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Abstract
Little is known about the future land use and land cover (LULC) type in some parts of Ethiopia, but not in the study area. 
This study aims to predict and analyze the future scenarios of LULC (2015–2033) using cellular automata and Markov 
Chain model (CA_Markov) by taking into consideration the physical and socio-economic drivers of LULC dynamics. The 
historical LULC change data of 1984–1995, 1995–2015, and 1984–2015 were used as a baseline. Both transition rules and 
transition area matrix for the period 1984–1995, 1995–2015, and 1984–2015 were produced quantitatively using the Markov 
chain model. After that, the physical and socio-economic factors were standardized using fuzzy and then Multi-Criteria 
Evaluation (MCE) was used to produce the transition suitability image. The CA_Markov model was then applied as a 
standard contiguity filter of 5 × 5 to predict the 2033 LULC condition using the TerrSet Geospatial Modeling and Monitor-
ing System software. The result indicated that forestland are predicted to increase by 108 sq km (44.5%), shrub/bush lands 
710 sq km (20%), built-up area 286.2 sq km (48.3%), and grasslands 31 sq km (15%), respectively. However, significant 
reductions (losses) in a water body (Wb) 5.2 sq km (11.2%), croplands (Cl) 78.9 sq km (1.3%), barren lands (Bl) 800 sq km 
(27.4%), and floodplain area (Fp) 251.68 sq km (33.7%), respectively. Furthermore, the Pearson correlation result between 
the historical and predicted LULC type indicated that there are positive, strongly correlated, and are statistically significant 
relationships (r = 0.981, p = 0.000). The increase in forest land and reduction in barren and flood plain may benefit the study 
area. However, the decrease in the water body may contribute to the severity of drought in the area. This study may help 
to use as useful information to foster better decisions and improve policies in land use within the framework of sustainable 
land use planning system.
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Introduction

Land use and land cover (LULC) dynamics is a major global 
environmental issue because the dynamics in LULC are sig-
nificantly affected by climate at the global level (Keshtkar 
and Voigt 2016). In addition, it distresses water balance, 

and biological cycles at the local and regional scale to the 
extent that it increases the incidence of natural hazards such 
as drought (Gidey et al. 2017). That is why the issue has now 
received due attention from scientists and decision makers to 
better understand, and evaluate the future dynamics and its 
impacts on the environment (Mas et al. 2014; Mubea et al. 
2011). As a result, there is a high demand for improving 
LULC information in order to develop sustainable land use 
systems (Jansen and Di Gregorio 1998). In addition, Kesht-
kar and Voigt (2016), Omar et al. (2014), and Subedi et al. 
(2013) reported that prediction of future LULC dynamics 
is a complex process because it involves both environmen-
tal and socio-economic factors. This shows that the LULC 
dynamics are triggered by both natural and anthropogenic 
factors. Therefore, both factors are responsible for the LULC 
dynamics (Keshtkar and Voigt 2016).
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Simulation based LULC can simplify and provide bet-
ter insights into potential future developments (Omar et al. 
2014). Hence, predictions of the future LULC dynamics at 
a basin scale is crucial for management of land resources, 
improvement of eco-environment and sustainable develop-
ment of water resources of the basin (Wang et al. 2014). The 
prediction of forthcoming LULC dynamics in areas where 
the economic condition depends upon agriculture (e.g. 
Ethiopia) has a profound impact on land management, res-
toration of water resources, monitoring of vegetation cover 
dynamics and decision making on land use system (Corgne 
et al. 2003). For instance, quantitative data on where, when 
and why land-cover changes take place globally is not well 
addressed (Lambin 1997). However, geo-spatial technolo-
gies (e.g., Remote sensing and GIS) based predictions of 
future LULC provide the knowledge of how much, where, 
and what type of (LULC) change has occurred (Weng 2002). 
This is achieved through a combination of LULC dynamics 
models with remote sensing and GIS are used to predict the 
future LULC change in the functioning of the earth sys-
tem (e.g., Conversion of Land Use and its Effects at small 
scale modeling framework (CLUE), Markov chain, Clue-S 
model, CA_Markov, Agent-based model (ABM), and grid-
based LULC (GeoMoD)) (Veldkamp and Lambin 2001). 
However, all of these models rely on a limited number of 
theories and methods (Eric et al. 2007; Veldkamp and Lam-
bin 2001) except the CA_Markov model. For instance, the 
efficiency of Clue-S model is not satisfactory and it has to 
rely on the results from other auxiliary software (Li et al. 
2015). Besides, it is not policy sensitive and cannot eas-
ily incorporate a range of policy variables that might be of 
interest in predicting the impacts of various land use poli-
cies (Iacono et al. 2015). Similarly, CLUE use the logistic 
regression model to run in a statistical program, and the 
temporal dynamics of LULC in this model controlled by the 
conversion metrics and the model did not offer any method 
to improve the realism of simulated landscapes by repro-
ducing the spatial patterns (Mas et al. 2007). In addition, 
the Markov model is limited to provide information about 
the spatial distribution of LULC dynamics. Furthermore, 
the GeoMoD model uses exactly two categories, can simu-
late only the transition from the first category to the second 
category, and cannot simulate an additional simultaneous 
transition of the second category to the first (Pontius and 
Malanson 2005).

In contrast, the cellular automata and Markov Chain 
Analysis (CA_Markov) is found to be the most universal 
and effective model in predicting the future (short-long 
term) LULC dynamics under various scenarios (e.g., Socio-
economic, & physical) because it generates an improved 
spatial pattern of each LULC category than other models 
(e.g., Clue-S, GeoMoD, and Markov chain). CA_Markov 
is an expert driven process that spatially allocates expected 

categorical LULC by using categorical suitability maps 
(Paegelow et al. 2014). It also allows any number of cat-
egories and can simulate the transition from any category 
to any other category (Pontius and Malanson 2005). This 
model has involved three major processes such as Markov 
chain, Cellular Automata, and validation. Furthermore, the 
model is strong due to its dynamic simulation capability, 
high efficiency, simple calibration, and ability to simulate 
multiple land covers and complex patterns spatially and 
temporally (Memarian et al. 2012; Regmi et al. 2014). The 
basic principle of the CA_Markov model is that, the cellular 
state of the next moment is a function of the neighboring 
cellular’s present state (Wang et al. 2014). The model has 
also been widely applied successfully in sub-tropical and 
tropical areas to forecast the distributions of future LULC 
(Rendana et al. 2015). Predicting the future LULC dynam-
ics using the CA_Markov model may help to diminish the 
impacts of vegetation deterioration, loss of biodiversity and 
soil erosion (Ghosh et al. 2017; Verburg et al. 2004) and to 
use as a baseline for water quality assessment, hydrologic 
modeling, and climate change study.

The CA_Markov is a hybrid model that consists of the 
concept of both cellular automata (CA) and Markov Chain 
(Hyandye and Martz 2017; Mondal et al. 2015; Zhilong 
et al. 2017). The CA is a set of identical elements, called 
cells, each one of which is located in a regular and discrete 
space (Fan et al. 2008). The basic principle of CA is that 
land use change for any location (cell) can be explained by 
its current state and changes in its neighboring cells (Parsa 
et al. 2016). This integrates transition rule dependency on 
neighboring cells. Transition rules are expressed by prob-
abilities considering only present state. Moser et al. (2013) 
noted that the Markov model represents a wide and gen-
eral family of stochastic models for the temporal and spatial 
dependence properties associated with 1-D and multidimen-
sional random sequences or random fields. Combining both 
CA and Markov Chain (CA_Markov) is more accurate and 
logical for predicting the future LULC change for a certain 
domain (Omar et al. 2014). The CA_Markov model com-
putes the state of a pixel based on its initial state, the condi-
tions in the surrounding pixels, and a set of transition rules 
(Verburg et al. 2004). This underlies the dynamics of the 
change events based on proximity concept so that the regions 
closer to existing areas of the same class are more prob-
able to change to a different class (Memarian et al. 2012). 
The most important feature of CA_Markov is to predict the 
complex dynamic temporal and spatial patterns through a 
set of transition rules (Behera et al. 2012; Fan et al. 2008). 
The model helps to resolve LULC dynamics related issues 
because it works based on transition probabilities and uses 
suitability maps analyzed from the MCE for each LULC cat-
egory to generate reliable projections for the future. Iacono 
et al. (2012) reported that one of the most desirable qualities 
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of the Markov chain model is its simplicity and ability to 
describe the complex and long-term process of land use con-
version in terms of simple transition probabilities, making 
it a potentially useful sketch-planning tool. The amount of 
LULC changes calculated in Markov chain analysis using 
the transition potential maps were used to predict the future 
LULC (Shooshtari and Gholamalifard 2015).

Nowadays, the rapid changes in LULC can lead to land 
degradation and environmental problems due to anthropo-
genic activities like agricultural land expansion, deforesta-
tion, urbanization and tourism (Rendana et al. 2015). Sce-
nario-based predictions of LULC will support policy makers 
and other stakeholders to examine past, current, and future 
effects of land cover change on ecological and socio-eco-
nomic processes to set appropriate intervention measures in 
order to diminish its effects (Sohl and Sleeter 2012). There-
fore, improved methods of LULC prediction are required to 
assess and project the future LULC change in the function-
ing of the Earth System (Lambin et al. 2001). Iacono et al. 
(2012) stated that stochastic models used to simulate and 
explore the dynamic land use change. The model combines 
both cellular automata (CA), Markov Chain, Multi-Criteria 
and Multi Objective Land Allocation (MOLA) to detect 
the dynamics of future LULC changes. Models that predict 
future land cover pattern within different time scales can 
support the generation of plausible scenarios for assessing 
land cover conditions under a range of assumptions (e.g. 
Rates and patterns) (Serneels and Lambin 2001; Verburg 
et al. 2004).

Ethiopia is highly vulnerable to natural and anthropogenic 
induced environmental changes (e.g., LULC). In recent dec-
ades, the changes caused by anthropogenic forces occur at a 
faster pace than natural variations due to population growth 
(Keshtkar and Voigt 2016). Humans have thus largely influ-
enced the earth environment by changing LULC (Singh et al. 
2015). The challenge is severe in the highlands area where 
the study site is located. The 1984–2015 LULC dynamic 
history shows that the study area is experienced a significant 
shrinking in the water body and grasslands and increases in 
croplands, barren lands, built-up area, forest and shrublands. 
Currently, the future LULC type in the study area has not 
been adequately studied. As a result, the farming system of 
smallholders’ farmers may be considerably affected in the 
future due to the changes that will be occurring in their land 
use system. Weng (2002) reported that the application of 
stochastic models to simulate the LULC dynamic in devel-
oping countries (e.g., Ethiopia) is rare. Therefore, there is 
a need to integrate the techniques of remote sensing, GIS, 
and Markov for monitoring and modeling LULC changes. 
Spatially explicit modeling of future LULC dynamics is thus 
important for describing processes of change in quantitative 
terms and evaluating the magnitude, pattern, and type of 
LULC changes (Serneels and Lambin 2001; Weng 2002). 

Only a few studies have combined both physical and socio-
economic factors into the CA_Markov to effectively pre-
dict the LULC (Sayemuzzaman and Jha 2014). For exam-
ple, Wang and Murayama (2017) employed CA_Markov in 
Tianjin-northeastern China; Kityuttachai et al. (2013) in 
Thailand; Keshtkar and Voigt (2016) in central Germany; 
Gashaw et al. (2017) in the Andassa watershed, Blue Nile 
Basin–Ethiopia. However, the majority of them did not 
include core LULC dynamic factors.

Hence, there is a need to integrate both socio-economic 
and physical factors to improve the prediction of future 
LULC dynamics of short scales because the CA_Markov 
model is highly efficient at short period time scales 
(10–20 years) than long term scales. Therefore, predicting 
the future LULC at different time scale (e.g., Short & long 
term) can be useful for policy makers, land use planners, 
environmentalists, conservation planning, and practition-
ers for better understanding and mitigating the effects felt 
from the potential modifications and/or alterations of the 
predicted LULC that might happen in the near future policy 
intervention (Halmy et al. 2015; Roy et al. 2014; Verburg 
et al. 2006). This may help to ensure sustainable land man-
agement and agricultural development (Bewket and Abebe 
2013). It is, therefore, the aim of this study is to predict and 
analyze the future scenarios of LULC changes by integrating 
both physical and socio-economic factors using the cellular 
automata and Markov Chain (CA_Markov) from 2015 to 
2033. The findings of this study are vital to foster better 
decisions and improve policies in land use policy within the 
framework of sustainable land use planning in relation to the 
future likelihood of changes or development.

Materials and methods

Study area

This study was conducted in Raya and its environs (Northern 
Ethiopia) which is—an intermountain plain area located at 
39°24′40′′ and 40°25′20′′ longitude Easting and 12°7′20′′ 
and 13°8′0′′ latitude Northing (Fig. 1) (Gidey et al. 2017). It 
consists of 11 districts, namely Megale, Yalo, Gulina, Gidan, 
Kobo, Alaje, Alamata, Hintalo Wejirat, Ofla, Endamehoni, 
and Raya Azebo. The total area coverage of the study area 
is estimated at 14,532 km2 of which 48% falls in the south-
ern Tigray region, 22% in Amhara and (30%) in the Afar 
region (Gidey et al. 2017). The area receives up to 558 mm 
of rainfall annually (Gidey et al. 2017). Rainfall is erratic 
and bimodal (Ayenew et al. 2013) in the area. During the 
last 33 years, the maximum (Tmax) and minimum tempera-
ture (Tmin) were 30.5 and 15.9 °C, respectively. The study 
area consists of four river basins such as Denakil basin, 
which covers about 10265.8 km2 (70.64%), Lake Ashinge 
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16.0 km2 (0.11%), Abay (Blue Nile) 13.2 km2 (0.09%), and 
Tekeze 4237.0 km2 (29.16%) (Gidey et al. 2017). The mean 
elevation value of the area is 1762 meters above sea level 
(m.a.s.l). Similarly, the slope of the study area is ranging 
from 0% (flat) to 395.3% (very steep slope). Eutric cambi-
sols is the predominant soil type in the area covering about 
4667.1 km2 or 32.1%, while dystric gleysols covers only a 
small portion i.e., 1.1 km2 (0.001%), respectively (Gidey 
et al. 2017).

Data acquisition

Earth observation data

Predictions of future LULC dynamics require a substantial 
amount of earth observation data to conduct an effective 
analysis (Araya and Cabral 2010; Keshtkar and Voigt 2016). 
For instance, earth observation data sets serve as a great 
source of data, from which updated land-cover maps and 
changes can be analyzed and predicted (Keshtkar and Voigt 
2016). Hence, the LULC data of this study were prepared 
from the Landsat Thematic Mapper (TM) and Operational 
Land Imager (OLI) path 168/169 row 051/052 for the year 
1984, 1995, and 2015. Gidey et al. (2017) reported eight 
major LULC types, which include cropland (Cl), forestland 
(Fl), shrub/bush land (Shl), built-up area (Bu), water bod-
ies (Wb), grassland (Gl), barren land (Bl) and floodplain 

(deposition) areas (Fp). These data sets were used as a base-
line for predicting the future LULC dynamics of 2033.

Socio-economic data

In this study, socio-economic data such as population, road 
and river were gathered from the Central Statistical Agency 
of Ethiopia. These data sets were used as one of the socio-
economic driving forces of LULC dynamics to prepare the 
suitability maps for running the CA_Markov model.

Data processing and analysis

Markov chain model

Markov chain is a stochastic model that predicts the prob-
ability of LULC change from one state to another state by 
taking into account the past LULC change trend at different 
spatio-temporal scales. In another ways, Markov chain is 
just a series of random values whose probabilities at a time 
interval depend on the value of the number at the previous 
time (Surabuddin Mondal et al. 2013). The output of this 
model is based on the probability of transition (Adhikari 
and Southworth 2012). The transition probability matrix of 
LULC change from time one to time two, which will be the 
basis for projecting to later time periods (Surabuddin Mon-
dal et al. 2013). The probability matrix is a set of conditional 
probabilities for the cells in the model to go to a particular 

Fig. 1  Location map of the study area. Source: Gidey et al. (2017)
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new state (Akin et al. 2014). This model can be used as a 
basis to predict how a particular LULC change over time 
(Fan et al. 2008; Hyandye and Martz 2017; Iacono et al. 
2015; Subedi et al. 2013; Mandal 2014). Currently, sev-
eral studies are using the Markov analysis to simulate land 
use change over different types of landscapes (Halmy et al. 
2015). The Markov model predicts the quantities of each 
LULC type or the dynamic changes of LULC pattern, but it 
is not good at dealing with the spatial pattern of landscape 
change (Li et al. 2015), because it does not provide spatial 
distribution of the change, which is highly imperative in 
understanding the potential impact of the projected changes 
(Halmy et al. 2015). The basic principle of the Markov chain 
model is that land use at some point in the future (t + 1) can 
be determined as a function of current land use (t) (Iacono 
et al. 2015). Coppedge et al. (2007) reported that the LULC 
change for any particular location may not be a random, but 
it depends upon previous or current land use situation. In 
this study, the Markov chain model was used on the base of 
the following mathematical expression as used worldwide 
(e.g., Subedi et al. 2013) (Eqs. 1, 2): 

and 

where L(t+1)and L(t) are the LULC status at time t + 1and t, 
respectively.0 ⩽ pij < 1 and

∑m

j+1
pij = 1, (i, j = 1, 2, ...,m) is 

the transition probability matrix.
In this study, the Markov chain analysis was applied 

to assess the transition matrix among the 1984–1995, 
1995–2015 and 1984–2015 LULC dynamics and the 
probabilities of change. Some of the Markov approaches 
employed in this study are presented as follows: First, the 
LULC of 1984, 1995, and 2015, which was classified in the 
Earth Resources Data Analysis System (ERDAS) imagine 
v. 2014 remote sensing software was imported to fit with 
IDRISI–TerrSet Geospatial Monitoring and Modeling Sys-
tem. The file formats of all LULC images were then con-
verted from image (.img) into tiff (.tiff) to run the Markov 
chain model. In the Markov chain model, the earlier (e.g., 
1984) and later (e.g., 1995) LULC distribution data were 
defined as a baseline and then the number of time-periods 
between 1984 and 1995 were defined. Similarly, the number 
of time-periods to project forward from the second image, 
i.e., 1995–2015 was set to be 20 years to produce LULC 
dynamic scenarios. A background cell option of 0.0 and 

(1)L(t+1) = pij × L(t)

(2)pij =

⎡
⎢⎢⎢⎢⎢⎣

p11 p12 ⋯ p1m
p21 p22 ⋯ p2m
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

pm1 pm2 ⋯ pmm

⎤⎥⎥⎥⎥⎥⎦

proportional error value of 0.15 was then assigned to gener-
ate the predicted LULC of 2015 at the 85% level of accu-
racy based on the transition probability matrix, transition 
area file, and a set of conditional probability image which 
was generated using the Markov model between each LULC 
type or category. The transition probability matrix is just a 
text file that consists of the probability of each LULC type 
change. This transition probability matrix was obtained by 
cross tabulation of two images of different time period to 
determine the probability of a pixel in a land-use class to 
change into another class (Subedi et al. 2013; Iacono et al. 
2015). The transition probability matrix was mathematically 
expressed based on Ghosh et al. (2017) as follows (Eq. 3): 

where �= transition probability matrix, O= observed num-
ber of transitions, E= expected number of transitions.

Similarly, the transition area file is a text file that records 
the number of pixels that are expected to change from each 
LULC type to another LULC class over a specified period 
of time (Adhikari and Southworth 2012). Furthermore, the 
conditional probability image shows the probability of each 
LULC type found at each pixel after the specified number 
of periods. In this study, the transition probability matrix, 
transition areas matrix and a set of conditional probability 
images were generated for eight different LULC classes such 
as cropland (Cl), forestland (Fl), shrub/bush lands (Shl), 
built-up area (Bu), water body (Wb), grasslands (Gl), bar-
ren lands (Bl) and floodplain area (Fp). Fan et al. (2008) 
reported that the control factors in a Markov chain model are 
the transition probability, which are a conditional probability 
of the system to go to a particular new state, given the cur-
rent state of the system. The actual LULC of 2015 was then 
used for simulating the 2033 LULC because the LULC of 
2015 is the only recent LULC for the study area.

Cellular automata (CA)

A cellular automata (CA) is a model that has the ability to 
change and control complex spatially distributed processes. 
The model provides clear insights into local and global 
patterns of land cover dynamics that relates the new state 
to its previous state and those of its neighbors (Surabud-
din Mondal et al. 2013; Al-sharif and Pradhan 2014). The 
CA model has a strong capability in simulating the spatio-
temporal characteristics of complex systems (Yang et al. 
2014). That is why it has been extensively used as a spatially 
dynamic model in LULC research (Adhikari and Southworth 
2012; Omar et al. 2014). This model can be understood as 
a dynamic and relatively simple spatial system, in which 
the state of each cell of the matrix depends on the previous 

(3)� =
∑ (O − E)2

E
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state of the cells enclosed inside a defined neighborhood, in 
accordance with a set of transition rules (Rocha et al. 2007). 
Therefore, the CA model is capable enough to predict the 
spatial distribution of the LULC pattern and its dynamics 
because it adds the spatial properties of LULC. This model 
does not only use the information of the previous state of 
a land-cover as done by a Markov model, but also uses the 
state of neighboring cells for its transition rules (Adhikari 
and Southworth 2012). The CA model serves as an analyti-
cal engine that enables dynamic modeling within GIS (Ye 
and Bai 2008) and remote sensing environment. Despite its 
advantages, the CA has some problems in the definition of 
transition rules, and model structure (Rocha et al. 2007). As 
a result, it cannot predict the LULC dynamics. This short-
coming of the technique can be overcome through the inte-
gration with other different dynamic and empirical models 
(Halmy et al. 2015) such as CA_Markov. The CA model was 
mathematically estimated (e.g., Sang et al. 2011) as follows 
(Eq. 4): 

where S is the set of limited and discrete cellular states, N is 
the Cellular field, t and t + 1 indicate the different times, and 
f is the transformation rule of cellular states in local space.

Cellular automata and Markov chain model (CA_Markov) 
integration

The cellular automata (CA) and Markov chain model is a 
dynamic model in time and state. This model is robust in 
predicting the transitions or spatial and temporal dynamics 
among a number of LULC types. The CA_Markov model 
has been extensively used in many scientific studies to pre-
dict the future LULC because it integrates the advantage of 
cellular automata and the Markov chain element of spatial 
contiguity as well as knowledge of the likely spatial distribu-
tion of transitions (Arsanjani et al. 2011; Eastman 2003; Li 
et al. 2015; Mas et al. 2007). That is why the CA and Markov 
chain model depend on each other (Omar et al. 2014) to 
predict the future LULC effectively. This model is capable 
of generating a better spatiotemporal pattern of the LCLU 
change (Sayemuzzaman and Jha 2014). This study, there-
fore, applied the CA and Markov chain model together to 
predict accurately the future likelihood of LULC dynamics 
in both spatial and temporal domain. In this study also, the 
CA_Markov model was also used to simulate the long-term 
dynamics of LULC (2015–2033) based on the past land 
cover patterns supported by the driving force both in tempo-
ral changes and spatial distribution using the IDRISI-TerrSet 
Geospatial Monitoring and Modeling System software. The 
prediction of future LULC using the CA_Markov model 
was supported by the transition probabilities controlled by 
local rules. To run the model appropriately, the CA_Markov 

(4)S(t, t + 1) = f (S(t),N)

require three types of data sets such as the base land cover 
image (e.g., LULC of 2015), Markov transition areas file 
generated by the Markov chain model, and the transition 
suitability images collection, which was prepared using the 
Multi-criteria evaluation (MCE) module of TerrSet. Like-
wise, a standard contiguity filter of 5 × 5 was used to define 
the neighborhoods of each cell and to generate better results 
than other contiguity filter (e.g., 3 × 3) and to create spatially 
explicit contiguous weighing factors. The pixels that are far 
from the existing LULC class have lower suitability than the 
pixels that are near (Subedi et al. 2013).

CA_Markov parametric selection and  analysis The CA_
Markov model assumes that each parameter or factor of 
LULC dynamics will be persistent to operate as before. 
Eastman (2012) reported that one of the basic factors that 
can trigger the dynamics of LULC events is proximity (e.g., 
Proximity to road, river, etc...). The physical closeness to an 
existing LULC class is likely to be a driver of change to this 
class in the future (Halmy et al. 2015). Proximity to major 
road is thus one of the best indicators of LULC dynamics 
because population residing along the road can expand their 
settlements, and/or clear forests, shrubs or bushes in time 
and space at various scales, either to enlarge their croplands 
or fuel wood collection and charcoal production. This type 
of practice is very common in all districts in the study area. 
Halmy et al. (2015) reported that the LULC change drivers 
often include an increase in population, distance to roads 
and other factors. Therefore, this study considered the major 
physical and socio-economic parameters such as population 
density, elevation, rainfall, slope, LULC type, proximity to 
road and river (Table 1) to prepare the transition suitabil-
ity map. The CA_Markov factors can be selected based on 
existing literature, analysts, or group of the expert’s knowl-
edge (López–Marrero et  al. 2011; Hadi et  al. 2014). The 
main reason is that there is no consistent standard for defin-
ing the suitability level of each LULC factor. However, in 
this study, expert opinions, knowledge of the researcher, and 
literature was used to determine their suitability level.

For instance, the slope gradient was computed from 
ASTER DEM 30 m × 30 m spatial resolution and then 
reclassified in ArcGIS 10.4.1. Similarly, the population 
density was analyzed from the total population in the study 
area. The ultimate reason to consider population density as a 
factor was due to the fact highly populated and denser areas 
can increase the deficit of food. Moreover, the Euclidean 
distance function was applied to estimate the proximity from 
the road and rivers based on the closest cell and then each 
layer was reclassified in ArcGIS 10.4.1 software. The two 
extreme values such as low and high were analyzed from the 
Euclidean distance to use as input for the fuzzy set member-
ship analysis. Omar et al. (2014) and Rocha et al. (2007) 
reported that the distance values should then standardized 
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to the continuous suitability scale (0–255) through a fuzzy 
approach both in linear and sigmoidal functions. Accord-
ingly, this study standardized the values of each factor 
and constraints using the fuzzy standardization in IDRISI-
TerrSet Geospatial Modeling and Monitoring System soft-
ware developed by Clark Labs at Clark University for the 
analysis of geospatial information.

CA_Markov model calibration, fuzzy standardization 
and  model execution Model calibration is the process 
whereby the scientists help to select parameters and advance 
the goodness of fit of the model (Pontius and Malanson 
2005). This study calibrates and standardizes both the fac-
tors, and constraints to develop a suitability map for the 
CA_Markov model (Fig.  2). The term factors signify the 

Table 1  Factors, membership 
function types/shapes, and 
control points used for LULC 
suitability map development 
(Improved from Akin et al. 
2014; Alimi et al. 2016; Araya 
and Cabral 2010; Keshtkar 
and Voigt 2016; Khoi and 
Murayama 2010; Luo et al. 
2015; Owusu et al. 2017)

Factor (s) Membership 
function type

Membership function shape Control points

Elevation (m) Sigmoidal Monotonically increase a = 324, b = 2500
Slope (°) Linear Monotonically increase a = 0, b = 15
Rainfall (mm) Linear Monotonically increase a = 0, b = 1200
Population density (people per Sq km) Sigmoidal Monotonically increase a = 2, b = 50

c = 100, d = 200
Proximity to road (m) Linear Monotonically increase a = 0, b = 1500
Proximity to river (m) Sigmoidal Monotonically increase a = 0, b = 2000
Proximity to forest land (m) Linear Monotonically increase a = 0, b = 100
Proximity to built-up area (m) Sigmoidal Monotonically increase a = 1, b = 10

c = 20, d = 5000
Proximity to cropland (m) Linear Monotonically increase a = 0, b = 1000
Proximity to barren land (m) Linear Monotonically increase a = 0, b = 500
Proximity to floodplain area (m) Linear Monotonically increase a = 0, b = 1500
Proximity to shrub/bush or grasslands (m) Linear Monotonically increase a = 0, b = 1000

MCE 

AHP weight derivation

MCE (weight factor)

Slope (degree)

Elevation (m)

Rainfall (mm)

Population density (Sq km)

Proximity to road (m)

Proximity to river (m) 

Proximity to forest (m)

Proximity to shrub/bush, grassland 

Proximity to built–up area (m)

Proximity to cropland (m)

Proximity to floodplain, & barren (m)

Physical and 
Socio–economic 

factors

Fuzzy Set 
membership function 

(0–255)

Constraints Proximity to Lake MCE (weight factor) Boolean 
intersection (0 & 1)

Transition suitability image 

Model, Analysis, 
pattern (magnitude), 

gain and loses 

Validation (Actual and 
simulated LULC 2015) 

Simulation (2033) LULC) 

CA_Markov 

Base line LULC (2015)

Transition area file 

Transition suitability image 

Simulation (2015) 

Simulation 

LULC 1984, 1995, and 2015 

Markov chain 

Conditional probability 

Transition probability

Transition area file

Fig. 2  Schematic diagram for simulating the future LULC using CA_Markov mode
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criteria or continuous images that are applied to consider 
the physical and socio-economic parameter (e.g., Elevation, 
slope, rainfall, population density). Whereas, the constraint 
is expressed in the form of Boolean (logical) map i.e., 0 and 
1 to limit or exclude some of the LULC types (e.g., Lake) 
which are believed to be changed rarely into other LULC 
type such as Built-up area. In this analysis, the excluded 
areas were coded with 0 and those open for consideration 
were coded with 1. Hence, each factor and constraints were 
well calibrated and standardized in IDRISI-TerrSet Geo-
spatial ri =Monitoring, and Modeling System. The fuzzy 
standardization evaluates the fuzzy set membership values 
(possibilities) of data cells based on any of the three mem-
bership functions such as sigmoidal, j-shaped, and linear 
(Eastman 2003). Likewise, the fuzzy membership functions 
are used to standardize the criterion scores or to rescale the 
factors into 0–255 in byte or (0.0 to 1.0) in real, where 0 
represents unsuitable (or less suitable) and 255 signifies the 
most suitable (Mishra et al. 2014; Omar et al. 2014; Kes-
htkar and Voigt 2016). Moreover, the MCE computes the 
Boolean analysis, Weighted Linear Combination (WLC) or 
Ordered Weighted Averaging (OWA) of factors (Eastman 
2003). In this study, the Boolean analysis was employed for 
the constraints (e.g., Lake) only while for other factors (e.g., 
Elevation, slope, and proximity to the road) the Weighted 
Linear Combination (WLC) were considered. The stand-
ardized factors of WLC express a perspective of suitabil-
ity: the higher the score, the more suitable for the specific 
LULC and there is no real threshold, however, that allows 
the definitive allocation of areas to be chosen and excluded 
(Jiang and Eastman 2000). Besides, the Weighted Linear 
Combination (WLC) was applied by assigning weight to 
each factor, followed by a summation of the results to yield 
a suitability map as follows (Eqs. 5 and 6):

where S =suitability, wi =weight of factor i, xi = criterion 
score of factor i 

where S =suitability map of each factor, wi =weight of each 
factor, ci =criteria, restrictions or constraints.

The weight of each LULC driving factor was deter-
mined through the pairwise comparison in the Analyti-
cal Hierarchy Process (AHP). The model has a unique 
advantage when the quantification and comparison of the 
important variable is complex (Keshtkar and Voigt 2016). 
Hadi et al. (2014) applied an equal weighting method for 
weighting the factors because each suitability maps were 
weighted during the process of the fuzzy standardization. 

(5)S =
∑

wixi

(6)S =

n∑
i=1

wici

n∏
i=1

ri

However, in this study, argue the process because each 
factor of LULC cannot be contributing equally and in this 
study the weight of each factor was determined based on 
their percent of influence. Some literatures were reviewed 
to determine the weight as well as the degree of suitability. 
The Analytic Hierarchy Process (AHP), which is a math-
ematical method of analyzing complex decision problems 
with multiple criteria evaluation, was applied to estimate 
the relative weight of each factor (Table 2). The highest 
weight value is that the most influential factor, while the 
lowest is a less important factor in LULC change. The 
consistency ratio of the overall factor is 0.09, which is 
acceptable range. The overall process of factor definition 
and model implementation is shown in Fig. 2.

CA_Markov model validation At this time, scientists need 
a better and larger set of tools to validate land use and land 
cover dynamics models, because it is essential to know a 
model’s prediction accuracy (Pontius and Schneider 2001). 
Some scientists prefer models that express the theory of 
the mechanisms of the processes of land change, while 
others place more weight on a model’s ability to extrapo-
late the observed pattern of change based on past empiri-
cal patterns (Pontius and Malanson 2005). The usefulness 
of LULC models has thus measured by the accuracy of the 
model output (Paegelow et al. 2014). This process provides 
several statistics for measuring the similarity between two 
qualitative images by including specialized kappa measures 
that discriminate between errors of quantity and errors of 
location (Eastman 2003). In this study, the kappa statisti-
cal validation tool was applied to evaluate the goodness or 
reliability of the projected 2015 LULC with the actual or 
observed 2015 LULC.

Table 2  The eigenvector of weights of each factors considered in this 
study

S. no Factor (s) Weight

1 Slope (°) 0.0467
2 Elevation (m) 0.0175
3 Rainfall (mm) 0.0506
4 Population density (people per Sq km) 0.3875
5 Proximity to road (m) 0.0658
7 Proximity to river (m) 0.0291
8 Proximity to forest (m) 0.0578
9 Proximity to shrub/bush (m) 0.0423
10 Proximity to grassland (m) 0.0544
11 Proximity to floodplain (m) 0.0544
12 Proximity to barren (m) 0.0575
13 Proximity to cropland (m) 0.0669
14 Proximity to built-up area (m) 0.0694
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Analysis of the predicted LULC relative change

Gidey et al. (2017) reported that the LULC change detec-
tion and analysis integrate a wide range of methods to esti-
mate the differences between two classified images. In this 
research, the predicted LULC changes were analyzed by 
applying the theories of relative change i.e., Area of a single 
LULC before and after as follows (Eqs. 7 and 8): 

where C= total relative change, C(%)= LULC relative 
change in percentage, Δf and Δi = total area coverage of 
final and initial LULC.

Furthermore, the annual rate of LULC relative change 
was statistically estimated computed as follows (Eq. 9): 

where C= annual relative change of each LULC type, Δf
and Δi before (final) and after (initial) area coverage of each 
LULC type, and T= time-period (interval) between initial 
and final.

Analysis of the gains and losses of predicted LULC dynamics

In this study, the gain and losses of the predicted LULC cat-
egory were analyzed quantitatively to measure the dynamics 
as follows (Eq. 10): 

where Ploss(i),jis the percentage taken by j LULC in the total 
“conversion loss” of category rowi; Pgain(i),jis the percentage 
taken by j in the total “conversion gain” of category rowi , 
pi,j and pj,i.

Results and discussions

Analysis of the Markov chain transition probability 
and area file matrix (cell)

The transition probability matrix, which is the most impor-
tant factor of a Markov chain model from the periods 
1984–1995, 1995–2015, and 1984–2015 is shown in Table 3. 
For example, the row classes in Tables 3 and 4 shows the 
previous LULC types and the columns represent the newer 
or projected LULC categories. In each of the transition 
matrices, the diagonal values represent the probability that 

(7)C = (Δf − Δi)

(8)C(%) = (Δf − Δi)∕Δi × 100

(9)C = (Δf − Δi)∕Δi ×
1

T
× 100

(10)

[
ploss(i),j = (pj,i − pi,j)∕(pi − pi) × 100 i#j

pgain(i),j = (pi,j − pj,i)∕(pi − pi) × 100 i#j

]

each land cover class remains persistent from time 0 to time 
1 (Halmy et al. 2015). This transition probability matrix sig-
nifies the dynamics from one LULC category to every other 
LULC type or the possibilities that a cell of each LULC 
type changes into any other category during that period. 
Surabuddin et al. (2013) reported that a given parcel of land 
theoretically might change from one category of land use, 
to any other, at any time. This transition probability matrix 
expresses the probability of changing or the chances that a 
pixel or pixels of any given class will change to any other 
class (or stay the same) in the next period (Eastman 2003). 
The possible reason is that LULC dynamics is not unidirec-
tional in nature; a given land cover type might theoretically 
change from one category of LULC to any other (Han et al., 
2015). Luo et al. (2015) studied the 1990–2007 LULC to 
generate a transition probability matrix which was used to 
predict the landscape patterns of 2020 in the inland river 
delta of Central Asia. Similarly, Halmy et al. (2015) applied 
the historical land use data where the past land transforma-
tion and transition is assessed to predict the future LULC 
in the northwestern coastal desert of Egypt. Furthermore, 
Keshtkar and Voigt (2016) reported that transition potentials 
were computed based on the historical land-cover conditions 
during the periods 1990–2000 and 2000–2010 to show how 
each land-cover was projected to change in central Germany. 
This study also used the historical LULC of 1984–2015 to 
generate the transition probability matrix and areas files, 
which are the most important parameters in analyzing the 
future LULC. The transition area files give an indication of 
how much of the cells or pixels that change from one cat-
egory to another (e.g., Shrub/bush lands–croplands).

Table 4 reveals the transition area file matrix that the 
total number of pixels, or areas in cells expected to change 
in the next time-period. A pair of LULC (e.g., 1984–1995, 
1995–2015, and 1984–2015) was used to generate the 
transition area matrix and it depicts how each LULC was 
projected to the change. In this study, the transition area 
files of the year 1995–2015 were used to predict the 2015 
LULC. This LULC was then used to validate the reliability 
of CA_Markov with the actual LULC of 2015. Whereas, 
the transition area file of the year 1984–2015 was applied to 
forecast the LULC of 2033</tb>

Fuzzy standardization and suitability maps 
derivation

CA_Markov is an expert driven process that spatially allo-
cates the expected LULC by using categorical suitability 
maps (Paegelow et al. 2014). Figure 3 depicts the physical 
and socio-economic suitability maps of each factor. These 
suitability maps were used as input to produce the transi-
tion suitability image and to carry out an integrated analy-
sis in the CA_Markov model. Yang et al. (2014) reported 
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that the transition potential image is useful to control the 
spatial distribution of LULC. As a result, each factor was 
separately converted into a relative scale to correspond to 
values from 0 to 255 using the fuzzy standardization tool 
(Poska et al. 2008). A pixel value of 0 shows that the pixel 
is unsuitable (least suitable), while pixel values of 255 rep-
resent suitable for a particular LULC. Subedi et al. (2013) 
reported that socio-economic factors are prime drivers of 
LULC change, however, only physical factors were consid-
ered in their study. This study, therefore argues that consid-
ering physical factors alone is not adequate to predict the 
future LULC dynamics using the CA_Markov model. One 
of the possible reasons could be socio-economic factors. 
For example, population density could be the prime trig-
gering factors of LULC dynamics because highly populated 
areas may trigger shrinking of water bodies, forestlands, and 
shrub/bush lands. Therefore, absence of the socio-economic 
drivers may not give better results in predicting the LULC. 
A combination of physical and socio-economic data and 
other relevant parameters can thus certainly improve the 
accuracy of future LULC simulation (Arsanjani et al. 2011; 
Yang et al. 2014). Behera et al. (2012) observed that both the 
physical and socio-economic drivers, including residential/

industrial development, road–rail and settlement proxim-
ity influenced the spatial pattern of the watershed LULC, 
leading to a creative linear growth of settlements and agri-
cultural areas in Choudwar watershed, India. Similarly, this 
study incorporates the physical and socio-economic factors 
to predict the future LULC dynamics to inform proper and 
sustainable land use planning system. The main reason is 
that land-use planning is one of the most important policy 
instruments that may be used for the conservation of natural 
resources and proper management of land parcels for various 
uses (López–Marrero et al. 2011; Woodcock et al. 1983). 
Furthermore, studies have shown that areas with no access 
roads are less likely to be disturbed by human intervention 
due to lack of access.

Prediction and change analysis of future LULC

Figure 4a, b shows the historical (LULC 2015) and predicted 
(LULC 2033) in the study area. The predicted LULC 2033 
result reveals that eight major LULC types e.g., Cropland 
(Cl) 6153.38 sq km (42.3%), forestland (Fl) 352.88 Sq km 
(2.4%), shrub/bush lands (shl/bu) 4257.38 (29.3%), built–up 
area (Bu) 879.11 sq km (6%), water body (Wb) 41.03 sq 

Table 3  Probability of LULC 
dynamics based on Markov 
transition matrix from 1984 to 
1995, 1995 to 2015, 1984 to 
2015 in the study area

Cl crop land, Fl forest land, Shl shrub/bush land, Bu built-up area, Wb water body, Gl grassland, Bl barren 
land, Fp floodplain area

LULC Years Cl Fl Shl Bu Wb Gl Bl Fp

Cl 1984–1995 0.7435 0.0000 0.1509 0.0353 0.0052 0.0630 0.0000 0.0022
1995–2015 0.7763 0.0000 0.0674 0.1480 0.0010 0.0046 0.0000 0.0027
1984–2015 0.6962 0.0032 0.1895 0.0995 0.0016 0.0088 0.0000 0.0013

Fl 1984–1995 0.0000 0.7287 0.1355 0.0000 0.0008 0.1350 0.0000 0.0000
1995–2015 0.0254 0.7277 0.1751 0.0000 0.0025 0.0694 0.0000 0.0000
1984–2015 0.1728 0.5206 0.2238 0.0000 0.0000 0.0828 0.0000 0.0000

Shl 1984–1995 0.0812 0.0296 0.7530 0.0406 0.0009 0.0320 0.0560 0.0067
1995–2015 0.1804 0.0406 0.6806 0.0237 0.0012 0.0454 0.0234 0.0047
1984–2015 0.2791 0.0574 0.5458 0.0279 0.0006 0.0343 0.0381 0.0168

Bu 1984–1995 0.2025 0.0000 0.7004 0.0222 0.0197 0.0000 0.0526 0.0025
1995–2015 0.5927 0.0000 0.3292 0.0735 0.0000 0.0000 0.0001 0.0045
1984–2015 0.2795 0.0000 0.5400 0.0876 0.0100 0.0000 0.0789 0.0040

Wb 1984–1995 0.3270 0.0000 0.0000 0.0531 0.6158 0.0000 0.0041 0.0000
1995–2015 0.1679 0.0199 0.0577 0.1376 0.5946 0.0000 0.0222 0.0000
1984–2015 0.2299 0.0000 0.1295 0.0506 0.4514 0.0007 0.1379 0.0000

Gl 1984–1995 0.0928 0.0042 0.3317 0.0000 0.0000 0.5600 0.0000 0.0113
1995–2015 0.6606 0.0000 0.0673 0.0939 0.0028 0.1744 0.0009 0.0000
1984–2015 0.4347 0.0269 0.2962 0.0590 0.0031 0.1657 0.0133 0.0011

Bl 1984–1995 0.1706 0.0000 0.0611 0.0197 0.0000 0.0000 0.5554 0.1932
1995–2015 0.0000 0.0000 0.1281 0.0362 0.0000 0.0000 0.7876 0.0481
1984–2015 0.1711 0.0000 0.2325 0.0339 0.0003 0.0005 0.4738 0.0878

Fp 1984–1995 0.0000 0.0003 0.0000 0.0000 0.0000 0.0007 0.3390 0.6600
1995–2015 0.0000 0.0001 0.0000 0.0453 0.0072 0.0240 0.4267 0.4966
1984–2015 0.0000 0.0000 0.0249 0.0262 0.0041 0.0127 0.7101 0.2221
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km (0.3%), grasslands (Gl) 238.13 sq km (1.6%), barren 
lands 2114.8 sq km (14.6%), and floodplain area 495.5 sq 
km (3.4%) are well identified at different spatial extents 
(Tables 5, 6).

Eva et al. (2006) stated that the main LULC dynamics 
have been the conversion of natural vegetation into agricul-
tural lands. However, it is not only natural resources change 
into agricultural lands. For instance, Fig. 4 depicts a single 
LULC type in the study area is projected to convert to a 
number of LULC types by 2033. The LULC conversion may 
lead the area into the increasing intensity of Urban Heat 
Island (UHI). The study area is anticipated to experience 
a significant LULC change during the period 2033. Fig-
ure 4a–b shows the historical (LULC 2015) and predicted 
(LULC 2033) in the study area. The predicted LULC 2033 
result reveals that eight major LULC types e.g., cropland 
(Cl) 6153.38 sq km (42.3%), forestland (Fl) 352.88 Sq km 
(2.4%), shrub/bush lands (shl/bu) 4257.38 (29.3%), built–up 
area (Bu) 879.11 sq km (6%), water body (Wb) 41.03 sq 
km (0.3%), grasslands (Gl) 238.13 sq km (1.6%), barren 
lands 2114.8 sq km (14.6%), and floodplain area 495.5 sq 
km (3.4%) are well identified at different spatial extents 
(Tables 5, 6).

Rendana et al. (2015) reported that the cellular automata 
and Markov Chain analysis model were employed to pre-
dict the future LULC type and a significant LULC change 
has been observed in 1997–2014 (18.95%), and 2014–2020 
(3.66%). In addition, the author reported that open water 
80.37 ha (0.54%), mixed agriculture 501.02 ha (12.24%), 
open land 499.95 ha (5.47%), and built up areas 119.88 ha 
(0.85%) are expected to increase in 2020. Sayemuzzaman 
and Jha (2014) observed that nearly 7% agricultural land was 
expected to decrease in 2030 when compared with 2001 data 
and no significant changes were observed for water body 
and other land category coverage in North Carolina. Fur-
thermore, Yulianto et al. (2016) reported a decrease in for-
est 10.52 ha, dry land 13.22 ha, paddy fields 14.49 ha, and 
shrubbery 1.15 ha per annum, respectively, while bare soil 
6.79 ha, plantation 11.14 ha, settlement 11.49 ha, and water 
body 9.7 ha have been predicted in the Tondano watershed, 
North Sulawesi–Indonesia. Likewise, Gashaw et al. (2017) 
observed that cultivated land in Andassa watershed is antici-
pated to rise from 76.8% in 2015 to 83.3% during the period 
of 2030. Besides, the author stated that the rapid expansion 
of the built-up area is projected to grow from 1.1% dur-
ing the period of 2015 to 2.0% in 2030, respectively. These 

Table 4  Markov transition area file matrix of various LULC from 1984 to 1995, 1995–2015, 1984–2015 in the study area

Cl crop land, Fl forest land, Shl shrub/bush land, Bu built-up area, Wb water body, Gl grassland, Bl barren land, Fp floodplain area

LULC Year Cl Fl Shl Bu Wb Gl Bl Fp

Cl 1984–1995 3,942,032 0 800,315 187,028 27,452 333,804 0 11,423
1995–2015 5,348,322 0 464,483 1,019,460 7018 32,038 0 18,571
1984–2015 4,796,977 21,735 1,305,493 685,299 10,862 60,367 0 9158

Fl 1984–1995 0 151,017 28,089 0 175 27,971 0 0
1995–2015 6983 199,754 48,062 0 675 19,045 0 0
1984–2015 47,436 142,908 61,447 0 0 22,728 0 66,093

Shl 1984–1995 403,275 147,082 3,739,021 201,669 4256 159,027 277,884 33,455
1995–2015 711,169 160,061 2,683,728 93,304 4609 179,174 92,317 18,530
1984–2015 1,100,622 226,179 2,152,224 110,053 2407 135,213 150,102 2727

Bu 1984–1995 43,289 0 149,722 4738 4219 0 11,242 542
1995–2015 401,537 0 223,012 49,786 0 0 76 3032
1984–2015 189,356 0 365,795 59,312 6800 0 53,453 0

Wb 1984–1995 21,007 0 0 3410 39,556 0 262 0
1995–2015 8593 1021 2956 7046 30,434 0 1136 0
1984–2015 11,767 0 6628 2591 23,103 37 7060 264

Gl 1984–1995 58,835 2685 210,323 0 0 355,030 0 7135
1995–2015 152,316 0 15,525 21,659 648 40,220 216 0
1984–2015 100,242 6214 68,288 13,596 703 38,206 3072 284,576

Bl 1984–1995 407,514 0 145,960 47,047 0 0 1,326,821 461,561
1995–2015 0 0 415,196 117,199 0 0 2,552,606 0
1984–2015 554,588 0 753,540 109,848 1054 1605 1,535,674 284,576

Fp 1984–1995 0 723 0 0 0 1651 801,132 1,559,795
1995–2015 0 78 0 37,691 5965 19,998 354,948 413,090
1984–2015 0 0 20,691 21,816 3417 10,535 590,598 184,712
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expansions are largely due to the reduction of potential land 
cover types (e.g., Forest land, shrub land, and grasslands), 
which are helpful to diminish the adverse effects of climate 
extremes such as drought and floods. However, this study 

observes different trends in forest, shrub/bush lands, and 
grasslands in the major LULC types of the Raya, Ethiopia. 
For instance, the forestland, shrub/bush lands, and grass-
lands are projected to expand at an annual growth rate of 6.0 

Fig. 3  Standardized physical and socio-economic factors of LULC 
in the study area. a Elevation, b population density, c proximity to 
stream, d proximity to fl, e slope, f proximity to shl, g proximity to 

fp, h proximity to bl, i proximity to gl, j proximity to bu, k long term 
mean annual rainfall, l proximity to cl, m Proximity to road, n transi-
tion suitability image, o proximity to lake (constraints)

Fig. 4  Spatial distribution of the historical LULC 2015 (a) and predicted LULC 2033 (b) in the study area
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sq km (2.47%), 39.4 (1.11%), and 1.7 sq km (0.83%), respec-
tively (Table 6). Besides, the built-up area is anticipated to 
develop annually at a rate of 15.9 sq km (2.68%). However, 
croplands which was the leading LULC type is now expected 
to shrink annually at a rate of 1.7 sq km 4.4 (0.07%), water 
body 0.3 sq km (0.62), barren land 44.4 sq km (1.52%), 
and floodplain areas 14.0 sq km (1.87%), respectively. The 
possible reason for shrinking the cropland might be due the 
attention given by the local/federal government for area clo-
sure to improve the natural resources (e.g., Forest and shrub/
bush lands). Hadi et al. (2014) stated that vegetation cover is 
projected to decrease by 45.11 Sq km (30.34%) during 2030 
in Tikrit–Iraq. The author also reported that this reduction 
might contribute to the eco-environmental degradation in 
the area. The changes in LULC therefore cause a signifi-
cant environmental effect such as decrease in rainfall, the 
increase in surface temperature, and land degradation which 
can contribute to contribute to the occurrence of drought and 
famine (Ildoromi and Safari Shad 2017).

Yang et al. (2015) noted that the current spatial pattern 
of land use is similar to the historical pattern, and that 
land cover observes during 1954–2005 was also observed 
in the 1930s. This study has also agreed that the dynamics 

observed in the study area were driven mainly by the his-
torical LULC change trends. Lopez et al. (2001) applied 
Markov transition matrices to predict LULC change in 
Morelia city, Mexico and reported that the city shows a 
fast growing from 709 ha in 1960 to 3368 ha in 1990, fol-
lowed by plantations and cropland, while the grasslands 
and shrub land are the least stable categories. Further-
more, the historical LULC is subject to changes in vari-
ous cover patterns at different magnitudes (Fig. 5). For 
instance, the forestland in the study area is expected to 
moderately shift into cropland (16.92 sq km), built-up area 
(1.02 sq km), barren land (0.01 sq km), grassland (15.06 
sq km), water body (0.08 sq km), shrub/bush (7.62). Simi-
larly, other LULC types are also anticipated to shift into 
various cover types. However, it is projected to remain as 
forest cover (203.47 sq km).

Moreover, this study evaluates the statistical relation-
ships between the baseline, which is the LULC of 2015, 
and predicted LULC in 2033. The Pearson correlation 
result indicated that both LULC dynamics were positively 
and strongly correlated (r = 0.981) and are statistically sig-
nificant (p = 0.000).

Table 5  Expected change of 
future land use and land cover 
(2033) type of the study area

LULC 2015 2033 Relative LULC change 
between 2015 and 2033

Area in sq km % Area in sq km % Area in sq km %

Cl 6232.31 42.9 6153.38 42.3 − 78.9 − 1.3
Fl 244.22 1.7 352.88 2.4 108.7 44.5
Shl/bu 3547.34 24.4 4257.38 29.3 710.0 20.0
Bu 592.89 4.1 879.11 6.0 286.2 48.3
Wb 46.20 0.3 41.03 0.3 − 5.2 − 11.2
Gl 207.16 1.4 238.13 1.6 31.0 15.0
Bl 2914.82 20.1 2114.80 14.6 − 800.0 − 27.4
Fp 747.18 5.1 495.50 3.4 − 251.7 − 33.7
Total 14,532 100.0 14,532 100.0 – –

Table 6  Annual rate of relative 
future LULC change in Sq km

LULC 2015 2033 Change 2015–2033

Area in sq km % Area in sq km % Area in Sq km % Annual rate of 
change in Sq km

%

Cl 6232.31 42.9 6153.38 42.3 − 78.9 − 1.3 − 4.4 − 0.07
Fl 244.217 1.7 352.88 2.4 108.7 44.5 6.0 2.47
Shl/bu 3547.34 24.4 4257.38 29.3 710.0 20.0 39.4 1.11
Bu 592.886 4.1 879.11 6.0 286.2 48.3 15.9 2.68
Wb 46.2014 0.3 41.03 0.3 − 5.2 − 11.2 − 0.3 − 0.62
Gl 207.158 1.4 238.13 1.6 31.0 15.0 1.7 0.83
Bl 2914.82 20.1 2114.80 14.6 − 800.0 − 27.4 − 44.4 –1.52
Fp 747.178 5.1 495.50 3.4 − 251.7 − 33.7 − 14.0 –1.87
Total 14,532 100 14,532 100 – – – –
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Losses and gains analysis in the future LULC

Figure  6 shows the gain and losses of the predicted 
LULC. The results indicated that forest lands (Fl) 108 sq 
km (44.5%), shrub/bush lands (Shl/bu) 710 sq km (20%), 
built-up area (Bu) 286.2 sq km (48.3%), and grass lands 
(Gl) 31 sq km (15%) are predicted to increase (gain) from 
the 2015 LULC coverage. However, significant reductions 
(losses) are projected to occur in water body (Wb) 5.2 sq 
km (11.2%), croplands (Cl) 78.9 sq km (1.3%), barren lands 
(Bl) 800 sq km (27.4%), and flood plain area (Fp) 251.68 sq 
km (33.7%). Furthermore, the smallholder farmers of the 
study area reveal that the crop production and productivity is 
diminishing at alarming rates due to the shrink of croplands 
and climate change. Conversely, the increase in forest land 
and reduction in barren and flood plain may benefit the study 

area to harmonize the climate condition and in improving 
livelihoods, protecting watershed, mitigating climate change, 
and land degradation impacts. However, the decrease in the 
potential water body may contribute to the regularity and 
severity of drought, which causes significant impacts in both 
livestock and humans. Besides, the increase in built-up area 
is an indication of the rapid growth of population and this 
may remain a challenge unless the environmental friendly 
policy on land use is implemented to harmonize the demand 
and diminish the impacts arises from it. The increase in 
human populations, combined with continuing development, 
has caused the unprecedented LULC change, and resulted 
in serious impacts on ecological systems and landscape pat-
terns (Yang et al. 2014). Therefore, environmentally friendly 
policy on land use is paramount significant to harmonize the 
demand and reduce the impacts that arises from it.

Fig. 5  Patterns of the LULC 2015–2033
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Validation of the predicted LULC

Validation is a process of measuring or comparing the 
agreement between the predicted and actual or reference 
data (Verburg et al. 2006; Pontius and Malanson 2005). The 
reference data is more accurate than the predicted LULC 
because no model perfectly predicts LULC dynamics. The 
Kappa statistic index is widely applied to validate between 
the actual and predicted LULC. Keshtkar and Voigt (2016) 
reported that the predictive power of the CA_Markov model 
was successfully evaluated using a Kappa statistic index. 
Pontius and Malanson (2005) applied the kappa statistic 
to evaluate the accuracy of the predicted LULC of 2011 
and the agreement with the actual LULC map of 2011. This 
helps to determine how well does a pair of map agree with 
the quantity of cells and their location in each category? 
Furthermore, in order to ensure the reliability and/or repre-
sentativeness of the projected LULC of 2033, the predicted 
LULC of 2015, and the actual LULC of 2015 were compared 
using the validation tool in TerrSet. The kappa statistics 
result reveals that Kappa for no information (Kno: 0.7072), 
Kappa for location (Klocation: 0.8135) and Kappa for stand-
ard (Kstandard: 0.6593) were estimated. This indicated that 
both the actual and predicted LULC are moderately highly in 
agreement with the predicted LULC. This level of agreement 
is acceptable. This reveals that the CA_Markov model is 
capable of predicting the future LULC patterns successfully 
and correctly (Halmy et al. 2015; Yang et al. 2014).

Yang et al. (2014) reported KIA for forest 0.736, culti-
vated land 0.577, construction land 0.534, and water body 
0.373 respectively, which are all acceptable. Similarly, Akin 
et al. (2014) found that about 69% of validation accuracy, 
which was less than expected due to the radiometric quality 
of the Landsat 1972 data, the lack of in-situ data for Land-
sat 1972 and 1986 data, and heterogeneous landscape and 
complex urban structure of Istanbul among others. However, 
this study found relatively better findings at 30 × 30 meter 
resolution. Some of the facts to achieve this result are: 1st all 
image pre–processing techniques (radiometric, geometric, 
and atmospheric correction) were applied before conduct-
ing any analysis, 2nd adequate in-suit measurements were 
gathered from the field to appropriately classify, interpreted 
and analyze the LULC cover types, 3rd post classification 
techniques were employed at field level.

Conclusions

This study aimed to predict and monitor the future scenarios 
of LULC (2015–2033) using cellular automata and Markov 
Chain model (CA_Markov) by taking into consideration 
the physical and socio-economic drivers of LULC dynam-
ics in Raya and its surroundings, Northern Ethiopia. The 

historical LULC change data of 1984–1995, 1995–2015, 
and 1984–2015 were used as a baseline to predict the future 
LULC 2033. Both transition rules and transition area matrix 
for the period 1984–1995, 1995–2015, and 1984–2015 were 
produced quantitatively using the Markov chain model in 
TerrSet Geospatial Monitoring and Modeling System. The 
physical and socio-economic factors of LULC change were 
standardized using fuzzy and then Multi Criteria Evalua-
tion (MCE) was used to produce the transition suitability 
image based on the suitability (influence) of each factor. The 
CA_Markov model was then applied as a standard contigu-
ity filter of 5 × 5 to predict the 2033 LULC condition. As 
a result, eight major LULC are identified (e.g., Cropland 
(Cl) 6153.38 sq km (42.3%), forestland (Fl) 352.88 Sq km 
(2.4%), shrub/bush lands (shl/bu) 4257.38 (29.3%), built-
up area (Bu) 879.11 sq km (6%), water body (Wb) 41.03 
sq km (0.3%), grasslands (Gl) 238.13 sq km (1.6%), bar-
ren lands 2114.8 sq km (14.6%), and floodplain area 495.5 
sq km (3.4%)). In addition, the Pearson correlation result 
between the historical and predicted LULC trends indicated 
that there is a positive, strongly correlated, and statistically 
significant relationship (r = 0.981, p = 0.000). The forest 
lands, shrub/bush lands, built-up area, and grasslands are 
predicted to increase (gain) from the 2015 coverage by 108 
sq km (44.5%), 710 sq km (20%), 286.2 sq km (48.3%), and 
31 sq km (15%), respectively. However, significant reduc-
tions (losses) in a water body (Wb), croplands (Cl), barren 
lands (Bl), and floodplain (Fp) area is projected to occur by 
5.2 sq km (11.2%), 78.9 sq km (1.3%), 800 sq km (27.4%), 
and 251.68 sq km (33.7%), respectively. The increase in for-
est land and reduction in barren and flood plain may ben-
efit the study area to harmonize the climate condition and 
in improving livelihoods, protecting watershed, mitigating 
climate change, and land degradation impacts. However, the 
decrease in the potential water sources (body) may contrib-
ute to the regularity and severity of drought, which causes 
significant impact to both livestock and human. Besides, the 
increase in built-up area is an indication of the rapid growth 
of population and this may remain as a challenge unless 
environmental friendly policy on land use is implemented to 
harmonize the demand and diminish the impacts arises from 
it. This study may help to use as useful benchmarks, to foster 
better decisions and improve policies in land use within the 
framework of sustainable land use planning system.
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