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Abstract In this paper, dynamical behavior of simple

prey-predator model with Holling type II functional

response involving additional food for predator along with

intraspecific competition of prey is proposed and analyzed.

The stability criteria of solutions are investigated by

varying quantity and quality of additional food and

intraspecific competition of prey population. Conditions for

Hopf bifurcation are derived analytically. Numerical sim-

ulation results are presented to observe the time evolution

of the system. This study may be useful to understand the

effects of intraspecific competition in real world ecological

systems.

Keywords Prey-predator model � Additional food �
Intraspecific competition � Stability analysis � Hopf
bifurcations

Introduction

In light of the conservation of biodiversity, it is of para-

mount importance to understand the effects of variation of

predator population in an ecosystem. During the last few

decades continuous attention is given to prey-predator

model for its wide range of applications in mathematical

biology. Additional foods are important components of

most predators (e.g., coccinellid) diet, although they

receive less attention than basal prey in the scientific lit-

erature, these foods fundamentally shape the life histories

of many predator species (cf. Sahoo and Poria 2014). In

recent years, many biologist, experimentalists and theo-

reticians investigated the consequences of providing addi-

tional food to predators in a predator prey systems (cf.

Kumar and Freedman 1989; Sahoo and Poria 2013; Sabelis

and Rijn 2005; Gakkhar and Singh 2012). Along with

additional food’s quality and quantity, intraspecific com-

petition of prey population can influence the change in

stability of prey-predator system. Intraspecific competition

mainly reduces population growth rates when population

density used to increase. Intraspecific competition doesn’t

have any impact on population when biological resources

are seems to be infinite. This phenomenon leads expo-

nential population growth which is exceedingly rare in

nature. Introduction of intraspecific competition makes

prey-predator interactions more realistic. In recent years

prey-predator system dynamics are investigated by Pitch-

ford and Brindley (cf. Pitchford and Brindley 1998)

incorporating the effects of intraspecific competition.

One of the most important factors of mathematical

models of prey-predator system is the functional response

(cf. Agiza et al. 2009; Yujing 2013). After the introduction

of Holling (cf. Holling 1959a, b, 1965) many types of

functional responses (cf. Ruan and Xiao 2001; Saeez and

Gonzalez-Olivares 1999; Skalski and Gilliam 2001;

Akcakaya et al. 1995; Wang et al. 2007) are used among

which Holling type II, III and IV are the extensively used

in literature of mathematical biology (cf. Aziz-Alaoui and

Okiye 2003; Camara and Alaoui 2008; Mukherjee et al.
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2011; Lu and Wang 2011; Zhang et al. 2008; Agarwal and

Pathak 2012; Chen et al. 2013; Zhen and Zhong 2013). The

effects of the presence of additional food in the ecological

system is taken into account through the modification of

functional response term (cf. Sahoo and Poria

2011, 2013, 2015; Srinivasu and Prasad 2010). In real

world ecology when population used to approach carrying

capacity reproduction rate and survival process usually

decrease due to intraspecific competition. Intraspecific

competition generally occurs due to competition for

searching mates, resources which can influence change in

structure of species population as well as life history of

species. There are many theoretical studies (cf. Pal et al.

2009; Chakraborty et al. 2015; Sabelis and Rijn 2006;

Sahoo and Poria 2013, 2014; Srinivasu and Prasad 2011;

Prasad et al. 2013) incorporating additional food to

predator only assuming logistic growth of prey. However,

none of the model has investigated the effects of variation

of growth rate of prey population due to different kind of

intra-specific competitions among prey populations. These

facts motivate us to investigate the effects of variation of

growth rate of prey population in a predator prey system in

presence of additional food for predator in this paper. In

particular we consider the h logistic growth of prey pop-

ulation and study the effect of variation of h (cf. Ross

2009). Notice that for h ¼ 1 we have the usual logistic

growth rate of prey which was used in the previous

investigations made by Srinivasu (cf. Srinivasu et al.

2007).

The section wise split of the paper are the following. In

‘‘Model’’, the model is discussed and in ‘‘Analysis of

model’’ the stability of the model is analyzed. In ‘‘Simu-

lation results’’ simulation results of the paper are discussed

and in ‘‘Conclusions’’ conclusions are drawn.

Model

We consider h-logistic growth of prey and formulate the

following predator-prey model

dN

dT
¼ rN 1� N

K

� �h
 !

� CNP

aþ N
; Nð0Þ[ 0

dP

dT
¼ bNP

aþ N
� mP; Pð0Þ[ 0:

ð1Þ

where prey population N has carrying capacity K[ 0 and

intrinsic growth rate r[ 0, m is death rate of predator P as

well as starvation rate. We consider h1 as handling time of

predator per prey item and e1 as ability of the predator to

detect the prey, then C ¼ 1
h1

represents maximum rate of

predation by predator and a ¼ 1
e1h1

is half saturation value

of predator. If the efficiency with which the food consumed

by the predator used to be converted into predator biomass

is � then b ¼ �
h1
is the maximum growth rate of the predator.

Now it is assumed that predator is provided with additional

food having biomass A which is assumed to be distributed

uniformly in the habitat. It is assumed that the number of

encounters per predator with the additional food is pro-

portional to the density of the additional food. The pro-

portionality constant characterizes the ability of the

predator to identify the additional food. Thus when addi-

tional food is supplied to predator then the previous system

will be of the following form

dN

dT
¼ rN 1� N

K

� �h
 !

� CNP

aþ agAþ N
; Nð0Þ[ 0

dP

dT
¼ bðN þ gAÞP

aþ agAþ N
� mP; Pð0Þ[ 0:

ð2Þ

Handling time of predator per unit quantity of additional

food is represented by h2 and if ability for the predator to

detect the additional food is e2 then g ¼ e2
e1

and a ¼ h2
h1
.

The term gA here represents effectual additional food

level. System (2) reduces to system (1) when A ¼ 0: We

will analyze the system (2) for studying its controllability

with respect to the quantity and quality of additional food.

We non-dimensionalize the system (1) and (2) using

transformations

x ¼ N

a
; y ¼ CP

ar
; and t ¼ rT :

Then the system (2) takes the form

dx

dt
¼ x 1� xh

ch

� �
� xy

1þ anþ x
; xð0Þ[ 0

dy

dt
¼ bxy

1þ anþ x
� dy; yð0Þ[ 0:

ð3Þ

where c ¼ K
A
; b ¼ b

r
; d ¼ m

r
; n ¼ gA

a
:

We define f ðxÞ ¼ x

1þ anþ x
;

and gðxÞ ¼ ð1þ anþ xÞ 1� xh

ch

� �
:

The system (3) becomes

dx

dt
¼ f ðxÞ½gðxÞ � y�; xð0Þ[ 0

dy

dt
¼ ½bf ðxÞ 1þ n

x

� �
� d�y; yð0Þ[ 0:

ð4Þ

Transformed system of (1) will be obtained when n ¼ 0.
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Analysis of model

Boundedness of solution

In this section, we shall show first that all solutions of the

model with non-negative initial conditions will remain

bounded.

Theorem All solution of system (4) that start in R2
þ are

uniformly bounded.

Proof

We take

WðtÞ ¼ xðtÞ þ yðtÞ

W 0ðtÞ ¼ dx

dt
þ dy

dt

¼ x 1� xh

ch

� �
� xy

1þ anþ x
þ bðxþ nÞy
1þ anþ x

� yd

� x 1� xh

ch

� �
� yd

� 2x� yd� x

� 2� kðxþ yÞ

Therefore

dW

dt
þWk� 2

hence 0\W\
2ð1� e�tkÞ

k
þWðxð0Þ; yð0ÞÞe�tk

here k ¼ minf1; dg: For t ! 1 we have 0\W\ 2
k , hence

0\W\M, where M ¼ 2
k . Hence all the solutions of the

system (4) initiating in R2
þ are confined in the region S1 ¼

ðx; yÞ 2 R2
þ : W ¼ 2

k þ f for any f[ 0, which means all

species are uniformly bounded for any initial value in R2
þ .

This proves the theorem. h

Equilibria and their stability conditions

Now we determine the equilibrium points of the system

and discuss their stability conditions when n ¼ 0 and draw

conclusion regarding the behavior of stability of equilib-

rium. Prey isocline of system (4) is y ¼ ð1þ anþ xÞ
1� xh

ch

� �
which is an increasing function of both a and n in

½0; c� which intersect y axis at ð0; 1þ anÞ and x axis at

ðc; 0Þ. Predator isocline of system (4) is x ¼ dð1þanÞ�bn
b�d

which is a straight line. Prey isocline of system when n ¼ 0

is y ¼ ð1þ xÞ 1� xh

ch

� �
, predator isocline of system when

n ¼ 0 is x ¼ d
b�d . The predator isocline of system (4) may

move to the right or left from x ¼ d
b�d as n increases from

zero depending on the relative position of a with respect to
b
d . The equilibrium point of system (4) is

ðx�; y�Þ ¼ dþ nðad� bÞ
b� d

; gðx�Þ
� �

and for n ¼ 0 the equilibrium point is

ð~x; ~yÞ ¼ d
b� d

; gð~xÞ
� �

:

Clearly it is observed that y� [ ~y when n[ 0. If a\ b
d then

x�\~x and if a[ b
d then x� [ ~x. As x� � 0 so n� d

b�da and

from y� [ 0 we get c[ x� which gives n[ d�cðb�dÞ
b�ad . Hence

a always enhances equilibrium level of predator of system

(4) when n[ 0. If a[ b
d and n ¼ 0 then if system does not

admit interior equilibrium then (4) shall never admit interior

equilibrium. If a\ b
d then system (4) admits interior equi-

librium even if when n ¼ 0 does not provide interior equi-

librium, provided we have n[ d�cðb�dÞ
b�ad from y� [ 0, and it

willmaintain the interior equilibrium if n� d
b�da from x� � 0.

When a ¼ b
d then n ¼ 0 gives interior equilibrium point,

from system (4) the equilibrium predator population

increases with additional food but the equilibrium prey

population remains at the same level as that of when n ¼ 0.

Jacobian matrix of system (4) is

Jðx;yÞ ¼
g0ðxÞf ðxÞ þ ½gðxÞ � y�f 0ðxÞ �f ðxÞ

by½f 0ðxÞð1þ n
x
Þ � f ðxÞn

x2
� bf ðxÞð1þ n

x
Þ � d

0
@

1
A:

Now Jð0;0Þ ¼
1 0

0
bn

1þ an
� d

0
@

1
A and

Jðc;0Þ ¼
�1 �c

0 b
cþ n

1þ anþ c

� �
� d

0
@

1
A:

Here (0, 0) and ðc; 0Þ are common equilibrium point

between system having n ¼ 0 and (4).

Here Jðx�;y�Þ ¼
g0ðx�Þf ðx�Þ �f ðx�Þ

bgðx�Þ½f 0ðx�Þð1þ n
x�
Þ � f ðx�Þn

x�2
� 0

0
@

1
A

where f 0ðxÞ ¼ 1þ an

ð1þ anþ xÞ2
[ 0 ð5Þ

and g0ðx�Þ ¼ 1� xh

ch
� ð1þ anþ xÞ

ch
hxh�1: ð6Þ

The dynamical behavior of system (4) is analyzed under

the condition of existence and stability criteria for interior

equilibrium point when n ¼ 0. The conditions are as

follows
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ch � d
b� d

� �h

\
b
d

d
b� d

� �h d
b
þ h

� �
ð7Þ

ch � d
b� d

� �h

\
b
d

d
b� d

� �h d
b
þ h

� �
ð8Þ

d
b� d

� �h

\
b
d

d
b� d

� �h d
b
þ h

� �
� ch ð9Þ

System (4) admits interior equilibrium if c[ d
b�d and this

interior equilibrium is unstable if c[ ð d
b�dÞ½

b
d ðdb þ hÞ�

1
h, and

asymptotically stable if c\ð d
b�dÞ½

b
d ðdb þ hÞ�

1
h.

Conditions for Hopf bifurcation

According to the stability conditions of system (4) we can

conclude that Hopf bifurcation occurs at c ¼ ð d
b�dÞ½

b
d ðdb þ

hÞ�
1
h when n ¼ 0. The eigen value bn

1þan � d of Jð0;0Þ decides

nature of (0, 0), eigen value
bðcþnÞ
1þanþc � d decides nature of

ðc; 0Þ, and g0ðx�Þ (provides sign of Jðx�;y�Þ) decides nature of

ðx�; y�Þ of the system (4). Hence in ða; nÞ space we will

draw the curves

bn� dð1þ anÞ ¼ 0 ð10Þ

bðcþ nÞ � dð1þ anþ cÞ ¼ 0 ð11Þ

ðb� dÞhch � ð1þ hÞ½dþ nðad� bÞ�h

� hð1þ anÞðb� dÞ½dþ nðad� bÞ�h�1 ¼ 0:
ð12Þ

Since a ¼ b
d is an asymptote for both (10) and (11) the

dynamical behavior of system (4) is examined through the

curves (10–12). The curves for h ¼ 2 are represented in

Fig. 1, same for h ¼ 3 and h ¼ 4 are presented in Figs. 2, 3

respectively.

When a ¼ b
d then system (4) will be globally asymp-

totically stable for n[ ðb�dÞhch�ð1þhÞdh�hðb�dÞdh�1

hbðb�dÞdh�2 and

unstable for n 2 ½0; ðb�dÞhch�ð1þhÞdh�hðb�dÞdh�1

hbðb�dÞdh�2 �.
Hence Hopf bifurcation of interior equilibrium ðx�; y�Þ

occurs at

n ¼ ðb� dÞhch � ð1þ hÞdh � hðb� dÞdh�1

hbðb� dÞdh�2
ð13Þ

If g0ðx�Þ ¼ 1� ð1þ anÞhðx�Þh�1

ch
� ð1þ hÞ

ch
ðx�Þh\0

ð14Þ

then interior equilibrium of system (4) is globally asymp-

totically stable. From system (4) at ðx�; y�Þ we get

0 0.5 1 1.5
0

2

4
(a)

(b)

(c)

α
ξ

0 0.5 1 1.5 2 2.5 3
0

2

4

α

ξ

0 0.5 1 1.5 2 2.5 3
0

2

4

α

ξ

Fig. 1 Diagram for curves (10), (11), (12) under conditions (7), (8),

(9) when parameter values are b ¼ 0:35; d ¼ 0:25; h ¼ 2. Dashed line

represents curve equation (10), dash dotted line represents curve

equation (11), dotted line represents curve equation (12) and

continuous line represents the straight line a ¼ b
d . a for c ¼ 1:8

[(following condition (7) (for fixed a and increasing value of n in

between 2 magenta colored curve branch system is stable when

values of n lies over the upper branch )], b for c ¼ 4:2 [(following

condition (8) (for fixed a and increasing value of n in between 2 curve
magenta colored branch system is stable when values of n lies over

the upper branch )], c for c ¼ 7:88 [following condition (9) (for fixed

a and increasing value of n in between 2 magenta colored curve

branch system is stable when values of n lies over the upper branch

when a\1:4 and for a[ 1:4 system is stable when n lies under the

magenta colored curve branch )] respectively are plotted in ða; nÞ
space
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1þ anþ x� ¼ y�ch

ch � ðx�Þh
¼ bðx� þ nÞ

d
:

Solving the above equations we obtain

n ¼ chy�d

ðch � ðx�ÞhÞb
� x�

ð15Þ

and a ¼ ½bðx� þ nÞ � ð1þ x�Þd�
dn

: ð16Þ

Global stability

The interior equilibrium point ðx�; y�Þ will be globally

asymptotically stable if

0 0.5 1 1.5
0

2

4

α

ξ

(a)

0 0.5 1 1.5 2 2.5
0

2

4

α

ξ

(b)

0 0.5 1 1.5 2 2.5
0

2

4

α

ξ
(c)

Fig. 2 Diagram for curves (10),

(11), (12) under conditions (7),

(8), (9) when b ¼ 0:35; d ¼
0:25; h ¼ 3 . Dashed line

represents curve equation (10),

dash dotted line represents

curve equation (11), dotted line

represents curve equation (12)

and continuous line represents

the straight line a ¼ b
d . a for

c ¼ 2:1 [following condition (7)

(for fixed a and increasing value

of n in between 2 magenta

colored curve branch system is

stable when values of n lies over
the upper branch )], b for c ¼
3:9 [following condition (8)]

(c) for c ¼ 6:5 [following

condition (9)] respectively are

plotted in ða; nÞ space

0 0.5 1 1.5
0

2

4

α

ξ

(a)

0 0.5 1 1.5 2 2.5
0

2

4

α

ξ

(b)

0 0.5 1 1.5 2 2.5
0

2

4

α

ξ

(c)

Fig. 3 Diagram for curves (10), (11), (12) under conditions (7), (8),

(9) when b ¼ 0:35; d ¼ 0:25; h ¼ 4. Dashed line represents curve

equation (10), dash dotted line represents curve equation (11), dotted

line represents curve equation (12) and continuous line represents the

straight line a ¼ b
d . a for c ¼ 2:1 [following condition (7) (for fixed

a and increasing value of n in between 2 magenta colored curve

branch system is stable when values of n lies over the upper branch )],
b for c ¼ 4:2 [following condition (8) (for fixed a and increasing

value of n in between 2 magenta colored curve branch system is

stable when values of n lies over the upper branch )], c for c ¼ 7:88
[following condition (9) (for fixed a and increasing value of n in

between 2 magenta colored curve branch system is stable when

values of n lies over the upper branch when a\1:4 and for a[ 1:4
system is stable when n lies under the magenta colored curve branch

)] respectively are plotted in ða; nÞ space
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bðM2 � y�nÞ
1þ anþM

þ y�d\x� � chM
1�h
2 þ xhM

h�1
2

2

 !2
1

ch

(assuming ðx�; y�Þ is locally asymptotically stable).

Proof Let us consider the following Lyapunov function

Vðx; yÞ ¼ðx� x�Þlnð x
x�
Þ þ ðy� y�Þlnð y

y�
Þ:

Then
dV

dt
¼ ðx� x�Þ

x

dx

dt
þ ðy� y�Þ

y

dy

dt

¼ðx� x�Þ 1� xh

ch
� y

1þ anþ x

� �

þ ðy� y�Þ bðxþ nÞ
1þ anþ x

� d

� �

� x� x�ð Þ 1� xh

ch

� �
þ bxy
1þ anþ x

� bny�

1þ anþ x
þ dy�

� x� x�ð Þ 1� xh

ch

� �
þ bM2

1þ anþM
� bny�

1þ anþM
þ dy�:

Here M ¼ 2
k and k¼ minf1;dg. After simplification we get,

dV

dt
� �1

ch
x
hþ1
2 � chx

1�h
2 þ x�x

h�1
2

2

" #2
�x�

þ chx
1�h
2 þ x�x

h�1
2

2

" #2
1

ch

þ bM2

1þ anþM
� bny�

1þ anþM
þ dy�

� �1

ch
½xhþ1

2 � chx
1�h
2 þ x�x

h�1
2

2
�2 � x�

þ chM
1�h
2 þ x�M

h�1
2

2

" #2
1

ch

þ bM2

1þ anþM
� bny�

1þ anþM
þ dy�:

Hence system (4) will be globally asymptotically

stable if �x� þ chM
1�h
2 þx�M

h�1
2

2

� �2
1
ch þ

bðM2�y�nÞ
1þanþM

þ y�d\0

i.e.
bðM2�y�nÞ
1þanþM

þ y�d\x� � chM
1�h
2 þx�M

h�1
2

2

� �2
1
ch : h

Simulation results

We represent the characteristics of system (4) according to

the condition of stability and existence of interior equi-

librium when n ¼ 0 by the help of numerical simulation.

We take values of ecosystem parameters as b ¼ :35,

d ¼ :25, c ¼ 5:5. These values satisfies condition (9) which

indicates existence of stable limit cycle for the system

having n ¼ 0 about the points ð~x; ~yÞ ¼ ð2:5; 2:7769Þ,
ð~x; ~yÞ ¼ ð2:5; 3:1713Þ, ð~x; ~yÞ ¼ ð2:5; 3:3506Þ for h ¼ 2, h ¼
3 and h ¼ 4 respectively. As h ¼ 1 is studied by Srinivasu

(cf. Srinivasu et al. 2007) we emphasis on values of h

rather than h ¼ 1. Here b
d ¼ 1:400. At first we examine the

system (4) for h ¼ 1; 2; 3; 4 by taking ða; nÞ ¼ ð0; 0Þ. Then
we see from Fig. 4 that the system is stable only at h ¼ 1

and for other values of h system is unstable. Therefore the

variation of intraspecific competition has significant

impacts over the stability of an ecosystem.

Now we fix the target prey and predator to be (2.5, 5).

From the stability conditions [from (15 to 16)] of the fixed

point (2.5, 5) for h ¼ 2 we get the values of

ða; nÞ ¼ ð1:400; 4:5015Þ. Since the value of g0ðx�Þ ¼
�0:8268 which indicates that system is stable. Now fixing

the target prey and predator to be (3.5, 6) for h ¼ 3 then

from (15) and (16) we get ða; nÞ ¼ ð1:4693; 5:7736Þ and

value of g0ðx�Þ ¼ �2:1255 which indicates that system is

stable. Next we fix the target prey and predator to be

(3.5, 6) for h ¼ 4 then from (15) and (16) we get ða; nÞ ¼

2 2.5 3 3.5 4 4.5 5
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

x (Prey)

y
 
(
P
r
e
d
a
t
o
r
)

Fig. 4 Diagram representing

global stability criteria
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ð1:44780; 5:1264Þ and value of g0ðx�Þ ¼ �1:4274 which

indicates that system is stable. This phenomenon is

depicted by Fig. 6.

Again for h ¼ 2 we fix the target prey and predator to be

(1.5, 5) for then ða; nÞ ¼ ð1:2963; 3:8584Þ and value of

g0ðx�Þ ¼ 0:1817 which indicates that system is unstable.

Here a ¼ 1:2963\ b
d. Keeping n ¼ 3:8584 and target prey

and predator fixed when we take a ¼ 1:43 then system

becomes stable, here bifurcation occurs with respect to a
and time series representation is illustrated by Fig. 7.

Again when we fixed h ¼ 3 and fix the target prey and

predator (3.5, 6), then ða; nÞ ¼ ð1:4693; 5:7736Þ. Keeping
n ¼ 5:7736 and target prey and predator fixed when we

take a ¼ 1:35 then system becomes unstable, here

bifurcation occurs with respect to a hence time evolution is

illustrated by Fig. 8.

Again when we fixed h ¼ 4 and fix the target prey and

predator (3.5, 8), then ða; nÞ ¼ ð1:4585; 6:8352Þ. Keeping

n ¼ 6:8352 and target prey and predator fixed when we take

a ¼ 1:39 then system becomes unstable, here bifurcation

occurswith respect toa andFig. 9 illustrates the timeevolution.

Now for h ¼ 2, we keep a ¼ b
d ¼ 1:400 fixed, then from

(13) we get n ¼ 0:9296 which is the critical value of n for

Hopf bifurcation. When we take n ¼ 3:59[ 0:9286 then

system remains stable, and when n ¼ 0:86\0:9286 system

becomes unstable. Fig. 10 shows the time evolution diagram.

Next for h ¼ 3, we keep a ¼ b
d ¼ 1:400 fixed, then from

(13) we get n ¼ 3:2429 which is the critical value of n for
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Fig. 5 Time evolution of the

system (4) without additional

food when b ¼ 0:35; d ¼
0:25; c ¼ 5:5 and a for h ¼ 1,

b for h ¼ 2, c for h ¼ 3 (d) for

h ¼ 4 are plotted. Dashed line

represents the prey population

and continuous line represents

the predator population
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Fig. 6 Time evolution of the system (4) with b ¼ 0:35; d ¼ 0:25; c ¼
5:5 are plotted for different targeted prey predator values. a for

h ¼ 2; x ¼ 2:5; y ¼ 5; a ¼ 1:400; n ¼ 4:5015. b for h ¼ 3; x ¼ 3:5;

y ¼ 6; a ¼ 1:4693; n ¼ 5:7736. c for h ¼ 4; x ¼ 3:5; y ¼ 6; a ¼
1:4780; n ¼ 5:1264. Dashed line represents the prey population and

continuous line represents the predator population
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Fig. 7 Time evolution of the

system (4) with h ¼ 2 and b ¼
0:35; d ¼ 0:25; c ¼ 5:5;
n ¼ 3:8584, and x ¼ 1:5; y ¼ 5

are plotted. a for a ¼ 1:43. b for

a ¼ 1:2963. Dashed line

represents the prey population

and continuous line represents

the predator population
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Fig. 8 Time evolution of the

system (4) with h ¼ 3 and b ¼
0:35; d ¼ 0:25; c ¼ 5:5; n ¼
5:7736 and x ¼ 3:5; y ¼ 6 are

plotted. a for a ¼ 1:4693. b for

a ¼ 1:35. Dashed line

represents the prey population

and continuous line represents

the predator population
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Fig. 9 Time evolution of the

system (4) with h ¼ 4 and b ¼
0:35; d ¼ 0:25; c ¼ 5:5; n ¼
6:8352 and x ¼ 3:5; y ¼ 8 are

plotted. a for a ¼ 1:4585. b for

a ¼ 1:39. Dashed line

represents the prey population

and continuous line represents

the predator population
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Hopf bifurcation. When we take n ¼ 5:35[ 3:2429 then

system remains stable, and when n ¼ 2:25\3:2429 system

becomes unstable. Fig. 11 shows the time evolution diagram.

Next for h ¼ 4, we keep a ¼ b
d ¼ 1:400 fixed, then from

(13) we get n ¼ 7:5114 which is the critical value of n for

Hopf bifurcation. When we take n ¼ 9:9[ 7:5114 then

system remains stable, and when n ¼ 6:9\7:5114 system

becomes unstable. Fig. 12 shows the time evolution diagram.

So it is observed that with the increase of intraspecific

competition it is seen that for stability of systemmore quantity

of additional food should be supplied to predator.When h ¼ 2

critical value of n (the quantity of additional food) ¼ 0:9286

and system is stable when n ¼ 3:59[ :09286. When h ¼ 3

critical value of n ¼ 3:2429 and the system is stable when

n ¼ 5:35[ 3:2429.When h ¼ 4 critical value of n ¼ 7:5114

and the system is stable when n ¼ 9:9[ 7:5114. So

intraspecific competition increases the necessity of more

quantity of additional food for the stability of system (4).

When h ¼ 2,if a ¼ 1:2963\ b
d ¼ 1:400 when n ¼ 3:8584

then the systembecomes unstable, andwhen a ¼ 1:43[ b
d ¼

1:400 system remains stable. When h ¼ 3, if a ¼ 1:35\ b
d ¼

1:400 when n ¼ 5:7736 then the system is unstable, andwhen

a ¼ 1:469[ b
d ¼ 1:400 system becomes stable. When

h ¼ 4, if a ¼ 1:39\ b
d ¼ 1:400 when n ¼ 6:8352 then the

system becomes unstable, and when a ¼ 1:4585[ b
d ¼

1:400 system remains stable. From the above data it is clear

that when a\ b
d for any value of h ¼ 2; 3; 4 system becomes

unstable and when a[ b
d then the system remains stable.

When a ¼ b
d then the systemgoes underHopf bifurcationwith

respect to n for various values of h . The following fig-

ure represents bifurcation diagramofpredator populationwith

respect to n for various values of h.
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Fig. 10 Time evolution of the

system (4) with h ¼ 2 and b ¼
0:35; d ¼ 0:25; c ¼ 5:5 are

plotted. a for n ¼ 3:59. b for

n ¼ 0:86. Dashed line

represents the prey population

and continuous line represents

the predator population
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Fig. 11 Time evolution of the

system (4) with h ¼ 3 and b ¼
0:35; d ¼ 0:25; c ¼ 5:5 are

plotted. a for n ¼ 5:35. b for

n ¼ 2:25. Dashed line

represents the prey population

and continuous line represents

the predator population
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Conclusions

Systematic analysis of the dynamics of prey predator sys-

tem with additional food for predator along with

intraspecific competition among prey population is done in

this paper. In nature competition for food among carrion

feeders and fruit flies is observed (cf. Klomp 1964). Beetles

are seen to compete for resource cricket eggs (cf. Griffith

and Poulson 1993), wood butterfly (cf. Gibbsac et al. 2004)

also used to take part in intraspecific competition. The

intraspecific competition among prey is incorporated in the

model through the theta-logistic growth rate of prey. The

local and global stability analysis of the model are done.

Conditions for Hopf bifurcation are derived analytically

and verified numerically. It is observed that intraspecific

competition between prey plays a vital role in stability and

existence criteria of the interior equilibrium point. More-

over, it is found that in absence of additional food the

interior fixed point of the system become unstable with the

increase of intraspecific competition among prey. There-

fore prey will extinct when the intraspecific competition

crosses a critical value. Here additional food is character-

ized by to be of high quality if a\ b
d and is of low quality

when a[ b
d.

For fixed additional food the increase of intraspecific

competition can make the system (4) unstable which

indicates that predator may extinct as a result of extinction

of prey. Coexistence of predator and prey is possible only

when we increase the amount of additional food suit-

able with the increase of intraspecific competition. Hence,

alternative food can control the dynamics of the ecosystem

in presence of intraspecific competition also. Therefore, all

most all results of Srinivasu (cf. Srinivasu et al. 2007) will

be also valid in presence of intraspecific competition

among prey. This investigation generalizes the existing

knowledge of the effects of additional food in a food chain

model. Our theoretical results may be useful to analyse

some experimental data set of prey-predator system. The
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Fig. 12 Time evolution of the

system (4) with h ¼ 4 and b ¼
0:35; d ¼ 0:25; c ¼ 5:5
predator-prey system are

plotted. a for n ¼ 9:9, b for

n ¼ 6:9. Dashed line represents

the prey population and

continuous line represents the

predator population
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effects of additional food on the dynamics of a food chain

model in presence of intraspecific competition in both prey

and predator species may be an area for future study to

model real world ecological systems.
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