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Introduction

Urbanization has been on the increasing rate globally 

which could be attributed to the demand for space as a 

result of population and economic growth in the cities, and 

this is likely to continue in the subsequent decades (UN 

2006). The process of urbanization modiies the natural 

landscape into anthropogenic surfaces which are land cov-

ers with buildings, roads, parking lots, and other paved 

surfaces. The amount of artiicial surfaces is an important 

indicator of urban environmental quality. In the process, 

a direct environmental implication is the modiication of 

land surfaces. That is, a large amount of natural lands have 

been, or will be transformed to various developed lands 

(e.g. commercial, industrial, transportation, and residen-

tial lands) within which impervious surfaces are a major 

composition. Consequently, the conversion results in the 

alteration of physical properties of land surfaces, including 

soil moisture, material heat capacity, conductivity, surface 

relectivity and emissivity, etc., which leads to the decrease 

of evapotranspiration (Shoshany et  al. 1994; Friedl 2002; 

Chudnovsky 2004). As a result, one of the most signiicant 

environmental impacts is the change of urban land surface 

temperature (LST) and atmospheric temperature, which 

signiicantly afects urban internal microclimatology, sur-

face energy change, anthropogenic heat discharge, build-

ing energy consumption, atmospheric pollution, and human 

thermal comfort (Voogt and Oke 2003; Lu and Weng 2006; 

Sarrat et al. 2006).

Furthermore, the climate in and around cities and other 

built up areas is altered due to changes in Landuse/Land-

cover (LU/LC) and anthropogenic activities of urbaniza-

tion. The most imperative problem in urban areas is increas-

ing surface temperature thus, Land surface temperature can 

provide important information about the surface physical 

Abstract Urban heat efects over Abeokuta city, Nige-

ria have raised interests by relevant scientiic communities 

owing to the recent infrastructural and economic growth of 

the area. In this paper, the surface temperatures and land 

surface biophysical types retrieved from Landsat TM, and 

ETM+images of Abeokuta city for 1984, 2003 and 2014 

were analyzed. The images acquired were classiied into 

appropriate land cover types using supervised classiication 

schemes and a change detection analysis was carried out on 

the classiied imageries using land change modeller (LCM) 

to evaluate the extent of modiication of surface features. A 

quantitative approach was used to explore the relationships 

among temperature, surface biophysical components and 

spectral indices. Results showed that impervious surface 

and water areas were found to be correlated positively with 

high temperatures. Conversely, vegetated areas and bare 

surfaces correlated positively with mid temperature zones. 

The overall metrics error between the regression-modeled 

LST and the retrieved LST for the study area is quite low, 

between 2.63 °C for root mean square error (RMSE) and 

2.17 °C for mean absolute error (MAE). This study con-

cluded that, areas with increasing built-up surfaces and 

surface relectivity will bring about LST rise, and conse-

quently leads to urban heat island development.

Keywords Surface biophysical components · Spectral 

indices · Shortwave surface relectivity · Land surface 

temperature · Surface thermal response

 * K. A. Ishola 

 skorchie126@yahoo.com

1 Department of Meteorology and Climate Science, Federal 

University of Technology, P.M.B. 704, Akure, Nigeria

http://crossmark.crossref.org/dialog/?doi=10.1007/s40808-016-0265-9&domain=pdf


 Model. Earth Syst. Environ. (2016) 2:208

1 3

208 Page 2 of 20

properties and climate which plays a role in many environ-

mental processes (Dousset and Gourmelon 2003; Weng 

et  al. 2004). Urban–Rural surface temperature variation 

observed at a large scale has been extensively documented 

in a number of studies since the 1970s (Chandler 1976; 

Oke 1982; Quattrochi and Pelletier 1991). For instance, 

Yuan and Bauer (2007) established a strong linear relation-

ship between LST and percent impervious surface for all 

seasons over Minnesota, whereas the relationship between 

LST and NDVI is much less strong and varies by sea-

son. The study suggested percent impervious surface pro-

vides a complementary metric to the traditionally applied 

NDVI for analyzing LST quantitatively over the seasons 

for surface urban heat island studies using thermal infrared 

remote sensing in an urbanized environment, and adopt-

ing urban greening as means of ameliorating the impend-

ing urban heat efects. Similar study over Abuja, Nigeria 

also conirmed strong correlations between high surface 

temperature and negative NDV1 values (Musa et al. 2012). 

Moreover, the percentage density of biophysical factors 

can as well quantitatively inluence urban surface tempera-

ture. The percentage of low density built- up, high density 

built-up, extremely-high buildings, low buildings per grid 

cell, and population density positively related with LST, 

but was negatively correlated with the percentage of forest, 

farmland, and water bodies per grid cell (Xiao et al. 2007). 

The use of multi-temporal satellite data together with the 

examination of changes in the temperature-vegetation index 

(TVX) space was suggested to be efective and useful in 

urban LULC monitoring and analysis of urban surface tem-

perature conditions (Zemba 2010). Furthermore, the short-

wave surface relectivity is an important surface component 

that can inluence LST. Ibrahim et al. (2012) found highest 

mean temperature with the highest albedo and impervious 

surface but inversed to NDVI over Kuala Lumpur. Based on 

spectral indices, NDVI and Normalized Diference Water 

Index (NDWI) had low inluence (r <0.5) with temperature 

and relatively moderate correlation between the Normal-

ized Diference Built-up Index (NDBI) and temperature 

(Igor and Bastos 2012). In other approach, Wu et al. (2012) 

has established that spectral un-mixing and thermal mixing 

(SUTM) outperforms other regression models with normal-

ized diference vegetation index NDVI, percent green veg-

etation (%GV) and percent impervious surface area (%ISA) 

as individual independent variables, with the lowest root 

mean square error (RMSE = 2.89  K) and mean absolute 

error (2.11 K).

Satellite remote sensing is an important data source 

for monitoring, detection, quantiication, and mapping of 

land cover patterns and changes, because of its large spa-

tial coverage, repetitive data acquisition, digital format 

appropriate for computer processing, and accurate georef-

erencing approaches (Jennings 2000; Kerr and Ostrovsky 

2003; Rogan and Miller 2006; Pellikka et al. 2009; Love-

land and Dwyer 2012). The advent of geographic informa-

tion system (GIS) has also made it possible to integrate 

multisource and multitemporal data for the generation of 

changes in land surface components involving such infor-

mation as the trend, rate, nature, location and magnitude 

of the changes (Adeniyi and Omojola 1999). Urban heat 

efects over Abeokuta, Nigeria have raised interests by 

relevant scientiic communities owing to the recent infra-

structural and economic growth of the area. However, our 

understanding and scientiic conidence in the changes in 

the urban heat phenomenon associated with changes in 

urban surface components have been limited in this area. 

That is, availability and accessibility of accurate, reliable 

and current representation of urban surface components 

are the major identiied gaps, particularly in Abeokuta city. 

Therefore, this work quantitatively assessed the changes in 

status of urban surface characteristics and the impacts on 

the thermal environment of Abeokuta city, Nigeria using 

remote sensing and GIS techniques.

Materials and methods

Materials and study area

This study looks at the city of Abeokuta the capital of 

Ogun State in the southwest, Nigeria (Fig.  1) due to its 

rapid human and industrial growth and development. It 

lies between latitude 7°10′N and 7°15′N and longitudes 

3°17′E and 3°26′E. Annual rainfall is about 963  mm and 

the temperature is usually between 26 and 28 °C (NiMET 

2007). The study employs cloudless Landsat 5 TM for 18 

Dec., 1984, and Landsat 7 ETM + for 29 Jan., 2003, and 29 

Dec., 2014 (see Table 1). All imageries were obtained from 

the archives of United States Geological Survey (USGS). 

The three scenes fell within the path 191 and row 055 of 

the WRS-2 (Worldwide Reference System) from which the 

data for the location under study could be extracted. All 

bands from the images were applied in the analysis. The 

bands 1–5 and 7 have a spatial resolution of 30 m, and the 

thermal infrared band (band 6) has a spatial resolution of 

60 m for Landsat 7 and 120 m for Landsat 5.

Image processing

The image pre-processing including geometric, atmos-

pheric and topographic corrections were carried out 

in the Geographic Information System (GIS) environ-

ment to ensure spatial and temporal comparability of 

the datasets (Kaufman 1989). The radiometric correc-

tion employed the algorithm of Chander and Markham 

(2003) with the addition of an atmospheric correction. 



Model. Earth Syst. Environ. (2016) 2:208 

1 3

Page 3 of 20 208

The three sets of images were irst geo-corrected and 

geo-referenced because efective image processing is 

critical to successful urban surface component mapping 

and change analysis (Mussie 2011). The 2003 image was 

used as the base image for geometrical correction due to 

its better visual quality. Geometric correction of the 2003 

scene was based on Ground Control Points (GCPs) iden-

tiied on the topographical maps of the area. The 1984 

and 2014 scenes were co-registered to the base image 

using additional GCPs into UTM projection with geomet-

ric errors of less than one pixel, so that all the images 

have the same coordinate system (Adedeji et  al. 2015). 

The images were layer stacked accordingly by combining 

the required bands based on the satellite sensor to pro-

duce the appropriate color composite images, and subset 

to the area of study.

Fig. 1  Location of the study area

Table 1  Landsat metadata for the study area. (Source: USGS 2014)

City Path/row Satellite platform Band used %cloud Date acquired Resolution Source

Abeokuta 191/055 Landsat5 TM 4,3,2 and thermal band 6 0% 18/12/1984 30 m/120 m USGS

Landsat7 ETM+ 4,3,2 and thermal band 6_1 1% 29/01/2003 30 m/60 m

0% 29/12/2014
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Image classiications

Before any useful thematic information can be extracted 

from remote sensing data, a land cover classiication sys-

tem has to be developed to obtain the classes of interest to 

the analyst (Congalton 1991). Image classiication refers 

to the extraction of diferentiated land cover and land use 

categories classes from raw remotely sensed digital satellite 

data (Weng 2002). The imageries were classiied based on 

sample set created according to training samples. Training 

samples are representative of the desired land use classes 

(Magidi 2010) and were determined based on ground truth-

ing, researcher’s personal experience and physiographical 

knowledge of the study area (Jensen 2007). Twenty (20) 

training samples were collected for each Landsat imagery 

used in this work and the Maximum Likelihood Classiier 

(Lillesland and Kiefer 1999) was used in performing super-

vised classiication in the GIS environment. First, a chosen 

color composite (RGB = 432) was used for digitizing pol-

ygons around each training sample for similar land cover. 

Then a unique identiier was assigned to each known land 

cover type. Afterwards, the statistical characterizations 

(i.e., signatures) of each land cover class were developed 

and a maximum likelihood classiication method was used 

with equal priori probability for all classes. This procedure 

has proven to be a robust and consistent classiier for multi-

date classiications (Wu et al. 2006). Each composed image 

was ordered into 4 area classes: water, vegetation, impervi-

ous surface and bare soil as described in Table 2. The accu-

racy of the classiied imageries was further evaluated using 

confusion/error matrices. This is an important method for 

evaluating per-pixel classiication (Weng 2002).

Change detection analysis

To calculate the extent of each land cover class, we analysed 

classiied maps using GIS tool. Change detection analysis 

was carried out on Landsat images of diferent years (i.e. 

1984, 2003 and 2014) to analyze the pattern and trend of 

change analysis in the study area using Land Change Mod-

eller (LCM) for ecological sustainability embedded in Idrisi 

(Eastman 2006). Land Change Modeller is innovative land 

planning and decision support software, which allows rapid 

analysis of land cover change and simulate future land change 

scenarios (Idirisi 2006; Deng et al. 2009; Mishra et al. 2011; 

Odindi et  al. 2012). Using LCM requires mainly two time 

categorical maps and so the classiied maps [say 1984 (time-

1) and 2003 (time-2)] were used as inputs for the Change 

Analysis. This enabled us to understand the gains and losses 

and the transition of areas among the land use/land cover 

classes; and to quantify the changes occurred from time-1 to 

time-2 (Idirisi 2006).

Computational methods

The surface energy balance algorithms (SEBAL) provide the 

opportunity to estimate land surface temperature and several 

spectral indices from the satellite remotely sensed images 

(Ralf et al. 2002). Hence, developing digital database for the 

areas under investigation require the computational phases 

based on the modiied SEBAL procedure (see Fig. 2).

The spectral radiance rescaling values was computed 

using the metadata ile of each image. It was calculated using 

the algorithm below (Ralf et al. 2002):

where; Lλ = spectral radiance at the sensor’s aperture (w/

m2*ster*μm); Qcal = the quantized calibrated pixel value 

in DN; Lminλ = the spectral radiance scaled to Qcalmin (w/

m2*ster*μm); Lmaxλ = the spectral radiance scaled to 

Qcalmax (w/m2*ster*μm); Qcalmin = the minimum quan-

tized calibrated pixel value (corresponding to Lminλ) in 

DN = 0 or 1 (depends on the products and date processed); 

QCALMAX = the maximum quantized calibrated pixel value 

(corresponding to Lmaxλ) in DN = 255.

The spectral radiance retrieved from each landsat imagery 

was converted to planetary relectance using Eq. 2 (Ralf et al. 

2002):

(1)

L
�
=

( L
max �

− L
min �

)

( Qcal max
− Qcal min

)
×
(

Qcal − Qcal min

)

+ L
min �

(2)L
min �

=
(� × L� × d2)

(ESUN� × cos �s)

Table 2  Details of the land cover types

Land cover type Description

Impervious surface All infrastructure—residential, commercial, mixed use and industrial surface areas, asphalt road network, pavements, rocks, 

parking lots, and other man-made structures

Water body River, permanent open water, lakes, ponds, canals, permanent/seasonal wetlands, low-lying areas, marshy land, and swamps

Vegetation Trees, natural vegetation, mixed forest, gardens, parks and playgrounds, grassland, vegetated lands, agricultural lands, and 

crop ields

Bare soil Fallow land, earth and sand land in-illings, construction sites, developed land, excavation sites, open space, bare soils, and 

the remaining land cover types
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where; ρλ = TOA planetary relectance; Lλ = spectral radi-

ance at the sensor’s aperture(w/m2*ster*μm) d = Earth-Sun 

distance in astronomical units; ESUNλ = Mean solar exoat-

mospheric irradiances; θs = solar zenith angle in degrees; 

θs = 90°– θE.

Extraction of spectral indices from the landsat imageries

The spectral indices NDVI (Jensen 2000), normalized dif-

ference impervious surface index (NDISI) (Xu 2010) and 

NDBI (Zha et al. 2003; Zhang et al. 2009; Zeng et al. 2010) 

were used to characterize the land cover types and quantify 

the relationships between land cover type and urban ther-

mal efect.

The NDVI (Eq.  3) is a sensitive indicator of the 

amount and condition of green vegetation. Values for 

NDVI range between −1 and +1. Green surfaces have 

a NDVI between 0 and 1, and water and cloud are usu-

ally less than zero (Ralf et al. 2002). The NDBI (Eq. 4) 

index was developed to analyze increments of relectance 

on bands 4 and 5 for images of urbanized and barren 

land areas. It ranges between −1 to +1 (Zha et al. 2003). 

Moreover, the NDISI (Eq.  5) index is a measure of the 

imperviousness. The impervious surface features can 

be mixed with water noise (Xu 2010). However, using 

a water index (NDWI)-derived band can signiicantly 

suppress the water noise, as it can enlarge the contrast 

between water and impervious surface.

where;

 ρband2  relectance digital number (DN) values for Green 

band for TM and ETM+

ρband3  relectance DN values for red band for TM and 

ETM+

ρband4  relectance DN values for Near-Infrared band for 

TM and ETM+

(3)NDVI =
(�band4 − �band3)

(�band4 + �band3)

(4)NDBI =
(�band5 − �band4)

(�band5 + �band4)

(5)NDISI =

[

�band6 −
NDWI+�band4+�band5

3

]

[

�band6 +
NDWI+�band4+�band5

3

]

(6)NDWI =
(�band2 − �band4)

(�band2 + �band4)
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image
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Fig. 2  Computational process for estimation of land surface temperature (modiied after Ralf et al. 2002)
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ρband5  relectance DN values for Shortwave Infrared 

band for TM and ETM+

ρband6  relectance DN values for thermal infrared band 

for TM and ETM+

Extraction of shortwave surface relectivity (αSSR)

This is computed by correcting the albedo top of the atmos-

phere (αtoa) for atmospheric transmissivity (Ralf et  al. 

2002):

where: αSSR = shortwave surface relectivity (SSR); 

αtoa = albedo top of the atmosphere; αrad = path radiance 

(0.025–0.04); τsw = shortwave atmospheric transmittance; 

z = elevation ASL (m).

Values for αrad range between 0.025 and 0.04 (Tasumi 

et al. 2000) and a reasonable value of 0.03 is recommended 

(Bastiaanssen et  al. 1998). The satellite relectance for 

Landsat TM was converted directly to SSR while, Landsat 

ETM+required satellite relectance to be changed to albedo 

top of the atmosphere for radiometric correction. The out-

put was then converted to SSR for the period. The values 

of SSR vary over heterogeneous surfaces. The lowest value 

is estimated over deep water and highest over white sands 

(see Table 3) (Brutsaert 1982).

Extraction of surface temperature

The algorithm of Ralf et al. (2002) was employed to con-

vert landsat raw image to at-satellite radiance (Eq.  1). 

Thermal band 6 was then converted to at-satellite tem-

perature (Eq. 9), and then emissively (Eq. 10) corrected to 

LST (Eq. 11). The LST was retrieved using the following 

models;

(7)�SSR =
(�TOA − �rad)

(

�
2

SW

)

(8)�
2

SW
= 0.75 + 2 × 10

−5 × z

where Tb = brightness temperature (K); Lλ = spectral radi-

ance of thermal band 6 (Wm−2 sr−1μm−1);

K1 and K2 = calibration constants. K1 = 607.76/666.09 

and K2 = 1260.56/1282.71 (Wm−2 sr−1μm−1) for Landsat 

5/7. ε0 = Surface broad band emissivity.

All landsat imageries were processed and computed 

using the ERDAS imagine 9.1, IDRISI selva 17.00 and 

ArcGIS Desktop 10 (ESRI, 2012).

Quantitative analysis

First, land cover change statistics were computed as abso-

lute percentage increments of the study area calculated by 

subtracting percentage areas among later time (t2) and for-

mer time (t1) (Adedeji et  al. 2015).The negative symbol 

in the statistics indicated a loss of surface. The analysis of 

the inluence of urban surface biophysical compositions 

on urban thermal environment was also carried out. This 

is achieved by investigating the quantitative contributions 

of land cover indices to LST change using multivariate 

regression analysis with a number of samples through-

out whole image. The model equation (see Table 6) were 

obtained using surface temperature (LST) as predictant and 

the afore-mentioned parameters as predictors: normalized 

diference built-up index (NDBI), normalized diference 

impervious surface index (NDISI), normalized diference 

vegetation index (NDVI) and shortwave surface relectivity 

(SSR) by cells. Although, SSR is not regarded as a normal-

ized spectral index but, it is an important biophysical com-

ponent that can also inluence LST change over an area. 

Hence, the inclusion of the component as one of the land-

cover indices used in estimating LST over the study area. 

The method for the construction of model equations is the 

stepwise multiple regression. The applied implementation 

of this procedure is part of the R computer statistics soft-

ware. Predictors were retained or removed from the model 

depending on the signiicance of the F value of 0.01 and 

0.05, respectively. To evaluate the extent of the relation-

ships between the urban surface temperature intensity and 

various urban surface factors, multiple correlation matrix 

and regression analyses were applied. The correlation 

matrices were processed using the R software environment 

for statistical computing (R Core Team, 2012). These cor-

relations were coded in three ways: shape, numeric value, 

(9)Tb =
K

2

ln[(K
1
∕L

�
) + 1]

(10)�
0
= 1.009 + 0.047 × ln (NDVI)

(11)LST =
Tb

�
0.25

0

Table 3  Range of SSR values for diferent landcover types (Brut-

saert 1982)

Surface SSR

Moist dark soils 0.05–0.15

Dry soils, deserts 0.15–0.25

Gray soils, bare surface 0.2–0.35

White sands, lime 0.3–0.4

Coniferous forest 0.10–0.15

Green grass and other short vegetation 0.15–0.25

Deep water 0.04–0.08
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and colour. The ellipse shape at 45° to the right shows per-

fect positive correlations and vice versa. For zero correla-

tion, the shape becomes circle. To assess the accuracy of 

the LST estimates, two accuracy metrics, root mean square 

error (RMSE) and mean absolute error (MAE), were 

employed. These metrics can be expressed as follows.

where LST i is the estimated LST for pixel i; LST i is the 

actual LST of pixel i retrieved from the Landsat thermal 

images; N is the total number of pixel samples of the Land-

sat images. Both RMSE and MAE are measures of preci-

sion, and quantify the relative estimation error at the pixel 

level. To investigate the performance of the regression-

based model with diferent degrees of urban development, 

those two error metrics were also calculated for the four 

land-cover types.

Results and discussion

Classiications and dynamics of surface biophysical 

components

The acquired satellite images (1984, 2003, and 2014) were 

classiied into four broad land cover types, as shown in 

Table 2. The results of the classiications of land cover are 

found in Fig.  3. The classiied images were assessed for 

accuracy by comparing with the original landsat image-

ries based on a random selection of 200 reference pixels 

for each time period (Ahmed and Ahmed 2012). The over-

all accuracies of the classiied images revealed 86.48% in 

1984, 88.02% in 2003, and 91.13% in 2014. The Kappa 

coeicients were observed to be 0.86, 0.88, and 0.91 for 

1984, 2003, and 2014 respectively (Table 4).

The land cover maps of Abeokuta area (Fig.  3) has 

shown a progressive increase in imperviousness and a cor-

responding decrease in the areas covered by vegetation and 

bare soil from 1984 to 2014. The impervious surface area 

has the largest proportion throughout the period from 50% 

in 1984 to 81% in 2014 (Fig. 4) due to more rock surfaces 

over the area while; water body has the lowest proportion 

of 1% of the total area covered. The implication was the 

reduction in the percentage area covered by vegetation and 

bare soil from 21% in 1984 to 8% in 2014, and 28% in 1984 

to 8% in 2014 respectively due to the increasing socio-eco-

nomic factors such as population, economic, technological 

(12)RMSE =

√

1

N

N
∑

i=1

(

LSTi − LSTi

)2

(13)MAE =
1

N

N
∑

i=1

|

|

|

LSTi − LST i

|

|

|

and institutional growth. These factors have triggered com-

petition for space for various urban development purposes 

such as residential, commercial, recreation, institutional, 

industrial, transportation thereby increasing impervious 

surface area and consequently decreasing vegetation and 

bare soil areas. Thus, it can be deduced that the impervi-

ous area will continually extend towards the sub-urban and 

rural areas if the increasing in the enumerated factors is 

sustained for the subsequent years. However, it is vague to 

understand the proportion of one land cover type that was 

converted to another and the extent of conversion from one 

category to the others. Further analyses were conducted 

to understand these patterns of conversion throughout the 

period of study.

The changes in land cover types as shown in Fig.  5 

revealed that, about 9 and 2% percentage of area covered 

by impervious surface was loss to other land cover types 

between 1984–2003 and 2003–2014 respectively. In a long 

time change between 1984 and 2014, only about 4% of 

impervious surface area was lost to other land cover types. 

This implies that few parts of existed impervious areas 

were modiied into some other land cover types. However, 

a signiicant change occurred in the vegetation and bare 

soil categories in both periods. These land cover categories 

lost more land areas than they gained in each time period 

(Fig. 5).

The analyses on the net change in the areas covered by 

the land cover classes showed that, there was signiicant 

and progressive change (increased with magnitude > 5%) in 

impervious areas in all the time periods (Fig.  6). The net 

change of bare soil and vegetation showed decrease in all 

the time periods.

The conversion patterns between the land cover catego-

ries were illustrated in Figs.  7, 8, and 9. It was observed 

that the bare soil was the major contributor to net change 

(increasing) in impervious surface areas followed by veg-

etation and no signiicant contribution from water body in 

all periods (Fig. 7).

More signiicant contributions to net change (increas-

ing) in bare soil areas were seen from vegetation between 

1984 and 2003, and in a long time period between 1984 

and 2014 (Fig.  8). However, there were no places where 

either impervious surface or water body was converted to 

bare soil type at all.

In addition, Fig.  9 revealed that the water body is the 

major contributor to extending vegetated areas between 

1984 and 2003. Although a few percentage of bare soil 

areas was modiied to vegetation between 2003 and 2014 

(Fig. 9a), there was no contributions to net change in veg-

etation in a long time period between 1984 and 2014 at all 

(Fig.  9c). These indings have established the patterns of 

land use/land cover changes (LULC), and the role of one 

land cover category in contributing to the net change in 
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another which is similar to the indings from Ahmed et al. 

(2013).

The land cover change dynamics over the area has 

shown that, a huge proportion of vegetated and bare soil 

areas were lost from 14.53 and 19.49  km2 in 1984 to 

5.52  km2 and 5.30  km2 by 2014 respectively (Table  5). 

This is manifested in the tremendous increase in the pro-

portion of impervious surface area from 34.84 km2 in 1984 

Fig. 3  Maps of surface biophysical classes of Abeokuta city for a 1984 b 2003 c 2014

Table 4  Accuracy assessments 

of the Land cover classes
User’s accuracy (%) Producer’s accuracy (%) Overall

Year Water Vegetation ISA Bare Water Vegetation ISA Bare Accuracy Kappa

Body Area Soil Body Area Soil (%) Coeiicient

1984 83.70 86.67 93.35 82.19 83.38 87.08 91.68 81.85 86.48 0.86

2003 86.52 87.75 89.39 88.40 88.65 86.69 87.10 88.36 88.02 0.88

2014 91.72 90.56 90.46 91.78 92.39 90.53 91.70 89.81 91.13 0.91
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to 56.83 km2 by 2014. This is an indication of total trans-

formation and urban development over Abeokuta area. Fur-

thermore, water bodies were also slightly expanded from 

0.88  km2 in 1984 to 2.09  km2 by 2014 due to probably 

increase in the extent of river Lafenwa in Abeokuta area.

The absolute land cover changes between 1984 and 

2003, and 2003–2014 over Abeokuta area as described in 

Table  5 indicates that, vegetation and bare soil sufered 

losses between 1984 and 2014. In absolute term, a total 

proportion of 8.99 and 24.26% of both the vegetated and 

bare soil areas were lost during the nineteen-year and six-

teen-year periods respectively. These losses also translated 

into increase in the amount of imperviousness over the 

area.

The structure of the vegetation and bare soil in Abeo-

kuta area can be postulated as rapidly changing because of 

human/anthropogenic activities and extension of the urban 

core to the rural areas. These activities include but not lim-

ited to housing development, industrial, commercial, and 

recreational activities.

Quantitative relationships among urban surface 

biophysical components

Surface temperature has been established as a major indi-

cator of the presence of surface urban heat island in cities 

and urban areas. The relationship between land cover and 

surface temperature was analyzed by producing the LST 

maps from the acquired landsat imageries. For each ana-

lyzed year, an image was produced that provided a visual 
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resource for analyzing the intensity and spatiality of LST 

change.

The patterns of LST changes over Abeokuta area in the 

three time periods (Fig. 10) showed that, the LSTs ranged 

from 25.0 to 37.9 °C, 18.6 to 34.4 °C and 23.7 to 40.2 °C 

in 1984, 2003, and 2014 respectively. Figure  11a showed 

that no areas in Abeokuta experienced an extreme tem-

perature (≥41 °C) as at the time satellite over-passed in 

Fig. 6  Net change in land cover 

areas between a 1984 and 2003 

b 2003 and 2014 c 1984 and 

2014

Fig. 7  Contributions to net 

change in impervious surface 

areas between a1984 and 2003 

b 2003 and 2014 c 1984 and 

2014
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all the periods. In 1984, a large part of the area (67.7% in 

all) fell within the higher temperature zones (≥30 °C) and 

other areas (32.3%) fell into mid temperature zones (25 °C 

to <30 °C). This high surface temperature might be due to 

high insolation as at the time satellite over passed, large 

distribution of imperviousness, or geographical relief of the 

area. But in 2003, about 66.3% proportions of the surface 

area were dominated by mid-surface temperature zones 

(25 °C to <30 °C). Other surface areas (29.1%) and (4.6%) 

fell in the lower (<25 °C) and higher (≥30 °C) temperature 

Fig. 8  Contributions to net 

change in bare areas between 

a1984 and 2003 b 2003 and 

2014 c 1984 and 2014

Fig. 9  Contributions to net 

change in vegetated areas 

between a1984 and 2003 b 

2003 and 2014 c 1984 and 2014
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zones respectively. Moreover, a higher LST zone (≥30 °C) 

was also observed in majority (81.6%) of the area in 2014. 

A noticeable surface area proportion (0.3%) and (18.2%) 

were found in the lower (<25 °C) and mid (25 °C to <30 °C) 

temperature zones respectively (Fig. 11a).

The mean surface temperature variation over difer-

ent land cover types (Fig.  11b) showed that the majority 

of the bare soil and impervious surface areas of Abeokuta 

had temperatures between 32 and 35 °C in both 1984 and 

2014. In 2003, the temperature was cooler between 26 and 

29 °C in both land cover types. However, vegetation and 

water bodies have similar temperature variations between 

28 and 30 °C in 1984 and 2014. Moreover, the mean LSTs 

of vegetation cover and water bodies were taken to between 

Table 5  Size and proportion, 

trend, and magnitude of LULC 

of Abeokuta area from 1984 to 

2014

Land cover type 1984 2003 2014 183–2003 2003–2014

(km2) % (km2) % (km2) % % %

Impervious Surface 34.84 50 41.29 59 56.83 81 9 22

Bare soil 19.49 28 16.89 24 5.30 8 −4 −16

Vegetation 14.53 21 10.86 16 5.52 8 −5 −8

Water 0.88 1 0.70 1 2.09 3 0 2

Total 69.74 100 69.74 100 69.74 100 Not appicable

Fig. 10  Maps of Abeokuta city showing the thermal zones for a 1984 b 2003 c 2014
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24 and 26 °C in 2003. The high surface temperature even 

over vegetation cover in 2014 was as a result of more sur-

face modiications, anthropogenic activities, little veg-

etation, and consequently little/no evapotranspiration. In 

addition, the magnitude of LST change is almost the same 

(5–6 °C/16 19years) over both impervious surface and bare 

soil (Fig. 11b).

The quantitative assessment of the relationship between 

the thermal zones and land cover types revealed that, the 

higher positive correlations were found between the ranges 

of temperature <25 °C and 25–<30 °C, and high tempera-

ture of 30–<33 °C and ≥33 °C. The highest negative cor-

relations were found between the temperature range of 

<25 °C and 30–<33 °C and the higher temperature ranges 

(25–<30 °C and ≥ 33 °C) (Fig.  12). A high negative 

correlation was also found between the 25–<30 °C and 

30–<33 °C temperature range and the size of water bodies. 

The higher positive correlation between land covers was 

found between areas of vegetation and bare soil, and high 

correlation between impervious surface area (ISA) and 

water bodies. The highest negative correlation was between 

ISA and vegetated, and ISA and bare areas.

The best highest positive correlations were found 

between water/ISA areas and temperatures ≥33 °C.

These indings were consistent with the study from 

Yuan and Bauer (2007). Other positive correlations were 

found between bare areas and temperatures between 25 

and <30 °C. However, these correlations were not as high 

compared to what was found in ISA/water areas. The high-

est positive correlations with low temperatures were found 

Fig. 11  a Changing pattern of 

surface temperature zones; b 

Mean LST variations over dif-

ferent land cover types
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in the classes of bare soil and vegetation. Conversely, 

vegetation and bare areas had a high negative correlation 

with high temperatures. As shown in Figs. 3, 11a and 12, 

changes in land cover patterns are highly correlated to 

changes in LSTs and the SUHI efect.

The impervious surface and water areas were found to 

contribute positively to LST rise (Fig.  12). Consequently, 

this might lead to SUHI efect because the growth of imper-

vious surfaces coincided with an increase in temperatures. 

However, Vegetation and bare areas contributed negatively 

to SUHI efect.

Surface temperature change and the efectiveness 

of surface biophysical indices

Quantitative relationship among surface biophysical 

indices and temperature

The impacts of the surface biophysical components on sur-

face temperature were further evaluated in a more robust 

way using the surface biophysical indices. The results from 

the analysis showed that, the highest positive correlation 

among land cover indices was found between NDBI and 

SSR.

Figure  13 shows that NDBI ranged between −0.24 

and +0.14, −0.26 and +0.20, and −0.33 and +0.26 in 

1984, 2003, and 2014 respectively. Unlike NDVI, a 

higher NDBI values show the high density built-up areas, 

while a lower NDBI values indicate vegetation and other 

surfaces. It was observed that the NDBI values have 

increased over the periods suggesting that the built-up 

area has risen. The indings show an evolution of urban 

expansion in Abeokuta based on the increasing NDBI 

values over time. Several studies have been carried out to 

quantify SSR over diferent land cover types.

Table  3 shows the range of SSR values for difer-

ent surfaces. The results from SSR maps produced over 

Abeokuta area (Fig.  14) showed that, SSR has values 

ranged from 0.18 to 0.24 in 1984, 0.17 to 0.26 in 2003, 

and 0.14 to 0.28 in 2014. In comparison with respective 

land cover maps (Fig. 3), it was observed that, the high-

est SSR between 0.22 and 0.25 was experienced over 

bare soil areas, while water bodies fall in the lowest SSR 

range (between 0.16 and 0.19) in all the periods (Fig. 14). 

These results suggest that, the various surface features 

categorized as bare soil tend to absorb heat quickly than 

other land cover types in Abeokuta area. This implies 

that high surface temperatures were experienced over 

bare soil in all the periods (Fig. 11b) due to its high heat 

capacity. In addition, the SSR values in Abeokuta, and in 

all periods fall between 0 and 0.35, which is in accord-

ance with the expected range of values over these areas 

according to reference values in Table 3.

The highest negative correlation was found between 

NDISI and SSR (Fig. 15). To relate the land cover indices 

to LSTs, we analyzed the correlations among the various 

indices and LST. The best highest positive correlation of 

0.72 was found between NDBI and LST. Other positive 

correlation of 0.58 was found between surface relectiv-

ity and temperatures. However, both NDISI and NDVI are 

negatively correlated with LST. NDVI had the higher nega-

tive correlation of 0.70 with LST in the area (Fig. 15).

Fig. 12  Correlations among 

LSTs and land cover types
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This result showed the relationship between the land 

cover indices and LST. As illustrated in the Fig. 15, changes 

in land cover indices are highly correlated to changes in 

LSTs over the study area. Therefore, it can be deduced that 

NDVI behaves inversely to other biophysical indices espe-

cially NDBI, SSR, and LST (Zhang et al. 2009; Zeng et al. 

2010; Musa et al. 2012; Ibrahim et al. 2012). Thus, it can 

be used as an indicator to ameliorating the efect of sur-

face urban heat in the area. Although the correlation results 

between the indices and LSTs showed a good relationship, 

further analysis was carried out using indices as predictors 

to LST change. The results using diferent stepwise regres-

sion models (such as linear, polynomial, exponential, and 

power) produced the statistical output shown in Table 6.

The summary output (Table  6) indicates that, the 

land cover indices except NDVI are all retained during 

the stepwise regression procedures. Of the four regres-

sion models, the exponential model achieves the highest 

correlation value (signiicant at 0.01 level) in Abeokuta 

area. It was observed that, the relationships of NDBI, 

NDISI, SSR, and LST are not simple linear but rather 

exponential. This suggests that, the land cover indi-

ces have separate positive contributions to LST change. 

Thus, they are all important factors in modulating urban 

temperature in Abeokuta area.

Figure 16 shows percentage contributions of each spec-

tral index to LST change. The major contributors to LST 

change in Abeokuta are both NDBI and SSR with 51.3 

and 32.7% respectively. There is little or no signiicant 

contributions from NDVI and %NDISI to LST change in 

this area. Basically, it is deduced that both NDBI and SSR 

explain most of the LST variations over the whole study 

area. This is probably due to increasing built-up and low 

relective materials in the area. Thus, NDBI and SSR are 

efective indicators to change in surface temperature over 

Abeokuta area.

Fig. 13  Spatial distribution of NDBI over Abeokuta
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Regression model-based estimation of surface temperature

Accordingly, surface temperature for each pixel sample was 

estimated over the study area using the spectral indices-

based regression model. The estimated LSTs for the area 

was presented as gridded map (Fig. 17).

The result (Fig.  17) showed that the estimated LSTs 

have similar spatial variations with the landsat retrieved 

LSTs over the whole area. It was observed that pixels 

with lower LSTs (with leaf green tone) were found in 

non-developed areas, in which surface features catego-

rized as vegetation are dominant land covers. However, 

pixels with higher LST (displayed with light grey to white 

tone) are in developed areas categorized as impervious 

surfaces. Besides, pixels in residential areas where veg-

etation was mixed with diferent manmade materials were 

shown in a brown to dark yellow tone, indicating the 

existence of medium LSTs. Temperature diference maps 

(Fig. 18) and scatterplots (Fig. 19) between the estimated 

and retrieved LST values also indicated a satisfactory 

estimation with regression models. The estimated LST 

and retrieved LST showed positive correlation from a 

moderate regression of 0.659 in Abeokuta (Fig. 19). Fur-

thermore, Fig. 18 indicates that there is a large variation 

of LST over developing areas of Abeokuta with the core 

at the areas mixed with vegetation and artiicial materials.

Fig. 14  Spatial distribution of SSR over Abeokuta
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Comparative analysis and accuracy assessment

The estimated LST when compared with the retrieved LST 

image (Fig.  20), the estimated image has a similar over-

all spatial pattern. Speciically, sample values with lower 

LSTs were found in vegetated areas. Comparatively, sam-

ple values with higher LST are in impervious surface areas. 

Besides, sample values where vegetation was mixed with 

other land cover types (e.g. bare soil) indicate the existence 

of medium LSTs over the whole study area. The results of 

accuracy measurements also veriied the similarity between 

the regression-modeled LST and the retrieved LST (see 

Table  7). Table  7 indicates that the overall error for the 

study area is quite low, 2.63 °C for RMSE and 2.17 °C for 

MAE. Furthermore, it also shows that higher RMSEs and 

MAEs are found in the in less-developed areas of Abeo-

kuta. However, developed areas of Abeokuta showed lower 

RMSEs and MAEs. This observation could be probably 

due to the larger variations of thermal properties of dif-

ferent surfaces with various anthropogenic materials than 

those of natural materials dominated by vegetation.

Visual comparisons over Abeokuta (Fig.  20) indicate 

that the spectral indices-based regression model slightly 

overestimate LSTs in developed lands, such as commer-

cial, residential, and transportation land uses, etc., and 

signiicantly underestimate LSTs in under-developed. This 

is probably due to the less impacts of surface biophysical 

characteristics on LST in under-developed. Moreover, It 

also shows that the performance of this model is relatively 

well in developed areas, but poor in the under-developed 

areas of Abeokuta. This is probably due to the nonlinear 

relationship between land cover indices and LST.

Conclusions

This study has been able to address and provide vital infor-

mation on the changes of urban surface biophysical com-

ponents through the qualitative and quantitative analyses 

performed to assess the status of urban surface components 

and the relationship between surface biophysical changes 

and thermal response over Abeokuta city, Nigeria. This 

study has proven that the modiication of the natural surface 

is the main driver of land cover changes and consequently 

LST, especially in rapid urbanizing cities like Abeokuta 

in Nigeria. This is attributed to the compelling socio-eco-

nomic factors such as rural–urban migration, the demand 

for space as a result of increasing population, and lack of 

urban monitoring and planning. However, the research has 

indicated that the possibility of further urbanization pro-

cess in Abeokuta area cannot be ruled out because of its 

projected industrial and institutional opportunities (Ahmed 

2011) due to the recent rapid socio-economic development. 

Hence, the susceptible areas to urbanization process should 

be decentralized in order to prevent the formation of large-

scale urban heat efect in the future. Additional considera-

tion to plan and implement the concepts of urban green-

ing would also help reducing the LST in the area (Kibert 

2012). Finally, further research should seek to extend the 

study area by incorporating the rural/ less urbanized sur-

roundings of the region in order to simulate surface urban 

heat efect in the future context.
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Table 6  Statistical summary output of Abeokuta (LST = e0.3+1.2NDBI+

0.04%NDISI+5.2SSR) (R2 = 0.945)

Coeicients Standard error t value p value

Intercept 0.30 0.71 0.43 0.68

NDBI 1.20 0.26 4.63 0.00

NDISI 0.04 0.01 4.23 0.00

NDVI 0.78 0.42 1.86 0.08

SSR 5.23 1.08 4.83 0.00
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Fig. 17  LST estimates gener-

ated from surface biophysical 

indices-based regression models

Fig. 18  Maps of LST Dif-

ference (subtraction of the 

retrieved LST from modeled 

LST)
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