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Abstract Analysis and design of land-use management sce-

narios requires detailed soil data. The cation exchange

capacity (CEC) of soil is a basic chemical property, as it has

been approved that the spatial distribution ofCEC is important

for decisions concerning pollution prevention, crop and

farming management. Since laboratory procedures for mea-

suring CEC are cumbersome and time-consuming, it is

essential to develop an indirect approach such as pedotransfer

functions to predict this parameter from more readily avail-

able soil data. The aim of this study was to compare multiple

linear regression, multiple non-linear regression, adaptive

neuro-fuzzy inference system and artificial neural network

including feed-forward back propagation (FFBP) model to

develop PTFs for predicting paddy soils CEC in Guilan pro-

vince, northern Iran. Two soil parameters including organic

carbon and clay were considered as input variables for pro-

posed models. 171 soil samples were used. The data set was

divided into two subsets for calibration and testing of the

models. The models prediction capability was evaluated by

comparison with observed data through various descriptive

statistical indicators include root mean square error, deter-

mination coefficient, mean bias error and relative improve-

ment values. Results showed that the FFBP model had the

most reliable prediction when compared with other models

and that provide a newmethodologywith acceptable accuracy

to estimate the CEC of soil that diminished the engineering

effort, time and funds and can provide the scientific basis for

the study of soil CEC and be helpful for the estimation of soil

CEC in other places with similar conditions, too.

Keywords Multiple linear regressions � Adaptive neuro-

fuzzy inference system � Feed-forward back-propagation

network � Cation exchange capacity

Abbreviations

ANFIS Adaptive neuro-fuzzy inference system

ANN Artificial neural network

CEC Cation exchange capacity

CV Coefficient of Variation

FFBP Feed-forward back-propagation

FIS Fuzzy inference system

MBE Mean bias error

MF Membership function

MLR Multiple linear regressions

MNLR Multiple non-linear regressions

MLP Multi-layer perceptron

OC Organic carbon

PTFs Pedotransfer functions

R2 Determination coefficient

RI Relative improvement

RMSE Root mean square error

SD Standard deviation

Introduction

There is an increasing demand for reliable large-scale soil

data to meet the requirements of models for planning of

land-use systems, characterization of soil pollution, and
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prediction of land degradation (McBratney et al. 2002;

Zolfaghari et al. 2016). Cation exchange capacity (CEC) is

one of the most important soil properties that is required in

soil databases (Amini et al. 2005; Liao et al. 2014), and is

used as an input in soil and environmental models (Keller

et al. 2001). CEC refers to the quantity of negative charges

in soil (Jaremko and Kalembasa 2014). The negative

charge may be pH dependent (soil organic matter) or per-

manent (some clay minerals) (Liao et al. 2014; Zolfaghari

et al. 2016). Although CEC can be measured directly, its

measurement is difficult and expensive. Pedotransfer

functions (PTFs) provide an alternative by estimating CEC

from more readily available soil data (Liao et al. 2014;

Emamgolizadeh et al. 2015; Zolfaghari et al. 2016).

In recent years, various PTFs have been developed to

estimate CEC from basic physical and chemical soil

properties (McBratney et al. 2002; Amini et al. 2005;

Kianpoor et al. 2012; Bayat et al. 2014; Liao et al. 2014).

In most of these models, CEC is assumed to be a linear

function of soil organic carbon and clay content (McBrat-

ney et al. 2002; Sarmadian and Taghizadeh Mehrjardi

(2008); Kianpoor et al. 2012). Multiple linear regression

(MLR) analysis is generally used to find the relevant

coefficients in the model equations. Often, however,

models developed for one region may not give adequate

estimates for a different region (Wagner et al. 2001; Amini

et al. 2005; Emamgolizadeh et al. 2015).

A recent approach to model PTFs is the use of artificial

neural networks (ANNs). Artificial neural networks have

been successfully employed to predict some soil properties

that their measurement is difficult (Minasny and McBrat-

ney 2002; Amini et al. 2005; Bayat et al. 2014; Emam-

golizadeh et al. 2015). An advantage of using ANNs is that

no specific type of function needs to be assumed a priori to

model the relationship between inputs and outputs. The

optimum relation that links input data to output data is

obtained through a training procedure. ANN Models are

generally expected to be superior to MLR models because

of their greater feasibility (Amini et al. 2005; Bayat et al.

2014; Emamgolizadeh et al. 2015). A type of artificial

neural network known as multi-layer perceptron (MLP),

which uses a back-propagation training algorithm, is usu-

ally used for generating PTFs (Minasny and McBratney

2002; Amini et al. 2005; Sarmadian and Taghizadeh

Mehrjardi (2008); Lake et al. 2009;Keshavarzia and Sar-

madiana 2010; Yilmaz and Kaynar 2011; Kianpoor et al.

2012; Emamgolizadeh et al. 2015). This network uses

neurons whose output is a function of a weighted sum of

the inputs.

Several attempts have been conducted in relation to

modeling various soil physiochemical parameters by

means of different artificial intelligence-based model

techniques such as those done for modeling of the daily and

hourly behavior of runoff (Aqil et al. 2007), estimation of

soil erosion and nutrient concentrations in runoff (Kim and

Gilley 2008), modeling of Pb(II) adsorption from aqueous

solution (Yetilmezsoy and Demirel 2008), to determine the

clay dispersibility (Zorluer et al. 2010), estimating the

grout ability of granular soils (Tekin and Akbas 2011),

prediction of swell potential of clayey soils (Yilmaz and

Kaynar 2011), prediction of soil water retention curve

(Abbasi et al. 2011), land suitability evaluation (Ke-

shavarzi et al. 2011), estimating wet soil aggregate stability

(Besalatpour et al. 2013) and etc. Some studies also have

been considered capability of soft computing techniques

for prediction modeling soil CEC such as those conducted

by Amini et al. (2005); Sarmadian and Taghizadeh Mehr-

jardi (2008); Tang et al. (2009); Sarmadian et al. (2013);

Kianpoor et al. (2012), Keshavarzi et al. (2012), Liao et al.

(2014), Bayat et al. (2014), Emamgolizadeh et al. (2015);

Zolfaghari et al. (2016). The findings of these researchers

demonstrated that PTFs developed through artificial intel-

ligence-based modeling techniques were more efficient

than the regression ones to predict the CEC. In spite of, few

studies focused on developing PTFs by means of adaptive

neuro-fuzzy inference system for prediction of CEC.

The objectives of this study were to develop suit-

able artificial neural network for estimation of CEC in

Guilan region soils located in northern Iran and comparing

artificial neural network with regression and adaptive

neuro-fuzzy inference system models that have been

developed for these soils.

Materials and methods

Study area and data collection

This research was carried out in paddy soils of Guilan

province. The study area is located between 49�, 310 to 49�,
450E longitude and 37�, 70 to 37�, 270N latitude in north of

Guilan Province, the southern coast of Caspian Sea,

Northern Iran (Fig. 1). Region climate is very humid with

annual precipitation mean 1293.6 mm and annual temper-

ature mean 15.8 �C. The region soils moisture and tem-

perature regimes are Aquic, Udic and Thermic,

respectively, and soils parent materials are derived from

river sediments. Soil series names of study area and their

distribution are presented in Table 1 and Fig. 1, respec-

tively. All soil profiles were deep expecting 10 and 11 soil

series. Texture of soils was light to heavy in different soil

series (Fig. 2).

The determination of chemical and physical properties

was carried out on 171 soil samples collected from various

horizons of 120 soil profiles. Using profile description and

laboratory analysis of soil samples, all the studied soils
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were classified as Entisols and Inceptisols on the basis of

Soil Survey Staff (2014b). The soil properties measured for

this research were organic carbon (OC), pH, calcium car-

bonate, CEC and soil texture fractions including clay, sand

and silt content. The following analytical methods were

employed to measure each of parameters for this study:

organic carbon content was determined using Walkley–

Black method (Nelson and Sommers 1982), Particle size

distribution using pipette method (Soil Survey Staff

2014a), CEC using sodium acetate (pH 8.2), pH by pH

meter in ratio 1:2 soil with water and CaCO3 using titration

method (Soil Survey Staff 2014a). The results of determi-

nations were used as input variables to develop the CEC

estimation models. The data sets were divided into two

subsets. One subset was used for generating PTFs and

calibrating PTFs from the literature, and the other subset

was used for testing the models. The division was based on

stratified random sampling by sorting the data based on

CEC, stratifying the data into 10 CEC groups, and ran-

domly selecting 25 % of the data from each group for

testing. The remaining 75 % of the data were used for

calibration and this division carried out as statistical

characteristics of soil properties (e.g. min, max, and etc.)

were similar in two subsets.

Prediction methods

Multiple linear and non-linear regression model

The general purpose of multiple regressions is to learn

more about the relationship between several independent or

predictor variables and a dependent or criterion variable.

Multiple regressions are the most common method used in

development PTFs.

Fig. 1 Study area location and soil types map of area

Table 1 Soil series names of

the study area with surface soil

texture

Series no. Characteristics Top soil texture (0–30 cm)

1 Fine, mixed, active, thermic Anthraquic Eutrudepts Very heavy: C

2 Fine, mixed, active, thermic Typic Endoaquepts Heavy: SiCL

3 Fine, mixed, superactive, thermic Fluventic Endoaquepts Very heavy: C

4 Fine, mixed, active, calcareous, thermic Typic Endoaquepts Very heavy: C

5 Fine, mixed, active, thermic Fluventic Endoaquepts Very heavy: C

6 Fine loamy, mixed, active, thermic Fluvaquentic Eutrudepts Heavy: CL

7 Fine loamy, mixed, superactive, thermic Typic Udifluvents Medium: SCL

8 Fine loamy, mixed, active, thermic Typic Endoaquepts Medium: SC

9 Fine, mixed, active, thermic Mollic Epiaquepts Very heavy: SiC

10 Mixed, thermic Typic Psammaquents Light: LS

11 Fine loamy, mixed, superactive, thermic Typic Fluvaquents Medium: L

Texture symbols: C clay, SiCL silty clay loam, CL clay loam, SCL sandy clay loam, SC sandy clay, SiC

silty clay, LS loamy sand, L loam
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Artificial neural networks (ANNs)

Artificial neural networks (ANNs) are a form of artificial

intelligence, which, bymeans of their architecture, attempt is

made to simulate the biological structure of the human brain

and nervous system (Amini et al. 2005). In this study,

developed ANN model was multi-layer perceptron which is

the most commonly-used neural network structure in eco-

logical modeling and soil science (Agyare et al. 2007;

Besalatpour et al. 2013; Emamgolizadeh et al. 2015). The

MLP algorithm developed in this research is a feed-forward

back-propagation network (FFBP) model. There are two

input elements, %Clay and %OC, and one output element,

CEC, so that the MLP architecture is 2-m-1, where m rep-

resents the number of hidden neurons. A schematic diagram

of the network is given in Fig. 3. Assume P is a (d 9 n)

rescaled inputmatrix where the rows consist of elements (i.e.

clay and OC) and the columns are the samples. Initially, we

calculate a linear combination, aj, of the weighted input

elements, Pi, plus a constant bias, w
ðhÞ
jO , expressed as:

aj ¼
Xd

i¼1

w
ðhÞ
ji Pi þ w

ðhÞ
jo ; j ¼ 1; . . .;m and i ¼ 1; . . .; d ð1Þ

where d is the number of elements, m is the number of

neurons, and w
ðhÞ
ji denotes the weights given to the input i

of the neuron j in the hidden layer. The matrix, aj, is then

activated by a tangent sigmoid function, f, to produce the

output of the hidden layer, Zj:

Zj ¼ f aj
� �

¼ �1þ 2= 1þ exp �2aj
� �� �� �

ð2Þ

In the output layer (Fig. 3), the outputs of the hidden

layer are summed linearly to produce CEC estimates:

CEC predictedð Þ ¼
Xm

j¼1

w
ðoÞ
j Zj þ wðoÞ

o ð3Þ

The above procedure is repeated for every sample, i.e. n

times. The weights in the above equations are

adjustable parameters of the network and are optimized

Fig. 2 Textural distribution of

both training and testing data

sets on the USDA soil texture

triangle

Fig. 3 A schematic structure of the feed forward back-propagation

neural network
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during the network training procedure. The commonly used

objective function in training is the mean squared error

(MSE) typically specified as:

MSE ¼ 1

n

Xn

k¼1

CECpredicted � CECmeasured

� �2
; k ¼ 1; . . .; n:

ð4Þ

Error minimization can be obtained by a number of

procedures. Frequently, the Levenberg–Marquardt (More

1977) algorithm is used in feed-forward networks (Schaap

et al. 1998). A problem that usually occurs during network

training is over-fitting or overtraining, which means that

the network learns to work well for the training inputs, but

not well enough for a test data set. To avoid overtraining,

Amini et al. (2005) proposed a regularized objective

function, MSEReg, in which the sum of network weights is

added to the MSE:

MSEReg ¼ cMSE þ 1� cð ÞMSW ð5Þ

where c is a performance ratio calculated by means of the

Bayesian regularization in combination with the Leven-

berg–Marquardt algorithm and MSW is the mean of the

squared weights and biases (Amini et al. 2005). When the

data set is small and you are training function approxi-

mation networks, Bayesian regularization provides better

generalization performance than early stopping. This is

because Bayesian regularization does not require that a

validation data set be separate from the training data set; it

uses all the data (Help of MATLAB R2015b software

2015). For this purpose, we used ‘‘create network or data

toolbox’’ of MATLAB software which training, adaption

learning, performance and transfer functions were Baye-

sian regularization, gradient descent, MSEReg and tangent

sigmoid, respectively.

MATLAB R2015b software (2015) was used to develop

PTFs for predicting CEC bymeans ofANNmodel. In order to

this end, all data set were first normalized between 0.1 and 0.9

to achieve effective network training. Luk et al. (2000) stated

that neural networks trained on normalized data, achieve

better performance and faster convergence in general,

although the advantages diminish as network and sample size

become large. Normalizing the data set was done through in

two stage: (1) Pre-processing: The input (clay and OC) and

output (CEC) data for training and test data sets were initially

rescaled to fall within the range of [0.1, 0.9] by the transfer

function (Help of MATLAB R2015b software 2015):

Pnorm ¼ 0:8� Pi � Pminð Þ= Pmax � Pminð Þð Þ½ � þ 0:1 ð6Þ

where Pnorm is the rescaled input matrix, Pi is the input

matrix, and Pmin and Pmax are two vectors containing the

minimum and the maximum values of the input matrix,

respectively. The output (CEC) of the network is also

rescaled by using its minimum and maximum values. (2)

Post-processing: To back-transform the results of the net-

work we used the following equation:

Pi ¼ 1:25� Pnorm � 0:1ð Þ= Pmax � Pminð Þ½ � þ Pmin ð7Þ

Adaptive neuro-fuzzy inference system (ANFIS) model

In ANFIS, fuzzy rule bases are combined with neural

networks to train the system using experimental data and

obtain appropriate membership functions for process pre-

diction and control (Lertworasirikul 2008; Besalatpour

et al. 2013). Takagi–Sugeno-Kang (TSK) model (Takagi

and Sugeno 1985) that is one of the most frequently-used

precise fuzzy models was used in the current study to

predict soil CEC. In order to simplify, it is assumed that the

inference system has two input variables x and y as each

variable has two fuzzy subsets. A typical rule set with two

fuzzy if–then rule set for a first-order Sugeno fuzzy model

can be defined as Eqs. (8) and (9):

Rule 1 : If x isA1 and y isB1 Then f1 ¼ p1xþ q1yþ r1

ð8Þ
Rule 2 : If x isA2 and y isB2 Then f2 ¼ p2xþ q2yþ r2

ð9Þ

where A1, A2 and B1, B2 are the membership functions for

inputs x and y respectively, p1, q1, r1 and p2, q2, r2 are the

parameters of the output function. The corresponding

equivalent ANFIS architecture for two input variable first-

order Sugeno-fuzzy model with two rules is illustrated in

Fig. 4a. The general architecture of ANFIS consists of five

layers, namely, fuzzy, product, normalized, defuzzy and

output layer is depicted in Fig. 4b. In this architecture, the

circular nodes represent nodes that are fixed, whereas the

square nodes are nodes that have parameters to be learnt

(Yilmaz and Kaynar 2011).

Layer 1 Every node in this layer is represented by a

square node including a node function. The node function

employed by each node determines the membership rela-

tion between the input and output functions.

Layer 2 every node in this layer is a fixed (circle)

labeled II node and its output is produced by signals

obtained from layer 1.

Layer 3 every node in this layer is a fixed (circle) node

labeled N. The nodes normalize the firing strength by

calculating the ratio of firing strength for this node to the

sum of all the firing strengths.

Layer 4 Every node in this layer is represented by a

square node including a node function.

Layer 5 The single node in this layer is a fixed (circle)

node labeled
P

that computes the overall output as the

summation of all incoming signals.
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Performance evaluation criteria

Four different types of standard statistical performance

evaluation criteria were used to control the accuracy of the

prediction capacity of the models developed. These are

root mean square error (RMSE), the determination coeffi-

cient (R2), mean bias error (MBE) and relative improve-

ment (RI). Performance evaluation criteria used in the

current study can be calculated using following equations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � ŷið Þ2
s

ð10Þ

R2 ¼ 1�
Xn

i¼1

ðyi � ŷiÞ
2

 !
=
Xn

i¼1

ðyi � �yiÞ
2

 !" #
ð11Þ

MBE ¼ 1

n

Xn

i¼1

yi � ŷið Þ ð12Þ

RI ¼ ½ðRMSEReg � RMSEMÞ=RMSEReg� � 100 ð13Þ

where yi denotes the measured value, ŷi is the predicted

value, �yi is the average of the measured value, and n is the

total number of observations. The MBE characterizes the

mean difference between the calculated and measured data;

hence, it is a criterion of systematic error in the model

fitting. Negative and positive values of MBE indicate under

and over estimation of PTFs for a given parameter

respectively. RMSEReg is root mean square error of

regression model and RMSEM is root mean square error of

other models (Bayat et al. 2014).

Results

Data summary statistics

Pertinent statistics of the soil properties used to calibrate

and test the newly developed models are given in

Table 2. The correlation coefficients between variables

are given in Table 3. The correlations between CEC and

soil OC (r = 0.63) and between CEC and clay content

(r = 0.82) had the most value and were positive signif-

icant in 0.01 level in comparison with the other prop-

erties. Therefore, clay and organic carbon content were

used for prediction of CEC. The coefficient of variation

(CV) of the soil organic carbon content showed more

variability than those of the soil clay percentage and

CEC, being about three times as large as the other

properties (Table 2). This large variation in OC is due

largely to the variability in manure and compost appli-

cations as fertilizer and return of rice plant residuals and

soil amendments in the study area.

Fig. 4 a Two input first-order

Sugeno-fuzzy model with two

rules and b equivalent adaptive

neuro-fuzzy inference system

architecture
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Multiple linear and non-linear regressions (MLR

and MNLR)

Developing PTFs using MLR and MNLR models for pre-

dicting soil CEC in study area were done by means of

SPSS 24 software (2016) and above-mentioned physio-

chemical soil properties were used as independent vari-

ables. In the regression analysis, normalizing the data

distribution is one of the primary assumptions that have to

be carried out. Therefore, the normality of the data was

evaluated using the Kolmogorov–Smirnov method. All

data had a normal distribution. After normalizing test data,

multiple linear regression function was derived for training

data set through stepwise method. In this method, all data

were first inserted as input data and subsequently, the data

that were significantly less effective on output parameter

were eliminated. MLR model was derived among CEC,

OC and clay content properties (Eq. 14). It was found that

the developed equations through MLR model among CEC

and input variables were not statistically strong enough to

establish significant models by traditional statistical mod-

els, because few numbers of inputs had high correlation

with CEC. However, since the accuracy of pedotransfer

function models depends on the number of inputs, while

increasing the number of inputs will decrease the accuracy

of the estimations (Amini et al. 2005). OC and clay were

used for developing non-linear regression model. Different

types of models include power, exponential, cubic and etc.

were developed for non-linear regression. Finally, the best

linear and non-linear regression equations that were

derived for training data set were as Eqs. (14) and (15) that

variance analysis result of multiple linear and non-linear

regression models was mentioned in Table 4:

CEC ¼ 4:263þ 0:455Clayþ 1:097OC R2 ¼ 0:77 ð14Þ

CEC ¼ 0:55þ 0:64Clay0:97 þ 0:55OC1:26 R2 ¼ 0:79

ð15Þ

From the numerous available PTFs derived to predict

CEC we selected only those regression models that used

OC and clay as independent variables and had a coefficient

of determination, R2, greater than 0.5. The selected PTFs

were calibrated for the study region using a generalized

least squares procedure with a subset of training data

(Table 2). The models and their evaluation criteria

amounts are given in Table 5. The R2 and RMSE values of

models showed that regression models of current study

were the most accurate one.

Optimization of artificial neural network model

We used feed-forward back-propagation neural network in

this study. We constructed one network that used organic

carbon and clay content as inputs. Because, former

researchers such as Amini et al. (2005), Sarmadian and

Taghizadeh Mehrjardi (2008). Sarmadian et al. (2013)

found that these inputs had the best results. Also, these

inputs had the most correlation coefficient with CEC in

current study (Table 3). Finding the optimum number of

hidden neurons in the hidden layer is an important step in

developing FFBP networks. In neural network design, too

many hidden units cause over-fitting, while too few hidden

Table 2 Statistics of the

training and testing data sets
Parameter CEC OC Clay Silt Sand CaCO3 pH

Training data (n = 131)

Mean 23.63 1.79 38.22 37.03 26.48 7.50 7.31

SD 4.95 1.30 9.04 8.05 12.13 1.35 0.45

CV 20.9 72.6 23.6 21.7 45.8 18 6.15

Min 8.56 0.04 5.4 8.30 8.80 5.12 6.14

Max 36.20 7.96 58 52.30 83.70 10.12 8.00

Skewness 0.51 0.49 -0.43 0.31 0.47 0.07 0.43

*Asymp.Sig. 0.36 0.57 0.78 0.85 0.65 0.78 0.69

Testing data (n = 40)

Mean 23.26 1.98 38.16 38.21 26.25 7.41 7.34

SD 3.97 1.32 6.81 7.98 11.35 1.45 0.48

CV 17.1 66.7 17.8 20.8 43.2 19.6 6.53

Min 16.10 0.2 21.20 8.32 8.61 5.56 6.21

Max 30.20 5.17 52.60 51.8 82.5 9.58 7.89

Skewness 0.01 0.36 0.09 -0.38 0.41 0.04 0.28

Asymp.Sig. 0.89 0.33 0.94 0.78 0.52 0.78 0.58

* Asymp.Sig.: Kolmogorov–Smirnov test index for normal distribution, that should be greater than 0.05.

CEC measured in cmol(?)kg-1 and OC, clay, silt, sand, CaCO3 in percentage (%)
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units cause under fitting. To find the optimum number of

hidden units, the RMSEs of the network with two inputs

(OC and clay) were plotted versus the number of hidden

units (Fig. 5), and number of hidden units equal 7 had

lower RMSE therefore it be selected.

The objective function without regularization (not

shown) produced numerous local minima and fluctuated

greatly as the number of hidden units increased. The reg-

ularized objective function, Eq. (6), showed a more

stable response with respect to the number of hidden units

as the RMSE of the training and testing procedures

decreased gradually as the number of hidden units

increased to 7 (Fig. 5). There are a number of advantages

in using the Bayesian regularization algorithm (BRA) over

others. One advantage is that it is model-driven rather than

data-driven; owing to its Bayesian principles as opposed to

maximum likelihood principles. Another advantage of

BRA is that of pruning. The weight penalty term that is

added to the algorithm means that, as long as sufficient

hidden neurons are supplied, the BRA will automatically

prune the ANN to the optimum architecture and over-fit-

ting is avoided (Amini et al. 2005). For this reason, as

illustrated by Fig. 5, adding more hidden neurons do not

improve the model. After repeated experiments, a persis-

tent minimum value of RMSE occurred at the hidden unit

value of 7 with two inputs (Fig. 5), suggesting that pruning

occurred above 7 hidden units. Therefore, we used a FFBP

network containing 7 hidden units (FFBP7H), with tangent

sigmoid transfer function, Bayesian regularization training

function and gradient descent adaptation learning function

for further analysis. The weights for the FFBP7H model are

given in Table 6. Comparison of results obtained from

current study with Sarmadian and Taghizadeh Mehrjardi

(2008); Tang et al. (2009); Lake et al. (2009); Keshavarzia

Table 3 Correlation

coefficients of the measured soil

properties

CEC OC Clay Silt Sand CaCO3 pH

CEC 1

OC 0.63** 1

Clay 0.82** 0.25* 1

Silt 0.21* 0.19* 0.16 1

Sand -0.53** -0.19* -0.76** -0.76** 1

CaCO3 -0.15 0.03 -0.03 -0.14 0.12 1

pH 0.21* 0.23* 0.31* 0.09 -0.09 -0.19* 1

* Correlation is significant at the 0.05 level

** Correlation is significant at the 0.01 level

Table 4 Variance analysis

result of multiple linear and

non-linear regression models

Model Source Sum of squares df Mean square F Sig.

Linear Regression 2477.12 2 1238.56 220.77 .000

Residual 718.46 128 5.61

Total 3195.58 130

Non-linear Regression 75504.63 1 75504.63 14632.68 .000

Residual 671.07 130 5.16

Uncorrected total 76175.70 131

Corrected total 3195.58 130

Table 5 Selected pedotransfer functions and their calibration coefficients

Model References PTF model R2 RMSE

M1 McBratney et al. (2002) CEC = 6.9 ? 0.1 clay ? 0.16 (clay 9 OC) 0.55 2.295

M2 Sarmadian and Taghizadeh Mehrjardi (2008) CEC = 1.91 ? 0.318 clay ? 3.96 OC 0.52 2.521

M3 Lake et al. (2009) CEC = 12.6 ? 2.03 clay ? 0.1 OC 0.58 1.852

M4 Keshavarzia and Sarmadiana (2010) CEC = 10.6 ? 0.19 clay ? 1.37 OC 0.62 1.729

M5 Current study (linear model) CEC = 4.263 ? 0.455 clay ? 1.097 OC 0.77 1.293

M6 Current study (non-linear model) CEC = 0.55 ? 0.64 clay0.97 ? 0.55 OC1.26 0.79 1.093
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and Sarmadiana (2010); Kianpoor et al. (2012); Sarmadian

et al. (2013); Bayat et al. (2014); Emamgolizadeh et al.

(2015) researches showed that using Bayesian regulariza-

tion algorithm for model learning in this study caused to

increase accuracy of artificial neural network for estimation

of CEC. Also, Amini et al. (2005), increased accuracy of

ANN model using Bayesian regularization learning algo-

rithm that our study result was in agreement with their

research results, too.

Adaptive neuro-fuzzy inference system (ANFIS)

In this study, ANFIS model was also applied for predicting

CEC using the same normalized data that were used for

ANN model. In the ANFIS system, each input parameter

might be clustered into several class values in layer 1 to

build up fuzzy rules and each fuzzy rule would be con-

structed using two or more membership functions in layer

2. Several methods have been proposed to classify the input

data and to make the rules, among which the most wide-

spread are grid partition and subtractive fuzzy clustering

(Aqil et al. 2007; Ertunc and Hosoz 2008; Yetilmezsoy

et al. 2011; Kianpoor et al. 2012). In this study, grid par-

tition was taken in consideration. Then Psigmoid mem-

bership function and their numbers for input parameters

and linear membership function for output parameter were

selected and so, fuzzy inference system (FIS) was gener-

ated. For training FIS, hybrid algorithm was applied. In this

way, epoch 40 had the most optimal result with minimum

error. After the FIS was trained, validation of the model

using a testing data was carried out. Different parameter

types and their values used for training ANFIS can be seen

in Table 7. The descriptive performance of the ANFIS

model for the test dataset and the related statistical evo-

lutionary results are given in Table 8. The values of 0.82,

1.184, 0.218 and 25.7 for R2, RMSE, MBE and RI

parameters, respectively, for ANFIS testing stage, while

regression and ANFIS efficiency were less than feed-for-

ward back-propagation network model. Comparison of

trained ANFIS model in this study with trained ANFIS in

Kianpoor et al. (2012) and Keshavarzi et al. (2012)

researches showed that accuracy of ANFIS was high in

current study, because, we used grid partition for classifi-

cation of input data and making the rules, However, they

used subtractive fuzzy clustering. Therefore, using grid

partition caused to increase accuracy of training in our

research. Yilmaz and Kaynar (2011) and Vafakhah et al.

(2014) used grid partition and hybrid algorithm for FIS

generation and training, respectively, in ANFIS model and

reported high accuracy for model training. And so, our

result was in agreement with them.

Discussion

After determining regression equations, in order to evaluate

the accuracy of MLR and MNLR models, the results of

these models were compared with experimental data. In

Fig. 5 RMSE versus number of neuron in hidden layer in FFBP

network for selective suitable number of neurons

Table 6 The weights used for the two FFBP networks with 7 neurons

Hidden neurons (j = 1, …, 7)

1 2 3 4 5 6 7

w
ðhÞ
j1

3.076 3.720 1.653 -3.070 1.877 3.707 3.506

w
ðhÞ
j2

1.736 0.742 -3.429 -1.318 3.241 0.979 -1.351

w
ðhÞ
j0

-3.863 -2.805 1.438 1.132 1.571 2.136 -3.505

w
ðoÞ
j

0.416 -1.260 0.508 -0.767 0.245 0.209 0.580

w
ðoÞ
0

-0.367

w
ðhÞ
j1 , w

ðhÞ
j2 and w

ðhÞ
j0 are the weights in the hidden layer for clay, organic

carbon content and bias respectively, w
ðoÞ
j and w

ð0Þ
0 are the weights in

the output layer

Table 7 Different parameter types and their values used for training

ANFIS

ANFIS parameter type Value

MF type Psigmoid

Number of MFs 5

Output function Linear

Number of linear parameters 75

Number of nonlinear parameters 40

Total number of parameters 115

Number of training data pairs 131

Number of testing data pairs 40

Learning algorithm Hybrid

Epoch 40
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fact, the coefficient of determination (R2) between the

measured and predicted values is a good indicator to check

the prediction performance of the model (Gokceoglu and

Zorlu 2004; Kianpoor et al. 2012). The obtained values of

R2, RMSE, MBE and RI using MLR and MNLR are shown

in Table 8. For test dataset, the R2, RMSE and MBE values

have been obtained 0.68, 1.593 and -0.328 for linear

regression and 0.73, 1.364 and 0.286 for non-linear

regression, respectively. Results showed that MNLR model

have high accuracy with regard to MLR and this shows

relationship between CEC and soil properties such as

organic carbon and clay is non-linear and complex. MLR

model result is in contrast with the results of Yilmaz et al.

(2012) and Kianpoor et al. (2012). However, obtained

results had agreement with those reported by McBratney

et al. (2002); Amini et al. (2005); Sarmadian and Taghi-

zadeh Mehrjardi (2008); Bayat et al. (2014); Emam-

golizadeh et al. (2015). Their results showed high

correlation coefficient for predicting the soil CEC by

means of multiple linear regression models. As above

mentioned; the more inputs will result in the less accuracy

of the estimation (Amini et al. 2005) and this point explains

their results. Input data in McBratney et al. (2002); Amini

et al. (2005) and Sarmadian and Taghizadeh Mehrjardi

(2008) studies were clay and organic carbon.

The test data set was used to evaluate the performance

of the MLR, MNLR, neural network model and ANFIS for

predicting CEC. The statistical results of the comparisons

are given in Table 8, which shows that the neural network

model had larger R2 value than the regression and ANFIS

models. This is in line with the work done by Yilmaz and

Kaynar (2011); Kianpoor et al. (2012); Bayat et al. (2014).

Their findings demonstrated that prediction performances

of the FFBP model had higher accuracy than both multiple

regression equations and adaptive neuro-fuzzy inference

system for predicting swell potential of clayey soil and

CEC, respectively. The MBE values indicated that the

artificial neural network and ANFIS models had overesti-

mated the CEC. This overestimation was however small,

especially for the FFBP model. The smallest RMSE was

produced by the FFBP7H model, while the largest RMSE

was produced by the linear regression model, these results

were in agreement with Amini et al. (2005); Kianpoor et al.

(2012); Sarmadian et al. (2013). The relative improvement

of the models was calculated using the linear regression

model as a reference. The results in Table 8 show that the

FFBP model had in general the largest relative improve-

ment (RI) that was in agreement with Amini et al. (2005);

Bayat et al. (2014). The scatter plots of the measured

versus predicted CEC for the test data set are given in

Fig. 6 for the prediction models, which we identified

FFBP7H as being the best model for predicting CEC.

On the other hand, the proposed ANN model was, in

general, more feasible than the ANFIS model in predicting

CEC when the evaluation criteria are compared. The

existing patterns and trends among the input variables and

the output (CEC) are relatively complex and intricate. It

appears that, the ANN model was more capable in

extracting the existing patterns among the input variables

and the output. Neural networks can extract the patterns

and detect the trends that are too complex to be noticed by

either humans or other computer techniques because of

their remarkable ability to derive a general solution from

complicated or imprecise data (Yilmaz and Kaynar 2011;

Besalatpour et al. 2013; Bayat et al. (2014)). These artifi-

cial networks have the capability of learning from exam-

ples and are capable to solve intricate, nonlinear problems

and problems which are very tedious to solve by conven-

tional methods. In addition, when a data stream is analyzed

using a neural network, it is possible to detect the important

predictive patterns that are not previously apparent to a

non-expert (Yilmaz and Kaynar 2011; Besalatpour et al.

2013). Finally, all these indicate that ANFIS approach may

not always be a better choice for predicting soil CEC.

Conclusion

In this study, multiple linear and non-linear regression,

artificial neural network models (feed-forward back-prop-

agation network, FFBP) and adaptive neuro-fuzzy infer-

ence system were employed to develop a pedotransfer

function for predicting soil CEC using available soil

properties. The performance of the regression, neural net-

work and ANFIS models was evaluated using a test data

set. The newly developed FFBP neural network PTF with 7

hidden neurons predicted CEC better than the regression

and ANFIS models and significantly improved the accu-

racy of the prediction by up to 80.3 %. The neural network

models are in general more suitable for capturing the non-

linearity of the relationship between variables. In this

study, however, the relationship between CEC and clay and

organic carbon appeared to be dominantly linear. Conse-

quently, with the use of proposed ANNs especially, FFBP

network, the performance of CEC condensers can be

Table 8 Test results of the regression, neural network and adaptive

neuro-fuzzy inference system

Model R2 RMSE MBE RI

Linear regression 0.68 1.593 -0.328 0

Non-linear regression 0.73 1.364 0.286 14.3

ANFIS 0.82 1.184 0.218 25.7

ANN (FFBP) 0.96 0.314 0.106 80.3
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determined by performing only a limited number of test

operations, thus saving engineering effort, time and funds.

Finally, using Bayesian regularization algorithm for model

learning in FFBP and grid partition for classification of

input data and making the rules in ANFIS model caused to

increase the accuracy of these models, dramatically, for

CEC prediction. We suggest that researchers use genetic

algorithm for optimization of models and rules in future

work.
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