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Abstract
In this paper, a food chain system with gestation delay for both pest and the natural enemy is proposed. Here the bounded-
ness of the system is studied. Stability analysis for all possible equilibrium points is carried out. The thresholds for Hopf 
bifurcation at interior and the natural enemy free equilibrium states are studied and analyzed. It is observed that the natural 
enemy free steady state is stable if the gestation delay for the pest is sufficiently low otherwise system observed oscillat-
ing behavior. Similar observations established for the interior equilibrium. The sensitivity analysis is performed to find the 
respective sensitive indices of the variables of the proposed system. Further, simulations have been carried out to support 
our analytic results.
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Introduction

Since pest species are harmful to plants and their control 
has become a challenge for us. Pest population is respon-
sible for severe environmental and realistic problems [11, 
26]. Also, many authors have discussed the models based 
on chemical pesticides, which are less harmful to humanity 

and environment [5, 9, 16, 17, 27]. For productive use of 
biological or natural methods to manage pest populations, 
without any adverse effects, it is important to understand the 
biology of beneficial species or natural enemy and pests [8]. 
Our most important aim is to control negative impacts of 
agriculture pests, for both humanity and agriculture, which 
harms the environment and generating different types of pol-
lution. The irrigation and emissions from the paddy field 
were the most environmentally burdening stages across all 
major impact categories [10]. Moreover, they have shown 
that the manufacture of fertilizer and pesticide also play a 
significant role in putting environmental load. Researchers 
must have to produce, the natural systems to control pests 
by taking into account the communications between solid 
Allee effect in pests with natural methods: alternative food 
support for the natural enemy, introduction of infected pests 
to control healthy pests [7, 18] The interactions between 
pests and natural enemies in the same biological environ-
ment is an ample exciting area of research as per Lotka 
and Volterra. Natural enemies are more vulnerable to the 
infected pest since infectious pest population is weak and 
less active. Therefore natural enemy efficiently harvests 
pests. Due to the interaction between infected pests and 
natural enemy, the natural enemies must be infected. Hence 
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natural enemy populations may live on other food resources 
for their growth and survival. Also, the species do not grow 
instantaneously; some time is taken by the species to give a 
new generation, called gestation lag period [20]. Functional 
responses play an important role to develop a predator-prey 
system in population dynamics. Various factors like hiding 
technique of pests from the natural enemy, shooting ability 
of the predator to harvest insect, etc., have a large influence 
on functional responses. Functional responses are of differ-
ent types: for example, Holling type I–III, etc. A mathemati-
cal model has studied and analyzed to study the effect of 
toxicant in a three-species food-chain system incorporating 
delay in toxicant uptake process by prey population [14]. 
They formulated the model using the system of nonlinear 
ordinary differential equations. Also, people are more con-
scious and choose, the modern methods to manage agricul-
tural pests, for example, less harmful chemical pesticides 
and natural techniques [2, 6, 21, 28, 29], whereas biological 
techniques are simple and safer to control pests than pesti-
cide practices. Also time lag factors are of great significance 
to produce population models and used by numerous authors 
[1, 3, 4, 12, 13, 15, 19, 23–25]. According to many authors, 
models with continuous lag factors are practical [15] than 
instant delays [13].

Keeping in mind the recent literature, in the present study, 
the dynamics of a food chain model with the gestation delay 
for both pest the natural enemy is proposed and analyzed. 
This paper is organized as follows: Sect. 1, consists of an 
introduction. The proposed modeling approach and the 
mathematical system is presented, in Sects. 2 and 3 respec-
tively. In Sect. 4, the boundedness of the system has been 
given and discussed. Equilibrium points and their stability 
analysis is carried out for possible steady states, in Sect. 5. 
The sensitivity analysis of the system at interior equilib-
rium point for system parameters is presented, in Sect. 6. In 
Sect. 7, numerical simulations are presented to support our 
analytic results. Finally, the results have been concluded in 
the last section.

Modelling approach

In this paper, we propose a food chain dynamics of 
plant–pest–natural enemies, keeping in view that the natural 
systems to control pests. The biological dynamics is shown 
in Fig. 1. We will use the compartmental modeling approach 
considering three compartments of the population, namely, 
plant, pest, and natural enemy.

Further, in the absence of pest, the particular type of plant 
grows logistically, and the pest has alternative food for sur-
vival, details modeling assumptions are stated in the next 
section.

The proposed mathematical system

The assumptions of the proposed model are as follows:

(1)	 In a particular habitat, there are three types of popula-
tions, namely, plant X(t), pest P(t) and natural enemy 
N(t).

(2)	 Plants grow logistically with � as intrinsic growth rate 
and k being carrying capacity. Thus, per capita growth 
rate for plants is �X

(
1 −

X

k

)
 , when system is free from 

pest species.
(3)	 Also, the pest species grow logistically with �1 as intrin-

sic growth rate and k1 being carrying capacity. Thus, 
per capita growth rate for pests is �1P

(
1 −

P

k1

)
.

(4)	 Plants are harvested by pests with Holling type-I, 
response function.

(5)	 Pests can hide from the natural enemy, hence the natural 
enemy harvesting pests with Holling type-II response 
function.

(6)	 Let � be the predation rate of the plant by pest; �1 is 
the conversion rate for pest; � is the harvesting rate of 
pests by the natural enemy. Let a be the half-saturation 

Fig. 1   Biological dynamics
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constant. Let �1 be the conversion rate for the natural 
enemy; � be the natural death rate of natural enemy.

(7)	 Finally, �1 and �2 are the gestation delays for the pest 
and the natural enemy.

Keeping in view the assumptions and interactions, the sche-
matic flow of the proposed dynamics shown in Fig. 2. Hence 
our proposed dynamics can express as a system of equations 
of the form:

with initial conditions: X(0) > 0 , P(0) > 0 and N(0) > 0.

Boundedness

Here, the boundedness of solution of the system (1)–(3) is 
discussed below:

Lemma 1  The solution of proposed model (1)–(3) is uni-
formly bounded in Ω , where

𝜇� = min{𝜇,−𝛼,−𝛼1}, 𝛾1 << 𝛾 , 𝛽1 << 𝛽, W0 = e−𝜇
�t+c.

Proof  Let W(t) = X(t) + P(t) + N(t) . Now, differentiating 
W(t) w.r.t. t, we have

Since 𝜇� = min{𝜇,−𝛼,−𝛼1}, 𝛽1 << 𝛽, 𝛾1 << 𝛾 , we have

Therefore, W = W0 = e−�
�t+c Hence, W(t) is bounded, i.e., 

the proposed system is bounded. 	�  □

(1)
dX

dt
= �X

(
1 −

X

k

)
− �XP(t − �1),

(2)
dP

dt
= �1P

(
1 −

P

k1

)
+ �1XP −

�PN(t − �2)

a + P
,

(3)dN

dt
=

�1PN

a + P
− �N,

Ω =
{
(X,P,N) ∶ 0 ≤ X(t) + P(t) + N(t) ≤ W0

}
,

dW(t)

dt
= �X

(
1 −

X

k

)
− �XP + �1P

(
1 −

P

k1

)
+ �1XP −

�PN

a + P
+

�1PN

a + P
− �N.

dW(t)

dt
≤ −��W −

�X2

k
−

�1P
2

k1
dW(t)

dt
+ ��W ≤ 0.

Equilibria and their stability analysis

The system of Eqs. (1)–(3) have four feasible equilibrium 
points:

(1)	 The equilibrium point E0(0, 0, 0) always exists.
(2)	 The equilibrium point E1(k, 0, 0) exists.
(3)	 The natural enemy free equilibrium E2(X2,P2, 0) exists 

only when
	   (H1) ∶= 𝛼 > 𝛽k1 holds, where X2 =

k(�−�k1)�1

��1+kk1��1
,

P2 =
k1�(�1+k�1)

��1+kk1��1
.

(4)	 Interior equilibrium E∗(X∗,P∗,N∗) exists, when 

 where X∗,P∗,N∗ are given by 

Theorem 1  The local behavior of different equilibrium 
points of the system (1)–(3) is as follows:

	 (i)	 The equilibrium point E0(0, 0, 0) is always exist and 
unstable.

	 (ii)	 The equilibrium point E1(k, 0, 0) exists and unstable.

Proof   

	 (i)	 The characteristic equation for E0(0, 0, 0) is 

𝛾1 > max

{
𝜇,

𝜇(𝛼 + a𝛽)

𝛼
,
𝛼𝛼1𝜇(a + k) + (𝛼 + a𝛽)(kk1𝛽1)

𝛼k(𝛼1 + k1𝛽1)

}
,

(4)

⎧⎪⎨⎪⎩

X∗ = k +
ak��

�(�−�1)
,

P∗ =
a�

�1−�
,

N∗ = −
a�1(��1(a�+k1(�−�1))+kk1�1((�+a�)�−��1)

��k1(�−�1)
2

.

(5)(−� + �)(−� + �1)(−� − �) = 0.

Fig. 2   Schematic diagram
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 Here, the characteristic roots are � = � , � = �1 , 
� = −� . The equilibrium E0(0, 0, 0) is always unsta-
ble, since two of the characteristic roots, i.e., � = � 
and � = �1 of (5) are positive.

	 (ii)	 The characteristic equation for E1(k, 0, 0) is 

 The characteristic roots are � = −� , � = k�1 + �1 , 
� = −� . Hence, the equilibrium point E1(k, 0, 0) 
is unstable because one of the eigen value, i.e., 
� = k�1 + �1 of Eq. (6) is positive.

	�  □

Now, we state a lemma as similar to [22]:

Lemma 2   For the  polynomial  o f  the  form, 
z3 + pz2 + qz + r = 0,

	 (i)	 If r < 0, then the equation has at least one non nega-
tive root;

	 (ii)	 If r ≥ 0 and △ = p2 − 3q ≤ 0, the equation has no 
non-negative value;

	 (iii)	 If r ≥ 0 and △ = p2 − 3q > 0, the equation has 

non-negative roots if and only if z∗
1
=

−p+
√
△

3
 and 

h(z∗
1
) ≤ 0, where h(z) = z3 + pz2 + qz + r.

Theorem 2  Let ( H2 ) holds. For the system (1)–(3),

	 (i)	 The natural enemy free equilibrium E2(X2,P2, 0) is 
locally asymptotically stable for all �1 ∈ [0, �+

10
).

	 (ii)	 If �1 ≥ �+
10

, then the equilibrium E2(X2,P2, 0) is unsta-
ble and undergoes Hopf bifurcation.

Proof  The characteristic equation of the jacobian matrix at 
E2 can be written as:

where A = −a1 − a4 − a6 , B = a6(a1 + a4) + a1a4 , C =

−a1a4a6 , E = −a2a3 , D = a2a3a6 and a1 = −
2X2�

k
+ � − P2� , 

a2 = −X2� , a3 = P2�1 , a4 = �1 −
2P2�1

k1
+ X2�1 , a5 = −

P2�

a+P2

 , 

a6 = −� +
P2�1

a+P2

.

In the absence of delay ( �1 = 0 ), the transcendental Eq. 
(7) reduces to

where A = −a1 − a4 − a6 , B + E = a6(a1 + a4) + a1a4 − a2a3 , 
C + D = −a1a4a6 + a2a3a6 . By Routh–Hurwitz criterion, all 
the roots of Eq. (8) have negative real parts and the equilib-
rium E2 is locally asymptotically stable if (H2) : A, (B + E) , 

(6)(−� − �)(−� + (k�1 + �1))(−� − �) = 0.

(7)(�3 + A�2 + B� + C) + (E� + D)e−��1 = 0,

(8)�3 + A�2 + (B + E)� + (C + D) = 0,

C + D > 0 and A(B + E) − (C + D) > 0 holds. Assume that 
� = iw is root of (7), therefore we have

Equating real and imaginary parts from (9), it can be 
obtained

Solving (10) and (11), we get

where

By substituting w2 = z in Eq. (12), we define

By Lemma 2, there exists at least one positive root w = w0 
of Eq. (12) satisfying (10) and (11), which implies that Eq. 
(7) has a pair of purely imaginary roots ±iw0 . Solving (10) 
and (11) for �1 and substituting the value of w = w0 , the cor-
responding 𝜏1k > 0 is given by

where, k is a positive integer. Since the existence of Hopf 
bifurcation at �+

10
, it is required that the transversality condi-

tion Re
[(

d�

d�1

)−1
]

�1=�
+

10

≠ 0 should hold, therefore taking the 

derivative of � with respect to �1 in (7), we get

At � = iw0 and �1 = �+
10

 , we have

(9)(iw)3+A(iw)2 + B(iw) + C + ((E(iw) + D)e−iw�1 = 0.

(10)Ew sinw�1 + D cosw�1 =Aw
2 − C,

(11)Ew cosw�1 − D sinw�1 =w
3 − Bw.

(12)w6 + pw4 + qw2 + r = 0,

p = A2 − 2B,

q = B2 − 2(AC) − E2,

r = C2 − D2.

F(z) = z3 + pz2 + qz + r.

�+
1k

=
1

w0

[
cos−1

(
Ew4

0
+ (AD − BE)w2

0
− CD

E2w2

0
+ D2)2

)
+ 2k�

]
,

(
d�

d�1

)−1

=
(3�2 + 2A� + B)e��1 + E

�(E� + D)
−

�1

�
.

Re

[(
d�

d�1

)−1
]
=

MQ − NR

w0(L
2 +M2)

,
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where K = −3w2

0
+ B ,  L = 2Aw0 ,  M = D ,  N = Ew0 , 

Q = K sinw0�10 + L cosw0�10  a n d  R = K cosw0�10−

L sinw0�10 + E.
Now, we have,

	�  □

Theorem 3  Let ( H3 ) holds. For the system (1)–(3),

	 (i)	 The interior equilibrium E∗(X∗,P∗,N∗) is locally 
asymptotically stable for all �1 ∈ [0, �+

10
).

	 (ii)	 If �1 ≥ �+
10

, then the equilibrium E∗(X∗,P∗,N∗) is 
unstable and undergoes Hopf bifurcation.

Proof  The characteristic equation of the jacobian matrix at 
E∗ can be written as:

where A2 = −(b1 + b4 + b7) ,  A1 = b1b4 + b1b7 + b4b7 , 
A0 = −b1b4b7 ,  B1 = −b2b3 ,  B0 = b2b3b7 ,  C1 = −b5b6 , 
C0 = b1b5b6

and
b1 = −

X∗�

k
+ (1 −

X∗

k
)� − P∗�  , b2 = −X∗�  , b3 = P∗�1 , 

b4 =
P∗N∗�

(a+P∗)2
−

N∗�

a+P∗
+ (1 −

P∗

k1
)�1 −

P∗�1

k1
+ X∗�1 , b5 = −

P∗�

a+P∗
 , 

b6 = −
P∗N∗�1

(a+P∗)2
+

N∗�1

a+P∗
 , b7 = −� +

P∗�1

a+P∗
.

In the absence of delay �1 = 0 and �2 = 0 , the transcen-
dental Eq. (13) reduces to

By Routh–Hurwitz cr iter ion, we know that if 
(H3) ∶ A0 + B0 + C0 > 0 , A2(A1 + B1 + C1) > A0 + B0 + C0 
holds, then all the roots of Eq. (14) have negative real parts 
and the equilibrium E∗ is locally asymptotically stable. Obvi-
ously, iv(�1) v > 0 is a root of Eq. (13) with �2 = 0 if and only 
if  −iv3 − A2v

2 + (A1 + C1)vi + A0 + C0 + (iB1v + B0)(cos v�1
−i sin v�1) = 0 [30]. On separating real and imaginary parts 
from above equation, we have

which gives us

Re

[(
d�

d�1

)−1
]

�1=�
+

10

≠ 0, if MQ ≠ NR.

(13)
(�3 + A2�

2 + A1� + A0) + (B1� + B0)e
−��1 + (C1� + C0)e

−��2 = 0,

(14)�3 + A2�
2 + (A1 + B1 + C1)� + (A0 + B0 + C0) = 0,

(15)
{

−v3 + (A1 + C1)v = B0 sin v�1 − B1v cos v�1,

A2v − (A0 + C0) = B0 cos v�1 + B1v sin v�1,

(16)v6 + p1v
4 + q1v

2 + r1 = 0,

where

Let v2 = y , then Eq. (16) becomes,

By using Lemma 2 and proceeding like above Theorem (2), 
i.e., to avoid the repetition of mathematical calculations, we 
get the required existence condition of Hopf bifurcation for 
equilibrium point E∗ at �+

10
 . we see that if �1 ≥ �+

10
 , then the 

equilibrium E∗(X∗,P∗,N∗) is unstable and undergoes Hopf 
bifurcation. 	�  □

p1 = A2

2
− 2(A1 + C1),

q1 = (A1 + C1)
2 − 2A2(A0 + C0) − B2

1
,

r1 = (A0 + C0)
2 − B2

0
.

F(z) = y3 + p1y
2 + q1y + r1 = 0.

Table 1   The sensitive indices �xvyu =
�xv

�yu
×

yu

xv
 of the model (1)–(3) to 

the parameters yu for the parameter values: � = 1.1 ; k = 2 ; � = 0.05 ; 
�1 = 1.6 ; k1 = 3 ; �1 = 0.01 ; � = 0.5 ; a = 1 ; �1 = 0.3 ; � = 0.2

Parameter (yu) �X
∗

yu
�P

∗

yu
�N

∗

yu

� 0.1 0 0.0032967
k 1 0 0.032967
� − 0.1 0 − 0.0032967
�1 0 0 0.967033
k1 0 0 1.93407
�1 0 0 0.032967
� 0 0 − 1
a − 0.1 1 − 0.937363
�1 0.3 − 3 3.81209
� − 0.3 3 − 3.81209

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

time t

S
ol

ut
io

n 
X

, P
, N

 

 

X(t)
P(t)
N(t)

Fig. 3   The natural enemy free equilibrium E2(1.24, 2.44, 0) is stable 
for parameter values: � = 4.5 ; k = 2 ; � = 0.7 ; �1 = 0.6 ; k1 = 1.2 ; 
�1 = 0.5 ; � = 0.05 ; a = 1 ; �1 = 0.044 ; � = 0.05
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Sensitivity analysis

In this section, the sensitivity analysis of the system (1)–(3) 
at the interior equilibrium point is carried out. The respec-
tive sensitive parameters of the state variables of the system 
at interior equilibrium point are given in the Table 1, using 
the values of parameters: � = 1.1 ; k = 2 ; � = 0.05 ; �1 = 1.6 ; 
k1 = 3 ; �1 = 0.01 ; � = 0.5 ; a = 1 ; �1 = 0.3 ; � = 0.2 . It is 
clear that � , k, �1 have a positive impact on X∗ . Also, the 

impact of � , a, � is negative on X∗ , whereas the impact of 
remaining parameters on X∗ is zero. The parameter k is 
more sensitive to X∗ . Also a, � have a positive impact on P∗ . 
The impact of parameter �1 on P∗ is negative; the remain-
ing parameters have zero impact on P∗ . The more sensitive 
parameters to P∗ are �1 and � . Again, the impact of � , k, �1 , 
k1 , �1 , �1 on N∗ is positive. The impact of � , � , a, � is negative 
on N∗ . Clearly, �1 and � are more sensitive parameters to N∗.

Fig. 4   The natural enemy free 
equilibrium E2(2.26, 7.81, 0) 
is stable for the paramet-
ric values: � = 1.8 ; k = 17 ; 
� = 0.2 ; �1 = 0.3 ; k1 = 6 ; 
�1 = 0.04 ; � = 0.6 ; a = 0.05 ; 
�1 = 0.3 ; � = 0.001 ; 
𝜏1 = 8.3 < 𝜏+

10
= 9.25
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Fig. 5   The natural enemy free 
equilibrium E2(2.26, 7.81, 0) 
is unstable and Hopf bifur-
cation appears for the 
parametric values: � = 1.8 ; 
k = 17 ; � = 0.2 ; �1 = 0.3 ; 
k1 = 6 ; �1 = 0.04 ; � = 0.6 ; 
a = 0.05 ; �1 = 0.3 ; � = 0.001 ; 
𝜏1 = 10.25 > 𝜏+

10
= 9.25

0 1000 2000 3000 4000
0

2

4

6

8

10

12

time t

S
ol

ut
io

n 
X

, P
, N

X(t)
P(t)
N(t)

0

5

10

5

10

15
−1

−0.5

0

0.5

1

N
(t)

X(t)P(t)



887Modeling Earth Systems and Environment (2018) 4:881–889	

1 3

Numerical simulations

Numerical simulations of the system (1)–(3) are performed 
to support our analytic findings with the help of MAT-
LAB. The natural enemy free equilibrium E2(1.24, 2.44, 0) 
is stable for parameter values: � = 4.5 ; k = 2 ; � = 0.7 ; 
�1 = 0.6 ; k1 = 1.2 ; �1 = 0.5 ; � = 0.05 ; a = 1 ; �1 = 0.044 ; 
� = 0.05 and result is shown in Fig. 3. Moreover, the natu-
ral enemy free equilibrium E2(2.26, 7.81, 0) is stable for 
the parametric values: � = 1.8 ; k = 17 ; � = 0.2 ; �1 = 0.3 ; 
k1 = 6 ; �1 = 0.04 ; � = 0.6 ; a = 0.05 ; �1 = 0.3 ; � = 0.001 ; 
𝜏1 = 8.3 < 𝜏+

10
= 9.25 , see Fig.  4. The natural enemy 

free equilibrium E2(2.26, 7.81, 0) is unstable and Hopf 

bifurcation appears for the parametric values: � = 1.8 ; 
k = 17 ; � = 0.2 ; �1 = 0.3 ; k1 = 6 ; �1 = 0.04 ; � = 0.6 ; 
a = 0.05 ;  �1 = 0.3 ;  � = 0.001 ;  𝜏1 = 10.25 > 𝜏+

10
= 9.25 

and result is shown in Fig. 5. The interior equilibrium 
E∗(1.82, 2, 3.31) is stable for parametric values: � = 1.1 ; 
k = 2 ; � = 0.05 ; �1 = 1.6 ; k1 = 3 ; �1 = 0.01 ; � = 0.5 ; a = 1 ; 
�1 = 0.3 ; � = 0.2 , see Fig. 6. It is clear from Fig. 7 that 
the interior equilibrium E∗(1.88, 0.25, 1.23) is stable for 
parametric values: � = 0.2 ; k = 5 ; � = 0.5 ; �1 = 0.32 ; 
k1 = 2 ; �1 = 0.1 ; � = 0.2 ; a = 1 ; �1 = 0.01 ; � = 0.002 ; 
𝜏1 = 0.6 < 𝜏+

10
= 1 . It is obvious from Fig. 8 that the inte-

rior equilibrium E∗(1.88, 0.25, 1.23) is unstable and Hopf 
bifurcation appears for the parametric values: � = 0.2 ; 
k = 5 ; � = 0.5 ; �1 = 0.32 ; k1 = 2 ; �1 = 0.1 ; � = 0.2 ; a = 1 ; 
�1 = 0.01 ; � = 0.002 ; 𝜏1 = 1.5 > 𝜏+

10
= 1.

Conclusion

Here, a food chain: a plant–pest–natural enemy system 
with the gestation delay for pest and the natural enemy is 
proposed. There are four feasible equilibrium points, and 
asymptotic stability of the system is studied and analyzed 
for all equilibria. The steady states E0(0, 0, 0) and E0(K, 0, 0) 
are always unstable. The existence of Hopf bifurcation at 
the natural enemy free as well as interior equilibrium point 
is explored and determined the critical limits for gestation 
delay, �1 . It is observed that the natural enemy free steady 
state is stable if the gestation delay for pest ( �1 ) is below 
a certain threshold otherwise system observed oscillating 
behavior. A similar oscillating solution exists for the interior 
steady state. It is studied that the natural enemy free and 
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Fig. 6   The interior equilibrium E∗(1.82, 2, 3.31) is stable for para-
metric values: � = 1.1 ; k = 2 ; � = 0.05 ; �1 = 1.6 ; k1 = 3 ; �1 = 0.01 ; 
� = 0.5 ; a = 1 ; �1 = 0.3 ; � = 0.2

Fig. 7   The interior equilibrium 
E
∗(1.88, 0.25, 1.23) is stable 

for parametric values: � = 0.2 ; 
k = 5 ; � = 0.5 ; �1 = 0.32 ; 
k1 = 2 ; �1 = 0.1 ; � = 0.2 ; 
a = 1 ; �1 = 0.01 ; � = 0.002 ; 
𝜏1 = 0.6 < 𝜏+
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interior equilibrium are asymptotically stable under certain 
conditions. Also, the sensitivity analysis is performed at 
interior equilibrium point for the system parameters. Numer-
ical simulations of the system are carried out with a par-
ticular set of parameter values to verify our analytic results.
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