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62.87% in 2015 with 5.03 sq km year−1 expansion rate. The 
LST hotspot (H–H) in 2002 observed in the central and the 
southeast portion of the region, ascribe to the presence of 
higher thermal anomalies, whereas, the mean LST (°C) of 
the neighboring region is below than the average. The high-
est negative correlation between the estimated LST (°C) 
and the biophysical indices was accounted over aquatic 
vegetation cover, followed by urban green spaces and built-
up urban area, respectively. The simple linear and multiple 
regression models demonstrated the complex and nonlinear 
behavior of the UHI and LST with the biophysical com-
ponents. Therefore, the spatial coherence among the bio-
physical indices with LST ensembles the necessity of urban 
greenery and parks within the urban counterpart to mitigate 
the outdoor thermal discomfort to a reasonable extent.

Keywords LST · SUHI · Biophysical indices · Thermal 
comfort · Spatial statistics · Urban ecosystem

Introduction

Urban Heat Island (UHI) problem now becomes a global 
phenomenon affecting the city’s climate and its environ-
mental quality to a larger extent (Voogt and Oke 2003; 
Chudnovsky et  al. 2004). The magnitude of air and earth 
surface temperature difference between cities and its sub-
urban is collectively defined as UHI (Landsberg 1981; 
Weng at al. 2004) or urban heat archipelago if the struc-
ture is multicellular in nature which could probably occur 
at the first part of the night (Bottyan and Unger 2003). Oke 
(1987) classified the UHI by two types: canopy layer UHI 
(consist with the rough air temperature of tree canopy and 
building with an upper boundary situated just below the 
roof level) and boundary layer UHI (it is located above the 

Abstract The biophysical composition; including the 
green surface cover and moisture dynamics substantially 
affects the thermal character and Surface Urban Heat Island 
intensity (SUHII) of an urban area. Therefore, biophysi-
cal indices are highly sensitive to the changing process in 
land use and land cover. Remote sensing based land sur-
face temperature (LST) plays a significant role in analyz-
ing the thermal behavior of urban areas at multiple scales 
to moderate the urban heat island. In the present study, 
Greater Hyderabad Municipal Corporation, is taken as a 
case study to assess biophysical controls on LST and UHI 
in an urban ecosystem by implementing biophysical indi-
ces. Therefore, the cluster of UHI and the proximity to the 
hotspots were created from spatial statistics. The areal cov-
erage of urban land was increased from 31.2% in 1973 to 
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canopy layer, where the lower boundary influencing urban 
surface temperature) (Weng et al. 2004). Highly urbanized 
impervious surface could alter the biophysical composi-
tions which could modify the physical process of earth-
atmosphere energy exchange (Oke 1987). UHI studies have 
directed into two distinct way since the beginning of its 
application on urban climatic studies: (1) quantifying UHI 
phenomenon of a particular air parcel based on automobile 
transect and in situ weather network measurement, and (2) 
measuring earth surface temperature through the use of sat-
ellite remote sensing observation (Streutker 2003).

The changing dynamics of land use and land cover 
brought by human activity at any ecosystem scale seems to 
have incremental and unconscious, could lead to an unde-
sirable modification of the native environment (Carlson and 
Arthur 2000). The unusual changes in land use and expan-
sion of urbanized surface could substantially decrease half 
of the diurnal temperature range and could warm the mean 
earth surface temperature by 0.27 °C per century (Kalnay 
and Cai 2003). In addition, the sensitivity of land use and 
land cover changes and earth surface temperature found to 
be zero or close to zero in globally, however, the dynam-
ics of land surface temperature, precipitation, and other cli-
mate components can be as large as or greater than those 
that result from the anthropogenic increase of well-mixed 
greenhouse gases (Pielke 2005). Moreover, the immediate 
effects of environmental changes are more prominent at 
regional and local scale than that of globally averaged val-
ues (Pielke 2005). It is also evident that long run land use 
changes by the human may have decreased the air tempera-
ture by 1–2 °C at mid-latitude agricultural region and could 
be warming by 1–2 °C in the deforested tropical region and 
extratropical region due to teleconnection process (Fed-
dema et al. 2005). UHI phenomenon could be the extreme 
case of land use alteration at regional and local scale, where 
the unprecedented changes of vegetation cover, impervi-
ous surface area, and complex geometry of building in an 
urban landscape lowering the evaporative cooling, store 
the excess heat and hence, warm the earth surface (Foley 
et al. 2005). Likewise, Yue et al. (2007), Chen et al. (2006) 
reported that UHI intensity level is closely associated with 
the landscape pattern, i.e. composition and configuration of 
land use and land cover (LULC), the abundance of green 
cover, extent of impervious (Deng and Wu 2013b) sur-
face and their changes and correlation of spatial metrics 
with urban heat island is helpful to determine the spatial 
change of land use classes and associated changes in sur-
face temperature. Therefore, the detail investigation of long 
run LULC changes at any ecosystem scale could help us to 
explain the discrepant and unprecedented modification of 
earth surfaces, and also contribute to describing the direc-
tions and degree of other human-related environmental 
changes (Xiao and Weng 2007; Zeng et al. 2015a, b).

There is a substantial evidence of using remote sens-
ing based biophysical indices to examine the thermal heat 
island phenomenon (Streutker 2003; Weng et  al. 2004, 
2007; Chen et  al. 2006; Zhang et  al. 2009; Amiri et  al. 
2009). NDVI was used in conjunction with soil-vegeta-
tion-atmospheric-transfer (SVAT) model to ascertain the 
surface soil moisture variability and fraction of vegeta-
tion cover (FVC) (Carlson et al. 1994), which can used for 
estimating leaf area index (LAI), surface impervious frac-
tion, biomass and crop yield (Carlson and Ripley 1997). 
Weng et  al. (2004) studied UHI intensity by investigating 
the applicability of vegetation fraction estimated from the 
linear spectral unmixing model as potential indicators of 
vegetation abundance. Recent studies have been giving 
thrust on dynamics of the biophysical indicator in response 
to changing urban heat island to measure the sustainabil-
ity of an urban area and living conditions within the city. 
Besides, the selected biophysical descriptors are found 
highly correlated with land surface temperature (LST) in 
pearl river delta (PRD) in Guangdong Province, southern 
China, where NDVI, LSWI, and NDBaI were negatively 
associated with LST, NDBI was positively correlated with 
temperature (Chen et  al. 2006). However, the correlation 
between LST and NDVI values related to different land-
use types are significantly different (Yue et al. 2007). Yuan 
and Bauer (2007) analyzed the usability of NDVI and the 
impervious surface fraction as indicators of SUHI effects 
by examining the correlation between the LST, impervious 
surface fraction, and the NDVI. The similar observation 
has been made by Zhang et al. (2009), where the correla-
tions between NDVI and LST are rather weak than that of 
the relationship between percent ISA, NDBI, and LST. This 
suggests that percent ISA, combined with LST, and NDBI, 
can quantitatively describe the spatial distribution and tem-
poral variation of urban thermal patterns and associated 
LULC conditions.

The application of thermal remote sensing is con-
sidered the most feasible way to examine and charac-
terizing the urban ecosystem at any ecosystem scale. 
Amiri et  al. (2009), Chun and Guldmann (2014), Deng 
and Wu (2013a, b, c), Ishola et  al. (2016), Ayanlade, 
(2016), Kayet et  al. (2016), Sahana et  al. (2016) have 
been used the multi-temporal Landsat 4 multi-spectral 
scanner (MSS), 5 thematic mapper (TM) and Landsat 
7 enhanced thematic mapper (ETM+) sensors for esti-
mating spatiotemporal LST and UHI. Buyantuyev and 
Wu (2010) was used the spectral and thermal data of 
advanced spaceborne thermal emission and reflection 
radiometer (ASTER) to examine the spatially explicit 
patterns of Phoenix’s SUHI. Cao et al. (2010) have also 
been used moderate resolution ASTER and fine resolu-
tion IKONOS data to quantify park cool island intensity 
(PCI). Therefore, the best advantage of incorporating the 
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geospatial information to evaluate the status of an urban 
climatic phenomenon is its easy availability and eco-
nomic viability.

In the present study, Greater Hyderabad Municipal 
Corporation (GHMC) is our study boundary, despite the 
uses of surroundings area. The planning for future sus-
tainable area come under the administrative boundary 
and moreover, Hyderabad is the capital city of Andhra 
Pradesh, and the population growth is continuously 
increasing. Therefore, the study insists on assessing 
biophysical controls on LST and UHI in an urban eco-
system by implementing biophysical indices (Fig.  1). 
The discrepant impact of LULC changes and biophysi-
cal descriptors on UHI intensity of an urban ecosystem 
has been evaluated using thermal remote sensing data. 
Five distinct UHI intensity classes were generated using 
the relative brightness temperature approach and were 
deployed to assess the spatial cluster of UHI hot spot and 
cold spot. The simple linear and multiple regression mod-
els were demonstrated the complex and nonlinear behav-
ior of the UHI and LST with the biophysical components. 
Therefore, the spatial coherence among the biophysical 

indices with LST ensembles the necessity of urban green-
ery and parks within the urban counterpart to mitigate the 
outdoor thermal discomfort to a reasonable extent.

Methods and data

Land surface temperature (LST) is the radiative tempera-
ture of the earth surface which plays a significant role in the 
physics of earth surface processes through the exchanges of 
water and energy with the atmosphere (Zhang et al. 2009). 
The thermal infrared spectrum (10.44–12.42  µm) of 16 
days Landsat and 8 days composite of MODerate Resolu-
tion Imaging Spectroradiometer (MODIS) satellite data 
were used for the retrieval of land surface temperature 
in 2002, 2008, 2011 and 2015, respectively (Weng et  al. 
2004). The thermal band of Thematic Mapper (TM) hav-
ing the spatial resolution of 120 m was further resampled 
onto 60  m for spatial adjustment with the enhanced the-
matic mapper (ETM+) data. The ETM+ data has been well 
calibrated in different training locations across the world 
with a negligible bias (Arvidson 2002). Landsat-based 

Fig. 1  Location of Greater Hyderabad Municipal Corporation (GHMC), with elevation and major transportation of the city
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LST was estimated as follows: (1) converted the digital 
number (DN) of thermal bands into absolute units of top-
of-atmospheric (TOA) radiance; (2) converted the top-of-
atmospheric radiance to at-satellite brightness temperature; 
and (3) converted the at-satellite brightness temperature to 
earth surface temperature (Barsi et al. 2003; Li et al. 2011). 
Firstly, the actual DN’s of each thermal band was converted 
to spectral radiance as follows:

where Ly is the at satellite spectral radiance, Lmax and Lmin 
are the spectral radiance of band 6 at maximum, Qcalmax 
and Qcalmin are 255 and 1 respectively and Qcal is the DN 
value of thermal band. For TM, Lmax and Lmin are 15.303 
[Watts/(m2 sr μm)] and 1.238 [Watts/(m2 sr μm)], and for 
ETM+, the values are  b61: 17.040 [Watts/(m2 sr μm)] and 
0 [Watts/(m2  sr μm)];  b62: 12.650 [Watts/(m2  sr μm)] and 
3.2 [Watts/(m2 sr μm)]. For Landsat 8, the equation can be 
followed:

where ML: (3.3 × 10−04) and AL: (0.1) are the band-spe-
cific multiplicative rescaling factor and band-specific addi-
tive rescaling factor of  b10 and  b11, Qcal is the calibrated 
pixel values (DN). Afterward, at-satellite spectral radiance 
was converted into at-satellite brightness temperature as 
follows:

where Tb is the at-satellite brightness temperature (K), K1 
and K2 are the prelaunch calibrations constant in [Watts/
(m2 sr μm)] and Kelvin, respectively. For Landsat TM, K1 
and K2 are: 607.76 [Watts/(m2 sr μm)] and 1260.56 K. For 
Landsat ETM+, K1 and K2 are 666.09 [Watts/(m2 sr μm)] 
and 1282.71 K. For Landsat 8, K1 and K2 are 774.89 [Watts/
(m2 sr μm)] and 1321.08 K for band 10 and 480.89 [Watts/
(m2 sr μm)] and 1201.14 K for band 11 respectively. (Chan-
der et al. 2009; Zhang et al. 2009; Chander and Markham 
2003).

Finally, LST was retrieved after converting the at-satel-
lite brightness temperature (K) to land surface temperature 
(LST) as follows:

where Ts is at surface temperature (°C), � is the wavelength 
of radiance (for which the peak response attain) (11.5 μm 
was used here), � is the surface emissivity.

(1)Ly = (
(Lmax − Lmin)

(Qcalmax − Qcalmin)
× Qcal − Qcalmin) + Lmin

(2)Ly = ML × Qcal + AL

(3)Tb =
K2

ln[(K1∕Ly) + 1]

(4)Ts =
Tb

[1 + (�Tb∕�) ln �]
− 273.15

� = h × (c∕�)

where h = Planck’s constant (6.626 × 10−34 Js), c = veloc-
ity of light (2.998 × 108  m/s−1), � = Boltzmann constant 
(1.38 × 10−23  J/K). � = 14,380 used in  this study (Weng 
et al. 2004; Markham and Baker 1985; Snyder et al. 1998).

where Pv = fractional vegetation cover can be extracted as 
follows:

where NDVI = normalized difference vegetation index, �3, 
�4 and �5 are the spectral bands of Landsat TM, ETM+ and 
Landsat 8, respectively. NDVImax = 0.5 and NDVImin = 0.2. 
(Sobrino et al. 2004).

Four major biophysical indices, i.e. NDVI, LSWI, 
NDBI, and NDBaI were considered to examine the impact 
of urban landscape composition on surface heat island 
intensity and thermal changes. As the built-up and green 
surface have very high reflectance within the near infrared 
spectrum and very low reflectance in visible spectrum, the 
extent of built-up and green surface coverage have been 
measured using the reflectance values of three infrared 
bands  (b4,  b5, and  b6) and one visible band  (b3) (Xiao et al. 
2001) as follows:

where LSWI land surface water index, NDBI normalized 
difference built-up index, and NDBaI normalized difference 
bareness index (Zha et al. 2003; Jackson et al. 2004; Maki 
et al. 2004; Zhao et al. 2005; Xu 2006; He et al. 2010).

Urban heat island effects considered as a relative phe-
nomenon of thermal discrepancies between the urban and 
its suburban counterpart. The earlier study established a 
good correlation between the infrared and surface tempera-
ture over urban areas could be attributed reliable predictors 

(5)
�TM = 0.004Pv + 0.986

�ETM+L8 = 0.02644Pv + 0.96356,

(6)Pv =

[

NDVI − NDVImin

NDVImax − NDVImin

]2

(7)NDVITM,ETM+ =
�4 − �3

�4 + �3

(8)NDVIL8 =
�5 − �4

�5 + �4

(9)LSWI =
�4 − �5

�4 + �5

(10)NDBI =
�5 − �4

�5 + �4

(11)NDBaI =
�5 − �6

�5 + �6
,
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of SUHI. The relative brightness temperature approach pro-
posed by Xu et al. 2013 was used in this study to quantify 
the UHI in GHMC region as follows:

where the relative brightness temperature (K) is TR, Ti is the 
brightness temperature at one place, and Ta is the average 
brightness temperature of the region.

The spatial coherence between the estimated biophysical 
indices and LST has been assessed through standard model 
validation statistics: coefficient of determination  (R2), cor-
relation coefficient (r), root mean square error (RMSE) and 
bias.

where x and y is the explanatory and response variables, ŷ 
is the y predicted, n is the total no. of observation.

Results

LULC dynamics from 1973 to 2015

LULC of the study area were analyzed for the year 1973, 
2002, 2011 and 2015 are presented in Fig. 2. For the period 
of 1973 to 1991, maximum changes (37.38–11.45%) has 
been observed in the urban green space class. This cat-
egory of LULC has a large negative change (−25.93% per-
centage point/pp), followed by farmland (17.12–37.38%) 
urban built-up (31.2–33.92%), aquatic vegetation, 
(7.65–9.73%), fallow land (4.12–5.66%) and water body 
(2.53–1.86%), respectively. Second largest change in this 
period is in farmland. This category of LULC has a large 
positive change (+20.26% pp) (Fig.  2; Table  1). Looking 
at the period of 1973 to 2015 together, aquatic vegetation 
cover changed from 7.65 to 10.18% (+2.53 pp), followed 
by water body [2.53–1.33% (−1.2 pp)], urban built-up 
[31.2–62.87% (31.67 pp)], farmland [17.12–5.17% (−11.95 

(12)TR =
Ti − Ta

Ta
,

(13)R2 = 1 −

∑

(Xi − Yi)
2

∑

Y2 −
∑

Y2

N

(14)r =

∑

xy
√

∑

x2
∑

y2

(15)RMSE =

n
∑

i=1

(yi−ŷi)
2

(16)Bias =

∑n

i=1
(yi − ŷi)

n
,

pp)], fallow land [4.12–14.3% (10.18 pp)] and urban green 
space [37.38–6.15% (−31.23 pp)], respectively. The largest 
change in this period is in urban built-up. This category of 
LULC has a large positive change (−31.67 pp) in the period 
of 1973 to 2015. Second most significant change in this 
period is in urban green space. This category of LULC has 
a large negative change (−31.23 pp) (Fig. 2; Table 1). The 
multidirectional expansion of built-up urban surface from 
1973 to 2015 derived from Landsat images are shown in 
Fig. 3. The maximum expansion is accounted towards the 
south-east and northwest direction of the study area. After 
that, the three major socioeconomic variables, i.e. popula-
tion distribution, population density and settlement density 
have been evaluated and tried to correlate with UHI inten-
sity. The highest population density was observed in 4, 5, 
8, 9 circles, while settlement density is highest in 7 and 8th 
circles of the city (Fig. 4). LULC transformation between 
different classes has been assessed for two different peri-
ods, 1991 to 2015 and 2002 to 2015, respectively (Fig. 5).

LST and UHI dynamics across the study region

Spatio-temporal variation of mean air temperature was 
analyzed for the month of January in the years 1991, 
2002 and 2015. There is a very clear pattern of higher 
mean air temperature in the southeasterly direction to 
lower mean air temperature in the NW direction in the 
study area. In the study period (1991–2015), there is a 
gradual increase in the coverage of higher mean air tem-
perature from southeast direction to the central part and 
towards northwest direction. Looking at the LULC map, 
urban built up class reveals the similar pattern of increase 
in coverage over time (Fig.  6).The estimated land sur-
face temperature was measured for the year 2002, 2011 
and 2015 in the month of October are shown in Fig.  7. 
For the year 2002, the observed minimum temperature 
for different LULC class varies between 16.1 °C (built-
up land) to 18.9 °C (water body). In the same year, for 
various LULC classes, maximum temperature varies 
between 28.3 °C (water body) to 34.8 (built-up land). 
Furthermore, in the year of 2011, considering different 
LULC classes, the minimum temperature varies between 
12.8 °C (built-up area) to 21.9 °C (water body) while, the 
maximum temperature ranges from 29.1 °C (water body) 
to 34.1 (farmland). Besides, in 2015, for different LULC 
class minimum temperature varies between 18.7 °C 
(built-up land) to 19.7 °C (farmland), while concerning 
different LULC classes, maximum temperature ranges 
from 26.8 °C (water body) to 33.6 (built-up land) across 
the study region. There is a trend of increase in minimum 
temperature in the period of 2002 to 2015. The result 
showed that the estimated minimum temperature of dif-
ferent LULC (aquatic vegetation (16.3–19.1 °C), built-up 
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land (16.1–18.7 °C), farmland (17.1–19.7 °C), fallow land 
(16.5–19.4 °C) and green space (16.6–19.0 °C)] changes 
sharply. An exception to this trend is water body, which 
remained at 18.9 °C in this period but with very high fluc-
tuation in temperature (21.9 °C) in the year 2002 (Fig. 7; 
Table 2). However, results showed that there is a general 
trend of decrease in maximum temperature in the period 
of 2002 to 2015, found maximum over the areas occupied 
by aquatic vegetation cover, (34.3–31.2 °C), followed by 
water body (28.3–26.8 °C), built-up land (34.8–33.6 °C), 
farm land (33.1–30.9 °C) and fallow land (33.5–31.8 °C) 
(Fig.  7; Table  2). The exception to this trend is urban 
green space, which increased from 32.9–33.4 °C in this 
period but with a peak temperature of (34.0 °C) in the 
year 2002. The UHI Intensity for the year of 2002 (−0.61 
to 0.37), 2011 (−0.51 to 0.45) and 2015 (−0.28 to 0.28) 

have been calculated and are shown in Fig. 8. The result-
ing five distinct UHI intensity classes, i.e. green island, 
weak heat island, medium heat island, strong heat island, 
and very strong heat island are being discussed in Fig. 9 
and Table  3 with addressing the spatial heterogeneity 
and temporal discrepancies of transforming the thermal 
cluster of the region from cool spot or atoll to hot spot 
or island. Only southeastern and eastern part of the area 
converted to the cool island with time, while, the most 
of the region are being transformed into strong and 
extremely heat island during 2002–2015. Four different 
transects (North, South, East and West), are drawn from 
the center up to 10  km to examine the UHI sensitivity 
and thermal differences between the urban CBD and its 
rural counterpart for the year 1991, 2002, 2011 and 2015, 
respectively (Fig. 10).

Fig. 2  Land use land cover change dynamics in Hyderabad city during 1973–2015
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Fig. 3  Spatiotemporal dynamics of impervious surface in a 1973, b 1991, c 2002, d 2011 and e 2015 extracted from Landsat Satellite imagery
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Dynamics of biophysical indices across the study region

Spatio-temporal variation of LSWI was analyzed for the 
month of September. There is a gradual change in the cov-
erage of medium-higher values of LSWI to lower values 
of LSWI. This shift is prominent in the central to south-
central part of the study area. This change is also evident in 
central to northern part of the study area, but in a scattered 
manner (Fig. 11). NDVI and NDBI have followed the simi-
lar tendencies as the minimum values are highly concen-
trated over built-up areas.

The coefficient of determination and person correlation 
coefficient test was done between the explanatory (bio-
physical variables) and response (LST). The coefficient of 
regression between NDVI for farmland (−152.23, 76.32), 
A. vegetation (12.24), urban built up (−8.01), fallow land 
(−7.74, 3.7) and urban green space (−4.72) and LST are in 
decreasing order (absolute value) and was found to be neg-
ative considering all LULC classes. The similar tendencies 
were observed while testing the spatial and temporal coher-
ence between LSWI for farmland (−26.01), urban built 
up (−17.66), A. vegetation (−11.11), urban green space 

Fig. 4  Spatial variation of the socioeconomic variables; i.e. a distribution of population, b population density and c settlement density in 
Hyderabad city
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LULC conversion during 1991 - 2015
Aqua veg to Fallow
Water to Fallow
Fallow to Fallow
U green to Fallow
Farm to Fallow
Aqua veg to Built-up
Water to Built-up
Builtup to Built-up
Fallow to Built-up
U green to Built-up
Farm to Built-up
Water to Aqua veg
Fallow to Aqua veg
U green to Aqua veg
Farm to Aqua veg
Water to Water
Water to Farm
Fallow to Farm
U green to Farm
Farm to Farm
Water to U green
Fallow to U green
U green to U green
Farm to U green

1991 - 2015

LULC conversion during 2002 - 2015
Aqua veg to Fallow
Water to Fallow
Fallow to Fallow
Farm to Fallow
U Green to Fallow
Aqua veg to Built-up
Water to Built-up
Built-up to Built-up
Fallow to Built-up
Farm to Built-up
Aqua veg to Aqua veg
Water to Aqua veg
Fallow to Aqua veg
Farm to Aqua veg
Water to Water
Farm to Water
Aqua veg to Farm
Water to Farm
Fallow to Farm
Farm to Farm
Aqua veg to U green
Water to U green
Fallow to U green
Farm to U green
U green to U green

2002 - 2015

Fig. 5  LULC conversion during 1991–2015 and 2002–2015 in GHMC
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(−10.10) and fallow land (−9.42) with LST. The absolute 
value found to be decreased with time. The correlation 
was done between LST and NDBaI for farmland (30.00), 
A. vegetation (−27.78), urban green space (−25.98), urban 
built up (−25.62) and fallow land (9.12) are also found in 
decreasing order (absolute value) (Table 4). However, the 
coefficient of regression was found to be positive between 

LST and NDBI for all the LULC classes, while the abso-
lute value follows the declining trend [farmland (24.89), 
urban built up (17.45), A. vegetation (10.94), fallow land 
(10.75) and urban green space (4.81)] (Figs. 12, 13). The 
sensitivity between the LST and the biophysical indices 
(NDVI, LSWI, NDBI, and NDBaI) are shown in Fig. 14. 
Fallow land is found to be most sensitive in the response of 

Table 1  LULC dynamics in 
the GHMC during 1973–2015 
(unit = %)

LULC 1973 1991 Change 2002 Change 2011 Change 2015 Change Final change

A. vegetation 7.65 9.73 2.08 21.3 11.57 27.89 6.59 10.18 −17.71 2.53
Water body 2.53 1.86 −0.67 1.18 −0.68 1.36 0.18 1.33 −0.03 −1.2
Urban built-up 31.2 33.92 2.72 41.35 7.43 45.99 4.64 62.87 16.88 31.67
Farmland 17.12 37.38 20.26 6.2 −31.18 3.78 −2.42 5.17 1.39 −11.95
Fallow land 4.12 5.66 1.54 11.71 6.05 3.65 −8.06 14.3 10.65 10.18
U green space 37.38 11.45 −25.93 18.27 6.82 17.33 −0.94 6.15 −11.18 −31.23
Total 100 100 100 100 0 100

Fig. 6  Spatio-temporal variation of mean air temperature (°C) in a 1991, b 2002, and c 2015
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Fig. 7  Spatio- temporal variation of land surface temperature (LST) on a 27th Jan 1991, b 17th Jan 2002, c 18th Jan 2011, d 13th Jan 2015, e 
7th April 2002, f 21st May 2015, g 14th September 2002, h 1st October 2011, i 12th October 2015 in the study area
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the incremental LST for all indices, followed by farmland, 
urban built-up, urban green space and aquatic vegetation 
class, respectively.

Discussion

Correlation between urban biophysical composition 
and LST and UHI

As it can be seen in Fig. 10, the spatial coherence between 
NDVI, LSWI, NDBaI and NDBI was found very high over 
the areas occupied by the built-up urban surface, which 
substantially indicates the importance of surface moisture 
content, amount, and nature of vegetation cover and ther-
mal properties of soil on surface energy exchanges (Deng 

and Wu 2013c). Also, the high negative correlation between 
LST and biophysical composition observed across the city 
exhibits the physical significance of vegetation to moder-
ate UHI and LST (Weng et al. 2004). Though the sensitiv-
ity and degree of association between LST and biophysi-
cal composition varied among different LULC (Fig.  14; 
Table 1). The similar has been reported earlier, where the 
presence of UHI cluster within the city controlled by the 
surface moisture content, fraction of vegetation cover, 
impervious faction to a larger extent (Guo et  al. 2015). 
Moreover, irrespective of LULC, Guo et al. 2015 have been 
found that both NDVI (negatively) and NDBaI (positively) 
are significantly correlated with LST and UHI. However, in 
our study, we observed that, among the five major LULC 
classes, NDBaI mitigates the UHI and LST over aquatic 
vegetation and green space cover areas, whereas, the rest 

Fig. 7  (continued)
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three LULC classes were strengthening the UHI. This 
nonlinearly can be attributed due to the high variability of 
surface moisture dynamics across the study region. As it 
has been reported by Deng and Wu 2013c, land class with 
very low NDVI values could be composed by a variety of 
non-vegetated components, i.e. dark and bright impervi-
ous soil made of concrete basalts, dark and moist soil with 
high organic matter content etc. which is very difficult to be 
characterized only by NDVI and having distinct reflectance 
properties within the thermal spectrum (Yuan and Bauer 
2007; Li et  al. 2011; Deng and Wu 2013c). In this study, 
the correlation between NDVI and estimated LST ranged 
from  R2 = 0.6–0.7, similar to the  R2 = 0.49 (Yue et  al. 
2007), r = 0.67 (Guo et al. 2015), r = 0.69 (Zhu et al. 2013), 
 R2 = 0.83 (Li et  al. 2011). While, the NDBI (r ≥ 0.8) and 
NDBaI (r ≥ 0.6) were being found to strengthen the UHI 
mostly, also been observed by Deng and Wu (2013c) using 

physical spectral unmixing and thermal mixing (SUTM) 
model depicts that in urban areas, NDBI and NDBaI based 
impervious fraction performs consistently and explained 
maximum variances than that of less impervious (rural) 
areas.

The correlation between vegetation and moisture 
abundance of each LULC and LST was examined using 
Pearson correlation coefficient test and regression analy-
sis (Table 1) with 0.05 and 0.01 significance level. It can 
be seen in Table 1, which shows LST was negatively cor-
related with NDVI for all LULC classes with a different 
intensity. The highest negative association between NDVI 
and LULC types were accounted over the areas occupied 
by aquatic vegetation class (r = −0.86), followed by urban 
green space (r = 0.82), urban built-up (r = −0.8), farmland 
(r = −0.58) and follow land (r = −0.52), results is similar 
with the Indianapolis, USA (Weng et al. 2004), whereas, 

Fig. 8  Shows the nature of Urban Heat Island (UHI) Intensity on a September 2002, b October 2011 and c October 2015 in GHMC
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maximum negative correlation between NDVI and LST at 
30 m resolution scale was found in cropland (r = −0.73), 
forest (r = −0.72), urban built-up (r = −0.62) and grass-
land (r = −0.36), respectively. Concerning the coherence 
between LSWI and LST, the highest values has been 
observed in built-up urban areas (r = −0.84), followed 
by aquatic vegetation cover (r = −0.83), fallow land 
(r = −0.82), farmland (r = −0.78) and urban green spaces 
(r = −0.75), respectively. It is worth to notice that, among 
all indices, NDBI explain the maximum model variance 
with the highest correlation value (r = 0.84), followed by 
LSWI (r = −0.8), NDBaI (r = 0.79) and NDVI (r = −0.7) 
for all LULC types strongly indicates the impact of sur-
face imperviousness on thermal anomalies and surface 
energy balance of a city region.

LULC dynamics and its impact on surface UHI 
and LST

The spatiotemporal distribution and changes of different 
LULC categories since 1973 to 2015 are shown in Fig. 2. 
It can be seen in Fig. 4, that the estimated LST has been 
varied distinctly over the central built-up urban areas in 
comparison to other classes. This is an indication of the 
presence of hot objects especially in the central part of the 
region displaying the more importance of influencing sur-
face UHI patterns (Weng et al. 2007). The similar has been 
observed while built-up impervious surface (hot objects) 
was found positively correlated with LST and vegetation 
(cold objects) was negatively associated with LST ensem-
bles the impact of thermal fractional components (hot 
objects and cold objects) in conjunction with the biophysi-
cal descriptors (NDVI, LSWI, NDBI, NDBaI) to changes 

Fig. 9  Spatial distribution of UHI intensity classes in GHMC observed in a 2002, b 2011 and c 2015
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the spatiotemporal pattern of LST cluster in a city (Lu and 
Weng 2006). However, the uses of the biophysical descrip-
tor, especially NDVI to examine the SUHI phenomenon are 
suggested to restrict for all season as NDVI suffers from 

apparent seasonal variation (Yuan and Bauer 2007). The 
changing dynamics of different UHI classes from 2002 to 
2015 are shown in Table 2. The maximum pace of changes 
among the UHI classes had seen in the extremely strong 

Fig. 10  LST retrieved from four transects having 2 km interval from the urban hotspot cluster for 1991, 2002, 2011 and 2015, respectively

Table 2  Changes of LST (°C) 
in different LULC classes from 
2002 to 2015

LULC 2002 2011 2015

Min Max Mean Range Min Max Mean Range Min Max Mean Range

A. vegetation 16.3 34.3 25.3 18 15.6 32.9 24.3 17.3 19.1 31.2 25.2 12.1
Water body 18.9 28.3 23.6 9.4 21.9 29.1 25.5 7.2 18.9 26.8 22.9 7.9
Built up land 16.1 34.8 25.5 18.7 12.8 33.2 23 20.4 18.7 33.6 26.2 14.9
Farm land 17.1 33.1 25.1 16 17.9 34.1 26 16.2 19.7 30.9 25.3 11.2
Fallow land 16.5 33.5 25 17 17.5 32.3 24.9 14.8 19.4 31.8 25.8 12.44
Green space 16.6 32.9 24.8 16.3 17.5 34 25.8 16.5 19 33.4 26.2 14.4
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urban heat island categories (72.22), followed by strong 
heat island (38.3), medium heat island (11.84), weak heat 
island (−5.04) and green island (−6.94), respectively. It 
can also be noted that built-up urban area was the dominant 
land use types in extremely heat island zones, whereas, 
vegetation and water bodies characterize the green island 
and weak heat island areas. The similar has been observed 
Liu and Weng 2008, where the spatial configuration of 
dominant LULC types are controlling the spatial configura-
tion of the different temperature and UHI clusters in that 

zone. The temperature and vegetation index (TVX) space 
was used in several studies to examine the individual and 
multiplicative impact of different LULC types on LST 
and UHI dynamics (Lambin and Ehrlich 1996, 1997; Gil-
lies et al. 1997; Sandholt et al. 2002; Goward et al. 2002). 
The spatial distribution and temporal dynamics of different 
UHI classes for the year of 2002, 2011 and 2015 are shown 
in Fig. 6. This could be attributed to the discrepant nature 
of surface LST across the city region with uneven spatial 
expansion of extremely strong and strong heat island at the 

Table 3  Spatiotemporal UHI 
class dynamics during 2002 to 
2015 in Hyderabad city

UHI class 2002 2015 Change during 2002–2015

Area % of area Area % of area Area Rate of changes

Green island 108.58 16.27 10.58 1.58 −98.00 −6.94
Weak heat island 402.23 60.27 138.58 20.77 −263.66 −5.04
Medium heat island 126.40 18.94 321.02 48.10 194.62 11.84
Strong heat island 26.32 3.94 157.37 23.58 131.05 38.30
Extremely strong heat island 3.83 0.57 39.75 5.96 35.92 72.22

667.37 100.00 667.37 100.00

Fig. 11  Spatiotemporal changes of LSWI, NDBI, and NDVI on Sep 2002, Oct 2011 and 2015 in the study region
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expense of natural and semi-natural surface cover leads to 
undesirable thermal anomalies in GHMC due to uncon-
trolled urban expansion. The similar has been observed 
in PRD, in Guangdong Province, southern China, is one 
of the regions experiencing rapid urbanization that has 
resulted in remarkable UHI effect, which is affecting the 
regional climate, environment, and socio-economic devel-
opment to a larger extent (Chen et al. 2006). However, the 
estimated LST being varied highly in intra LULC classes 
than that of inter LULC variation. The biophysical sensitiv-
ity between the indices and LST for different LULC was 
assessed in this study and are drawn in Fig. 12. In built-up 
urban areas, NDVI is found highly sensitive with LST, fol-
lowed by NDBI, LSWI, and NDBaI, respectively, indicates 
the cumulative importance of urban green cover to mod-
erate UHI and thermal discomfort of a city. However, fal-
low land shows the same sensitivity for LSWI, NDBI, and 
NDBaI, and less sensitivity between NDVI and LST exhib-
ited the less green coverage in this zone. Farmland is being 
found less sensitive with LST, followed by aquatic vegeta-
tion cover and urban green cover, respectively.

Fig. 12  Shows the spatial coherence between the biophysical indices; i.e. a NDVI, b LSWI, c NDBaI and d NDBI and LST

Fig. 13  Shows the sensitivity between LST and the biophysical vari-
ables (NDVI, LSWI, NDBaI and NDBI) in different LULC categories 
across the study region
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Conclusion

In this study, the discrepant effects of urbanization and 
biophysical changes on UHI have been investigated in 
Hyderabad city, the sixth largest urban agglomeration of 
India. The spatially explicit coherence between the selected 
indices and UHI of different LULC classes are found highly 
correlated across the region. Therefore, the main conclu-
sions of the study are as follows: (1) LST was negatively 
correlated with NDVI for all LULC classes with a different 
intensity. The highest negative association between NDVI 
and LULC types were accounted over the areas occupied 
by aquatic vegetation class (r = −0.86), followed by urban 
green space (r = 0.82), urban built-up (r = −0.8), farmland 
(r = −0.58) and follow land (r = −0.52), respectively. (2) 
Among all indices, NDBI explain the maximum model 

variance with the highest correlation value (r = 0.84), fol-
lowed by LSWI (r = −0.8), NDBaI (r = 0.79) and NDVI 
(r = −0.7) for all LULC types strongly indicates the impact 
of surface imperviousness on thermal anomalies and sur-
face energy balance of a city region. (3) Among the five 
major LULC classes, NDBaI mitigates the UHI and LST 
over aquatic vegetation and green surface areas, whereas, 
the rest three LULC classes were strengthening the UHI. 
(4) The biophysical sensitivity between the indices and 
LST for different LULC were varied distinctly. In built-
up urban areas, NDVI is found highly sensitive with LST, 
followed by NDBI, LSWI, and NDBaI. (5)Among the five 
UHI classes, extremely strong urban heat island categories 
changes rapidly (72.22) during 2002–2015, followed by 
strong heat island (38.3), medium heat island (11.84), weak 
heat island (−5.04) and green island (−6.94), respectively. 

Fig. 14  shows the coherence between LST and biophysical indices (LSWI, NDBI, NDVI, and NDBaI) for four different LULC categories, viz. 
aquatic vegetation, farmland, fallow land and urban built-up, respectively
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(6) The high negative correlation between LST and bio-
physical composition observed across the city exhibits the 
physical significance of vegetation to moderate UHI and 
LST.
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