to 
identify changes using low temporal resolution or decadal 
gap remote sensing data (Coppin et al. 2004). They are able 
to track the extent of areal changes but are incapable of iden-
tifying the minor seasonal or any gradual changes.

Alternatively, time series data with higher temporal 
resolution depict better changes in vegetation (seasonal, 
gradual or sudden abrupt changes) and is widely adopted 
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in assessing minor/shorter phenomenal changes (Jana et al. 
2016). Further the use of index derived from time series 
data (such as NDVI) is beneficial in identifying the changes 
compared to typical satellite data analysis, where only areal 
extent is calculated and compared. Time series data can be 
analysed using varied ANN methods and the best one pro-
posed in recent past is the use of LSTM. Though LSTM 
gained specific significance in different themes (like LULC, 
soil moisture studies, predictions/forecasting an event), its 
application in vegetation studies is still in nascent stage. The 
research of Rußwurm and Korner (2017) can be cited as 
one example of LSTM study adopted for crop identification 
using Sentinel data. However, no specific studies have been 
carried out with reference to use of LSTM in forest vegeta-
tion and the current study is first of its kind to be cited as an 
example of LSTM study in prediction of forest dynamics as 
well as for the study area selected.

In the view of above context, the main objective of cur-
rent research is to predict vegetation dynamics using MODIS 
(Moderate Resolution Imaging Spectroradiometer) NDVI 
time series data. Time series is a sequence of correlated 
scalars or vectors which vary with time. In the present study, 
the sequence consists of the scalar NDVI values. Time series 
can be predicted, if one knows the past values in the series 
up to time t, and then estimating the value at time t + s, s = 1, 
2... The study considered s = 1. LSTM network is trained to 
predict the NDVI value at t + 1.

Study area

The Nicobar Islands are a group of 28 islands covering 
an area of 1841 km2, located between 6°45′–9°15′N lati-
tude and 92°42′–93°56′E and are separated from Andaman 
group of islands by a ten-degree channel (Prasad et al. 
2009). The Great Nicobar Island (GNI), the current area of 
interest is the southernmost island of the Nicobar Islands 
with an area of 1045  km2 (Fig.  1) extended between 
6°45′–7°15′N latitude and 93°38′–93°55′E (Sridhar et al. 
2006; Mehal et al. 2009). The GNI has two National Parks 
(Galathea Bay and Campbell Bay) and was declared as 
a biosphere reserve (85% of island) in 1989 owing its 
high biological diversity and richness (Mehal et al. 2009; 
Sridhar et al. 2006). The climate is typically moist and 
humid with warm temperatures relatively throughout the 
year having dry season from October to March followed 
by rainy season from April to September (Mehal et al. 
2009). The seasonal changes are observed to be minimal in 
these islands as they receive rainfall from both southwest 
and northeast monsoons representing wet and evergreen 
conditions with few months of dry conditions (Velmuru-
gan et al. 2015). However, observations of Velmurugan 
et al. (2015) from the climate data of 30 years, reported 
climate of Nicobar as hot and humid with temperature 
ranging between 23 and 30.2 °C with an average relative 

Fig. 1   Location map of Study area showing the Great Nicobar Islands
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humidity of 79%, recording maximum rainfall during 
May to December and dry periods from January to March 
months. Overall, the climate is unpredictable without 
clear demarcation of wet and dry seasons affecting the 
vegetation condition in view of current changing climatic 
conditions.

The vegetation types of GNI include evergreen, mixed 
evergreen, moist deciduous, lowland swamp, littoral and 
mangrove forest (Anonymous 2003). The interior site 
selected for study shows dominant Andaman evergreen 
forest, while the coastal site is characterised by lowland 
swamp forest, Syzigium swamp, mixed mangroves in addi-
tion to evergreen forest (Porwal et al. 2012), The GNI was 
severely affected by the tsunami occurred in 2004 in Indian 
Ocean and the vegetation along the coastline is damaged, 
especially mangroves (Prasad et al. 2012). The study of 
Sridhar et al. (2006) observed a loss of 531.70 ha of man-
grove vegetation on south-west and south-eastern side of 
GNI due to tsunami. While Porwal et al. (2012) reported 
submergence of 34% of mixed evergreen forest located 
near the coast. Now the vegetation seems to restore gradu-
ally under natural conditions (Prabhakaran and Parama-
sivam 2015). Thus, the selected sites for present experi-
ment found to best suitable areas to trace the variation in 
the NDVI patterns capturing seasonal changes along with 
deforested and regenerating vegetation conditions.

Material and method

Satellite data and processing

The satellite data required for the study is obtained from 
the data service platform developed by University of 
Natural Resources and Life Sciences (BOKU), Vienna. 
The dataset consists of a total of 861 MODIS NDVI 
images (Vuolo et al. 2012), extracted from MODIS Terra 
(MOD13Q1) satellite with a spatial resolution of 250 m 
from January 2000 to June 2016 at an interval of 7 days. 
The NDVI time series obtained from the satellite imagery 
is often contaminated by the clouds, haze and other envi-
ronmental disturbances and thus leads to noise in the data 
or loss of some NDVI values in the time series (Chen et al. 
2004; Cai and Liu 2015). A smoothing technique or noise 
reduction filter is required to eliminate perturbations and 
obtain a smooth and continuous time series data (Geng 
et al. 2014). Whittaker smoothing technique was used to 
filter the NDVI images and to fill out any gaps in the data 
(Eilers 2003). The average of the NDVI values is taken 
to obtain a time series for further analysis. The obtained 
NDVI values are normalized between 0 and 1.

Method: LSTM

For predicting the vegetation dynamics using NDVI, LSTM 
network, an advanced technique adapted from ANN was 
considered. The concept of ANN is inspired by the func-
tionality of neurons in a human brain (Gershenson 2003; 
Pratap and Shelja 2013). ANN is made up of neurons and 
links connecting the nodes. Nodes process the information 
and output the information received by them to other neu-
rons through the links connecting the nodes. All the links 
are associated with some weights (Agatonovic-Kustrin and 
Beresford 2000). ANNs learn all the functional relationships 
of the data by varying the weights associated with the links. 
This property of ANNs makes them well suited for situations 
where a lot of data is available without sufficient knowledge 
about the data. Also, as they learn the hidden dependencies 
in the data based on the past values, they are very useful in 
predicting the time series and work fairly even with the noisy 
data (Obitko 1999; Gamboa 2017).

LSTM network is a modified structure of RNN. RNN is 
a feed forward network with a feedback loop and internal 
memory (Lyu and Mou 2016). They remember the informa-
tion in a sequential order analogous to human beings. (Lip-
ton et al. 2015; Gamboa 2017) They store this sequence in 
their internal memory for a long time of span which helps in 
taking the decision for the next step accurately compared to 
the traditional feed forward network (Skymind 2016). How-
ever, the recurrent structure in LSTM is a gated structure 
unlike RNN (Ordóñez and Roggen 2016). LSTMs have a 
long-term memory compared to RNN, making them suit-
able for time series prediction (Wu et al. 2017). Further, the 
vanishing gradient descent problem in a standard RNN is 
resolved in LSTM networks by introducing the concept of 
the memory cell (Wildml 2015; Colah 2015). Memory cell 
consists of gates which take care of what information should 
be stored, read or written to the network. They preserve the 
error that is back propagated for a long time. They can learn 
from a large number of time steps, over 1000 and so are very 
suitable for time series prediction.

A memory cell (Fig. 2) is composed of four main compo-
nents—forget gate, input gate, output gate and a candidate 
hidden state (Zhou et al. 2016). These gates are composed of 
a sigmoid layer. They let the information pass through them 
if the sigmoid layer’s output a non-zero value. If the output 
is zero, no information is passed through the gate; else if 
it is one, all the information is passed through the network 
(Colah 2015).

A standard LSTM network works as follows—The first 
step is to decide which information is to keep in the network 
(Xu et al. 2015; Skymind 2016). This is decided by forget 
gate layer, ft. It takes into account the previous hidden state 
and the current input and outputs a value between 0 and 
1. If the output is zero, then the information is completely 
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forgotten likewise if it’s one, all the information is retained 
by the network (Jia et al. 2017) (Eqs. 1–7 adopted from 
Colah 2015; Kang et al. 2016)

Then the network needs to decide what new informa-
tion should be stored in the cell. First the input gate layer, 
it decides which values are to be updated and then the new 
information gt is added to the cell state (Xu et al. 2015).

where ft = forget gate state; it = hidden state at time t; 
σ = sigmoid function, Wf = weight matrix for previous hid-
den to current hidden states, Wi = weight matrix for pre-
vious hidden to current hidden states ht−1 = hidden state 
at time t-1, Vf = weight matrix for input to hidden state 
links, Vi = weight matrix for input to hidden state links, 
Vg = weight matrix for input to hidden state links, xt = input 
at time t, bf = bias of the forget gate layer. bi = bias of the 
input gate layer, bg = bias of the input gate layer, gt = new 
candidate value.

Then finally, it decides what the network should output. 
This is done in two steps. First, the output gate layer, ot 
decides what values to output by the network and then the 
updated cell state in the previous steps is passed through 
tanh layer to normalize the output to be between − 1 and 1. 
This is how the cell states are updated in LSTM.

where ot = output gate output at time t, σ = sigmoid function, 
Wo = weight matrix for previous hidden to current hidden 

(1)ft = �(Wf ∗ ht−1 + Vf ∗ xt + bf ).

(2)it = � (Wi* ht−1 + Vi * xt + bi)

(3)gt = tanh(Wg ∗ ht−1 + Vg ∗ xg + bg),

(4)Ct = ft ∗ Ct−1 + it ∗ gt

(5)ot = � (Wo ∗ ht−1 + Vo ∗ xt + bo),

states, ht−1 = hidden state at time t-1, Vo = weight matrix 
for input to hidden state links, xt = input at time t, bo = bias 
of the input gate layer.

Experimental procedure

The focus of this study is to predict the future NDVI value 
of the time series (i.e. next 7th day), using the past NDVI 
values taking into consideration the seasonal changes and 
any abrupt changes in the NDVI series. Also, the research 
emphasizes the accuracy, adaptability and efficiency of 
LSTM networks in predicting the time series by reinforcing 
the internal dependencies and variances in the data.

The dataset under consideration is categorized into train-
ing, validation, and testing datasets. The training set is used 
to make the network learn the data by propagating the error 
back to the network and updating the weights. The valida-
tion set is used to verify the model if the error of the net-
work is below a threshold then training can be terminated. 
Testing set helps in analysing the performance of the neural 
network on new data. Studies have shown that dividing the 
data in 7:2:1 ratio gives a better assessment of the network 
(Stepchenko 2016). The dataset of 861 images is divided 
into 601 training set images, 172 images for validation and 
86 for testing.

The two experiments have been formulated to test two 
different regions in the GNI (Fig. 1) In the first case the aver-
age NDVI of an interior part of GNI is taken into account 
which is not affected by the tsunami and in the second only a 
specific portion of the island along the southern coast is con-
sidered which is affected widely by the 2004 Indian Ocean 
tsunami (Prasad et al. 2012). The first experiment is done 
to check if the network is able to learn the seasonal changes 

(6)ht = ot ∗ tanh (Ct).

Fig. 2   The internal gated struc-
ture of a memory cell in LSTM
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in vegetation and the latter to verify if it is able to learn the 
abrupt changes in the vegetation along with the seasonal 
changes. The input to the network is the current NDVI value 
and the output is the next NDVI value, which is the NDVI 
of the next 7th day. Unlike in RNN, here one need not give 
many past values as input to the network since the LSTM 
stores all the information received till the previous moment 
in its internal memory. All the NDVI values are normal-
ized between 0 and 1 and given as input to the network. 
The network is stopped when it starts to over-fit the data. 

Over-fitting can be understood when the validation error 
rises continuously for some epochs in a row.

To measure the accuracy of the prediction by the LSTM 
network, RMSE is used. By changing the number of epochs 
to train the network, the RMSE in predicting the next NDVI 
value in the training, testing and validation phases are cal-
culated using the Eq. (7).

where n = number of values, y = actual values, y’ = predicted 
values.

Results and observations

The current research is an experimental study to monitor 
the vegetation dynamics of GNI, typically dominated by 
evergreen forest in the interior of island and littoral and 

(7)RMSE =
√

∑i=n

i=1

�

y�(i) − y(i)
�2

n
,

Table 1   RMSE error for different number of epochs for experiment 1

No. of epochs Training error Validation error Testing error

330 0.0080 0.1218 0.0358
350 0.0071 0.1181 0.0255
400 0.0033 0.1229 0.0110
420 0.0052 0.1249 0.0261

Fig. 3   Figures showing prediction vs. actual NDVI time series for different datasets for an interior region of the Great Nicobar Island which is 
not affected by tsunami. a Results plotted for training dataset. b Results plotted for validation dataset. c Results plotted for testing dataset
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mangrove towards the coast. The interior forest is subjected 
to human interactions, while the coastal forest is impacted 
by natural calamities (Prasad et al. 2012). However, the area 
along the coast selected for experiment is severely eroded by 
tsunami of 2004 and proves to be better site for represent-
ing abrupt changes in the vegetation. Two experiments are 
done in two different terrains of GNI. The first experiment 
shows that the LSTM network has self-trained the seasonal 
changes well and the second experiment shows that the 
network along with seasonal changes is also able to learn 
any sudden changes in the NDVI values (here, due to the 
tsunami) well and predicted the time series well with an 
acceptable accuracy.

Experiment 1: seasonal changes

After experimenting with a different number of hidden 
nodes, the optimal number of hidden nodes is found to be 
10. The RMSE for training, validation, and testing for a dif-
ferent number of epochs is shown in Table 1. Based on the 
RMSE (Table 1), 300 is decided to be the optimal number 
of epochs for testing. The obtained RMSE shows that the 
LSTM network is good at predicting the NDVI time series 
by learning the seasonal changes. The training, validation 
and testing time series seem to follow the same trend as the 
actual time series and as the predicted time series seems to 
be below the actual time series, this concludes that there is 
no over fitting of the data from the network. Original NDVI 

time series (blue) versus predicted time series in the train-
ing phase, validation phase and testing phase of the LSTM 
network for 300 epochs are shown in Fig. 3.

Experiment 2: both seasonal and sudden changes

Similar to the previous experiment by varying the number of 
hidden nodes and epochs, the optimal values are found to be 
10 and 400 respectively. Figure 4 shows how the vegetation 
is affected by the tsunami in December 2004 and also how 
it is recovering after the disaster. The RMSE for training, 
validation, and testing for a different number of epochs is 
shown in Table 2. Based on the RMSE shown in Table 2, 
400 is decided to be the optimal number of epochs.

The obtained RMSE show that the LSTM network is sat-
isfying at predicting the NDVI time series by learning both 
the seasonal changes and any abrupt changes in the NDVI 
that may be caused by any natural calamity or deforesta-
tion by itself without any additional information fed to the 
network. Clearly there is no over fitting of the data from the 
network in this experiment too. Original NDVI time series 
(blue) versus predicted time series in the training phase, vali-
dating phase and testing phase of the LSTM network for 400 
epochs are shown in Fig. 5.

All the plots in all the three phases of both the experi-
ments show that the LSTM neural network is able to follow 
the series well and almost coinciding with the required time 
series. All the unforeseen changes in the trend of the NDVI 

Fig. 4   NDVI images highlighting a region along the coast line of the 
Great Nicobar island affected by tsunami in 2004. a NDVI image 
of Great Nicobar before tsunami (December 2004). b NDVI image 

of Great Nicobar just after tsunami (January 2005). c NDVI image 
showing vegetation recovery in Great Nicobar vegetation (June 2016)
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series are well learned by the network without requirement 
of any additional information. By implementing the pro-
posed method to predict vegetation dynamics using NDVI 
time series, there is a way to forecast the vegetation in the 
unfolding years and take necessary measures accordingly 
to protect and improve the vegetation in any area. Results 
evidently show that the network is effective in predicting 
the future NDVI values by learning all the seasonal and 
annual changes in vegetation, changes due to deforestation 
or natural calamities, etc. with an appreciable accuracy. 
Thus, it is recommended to use LSTM network for reliable 

and accurate prediction of vegetation dynamics. When the 
LSTM network is trained with large data, the accuracy is 
much higher. This makes LSTM very unique and efficient 
method to use it for prediction of NDVI dynamics than other 
methods.

Conclusion

The predicted time series shows that LSTM has far better 
performance than many other traditional neural networks. 
The long-term internal memory benefits the network in 
training well for the given data. The gated memory cell 
structure is a great advantage for LSTM in predicting the 
time series. Unlike other neural networks, a large number 
of past values need not be fed to the network as LSTM 
can store all the information about the previous values 
in its internal memory. LSTM has varied applications 
in the areas like water quality assessment, land use and 
land cover change detection, monitoring land surface 

Table 2   RMSE error for different number of epochs for experiment 2

No. of epochs Training error Validation error Testing error

280 0.0071 0.1901 0.0302
290 0.0064 0.1825 0.0266
300 0.0060 0.1822 0.0201
310 0.0068 0.1860 0.0271

Fig. 5   Figures showing prediction vs. actual NDVI time series for different dataset for a region along the coast affected by tsunami. a Results 
plotted for training dataset. b Results plotted for validation dataset. c Results plotted for testing dataset
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temperature, etc. LSTM model can efficiently predict the 
time series not just for the next time interval, but up to 
next 50 intervals which will aid the efforts to take care 
of vegetation well in advance to avoid any disturbance 
leading to loss of vegetation. The study is an experiment 
to analyse the use of LSTM for vegetation dynamics pre-
diction. Since the current study typically shows evergreen 
nature as well as influenced by both the southwest and 
northeast monsoons, the phenological or seasonal changes 
are minimum. Further better interpretation can be made 
by experimenting LSTM in an area predominated by dry 
deciduous forest as a future investigation. Additionally, 
integrating climatic factors may yield a high reliable pre-
diction of vegetation dynamics.
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