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Abstract Physically-based distributed hydrological mod-

elling, Rainfall-Runoff-Inundation (RRI) model is used to

evaluate runoff accuracy by using six satellite based rain-

fall products such as GPM, GSMaP, TRMM 3B42V7,

CMORPH, and PERSIANN. These products input to drive

the model on the Nan River basin, Thailand that is the

watershed of 13,000 km2. The performance of the precip-

itation products, rainfall depth and runoff, was evaluated

from storm event on 2014 by using statistical approach,

Volume bias, Peak bias, RMSE, Correlation, and Mean

bias, to compare with observation data. Overall of the

satellite based products, the CMORPH and GPM per-

formed the best that was provided by the statistical values,

comparing with average observed rainfall data. For the

runoff estimated from GPM closed to the observed data

and was better than other five products, satellite and rain

gauge, to provide the high correlation and small RMSE

value. This study presents the uncertainty of satellites that

have a potential for runoff estimation to apply for water

resources management.

Keywords Rainfall spatial � Satellite based rainfall �
Runoff � Rainfall-Runoff-Inundation model

Introduction

Rainfall is a definition to be the main component to

estimate runoff based on the hydrological mechanism.

Consequently, the spatial of rainfall is directly impacts

the hydrological system on a distributed hydrological

model, several researches have focused on the outcome

on discharge. Goodrich et al. (1995) reported that uni-

form rainfall can be applied for modelling the runoff on

small catchments although the rainfall spatial has sig-

nificant impact to discharge. Schuurmans and Bierkens

(2007) point out a single rain gauge has carried a false

prediction if it located outside the watersheds, and

rainfall spatial is essentially for runoff modelling. They

conclusion is summarized by using the eight rainfall

scenario based on spatial either distribution or uniform

resulting from the distributed hydrological model of

small catchment. Tsintikidis et al. (2002) and Chintala-

pudi et al. (2012) noted that watersheds contain with the

sparse distribution of rain gauges, it cannot capture a

spatial of rainfall for runoff modelling. Rainfall variable

is direct to essential discharge for frequent events pro-

posed by Arnaud et al. (2002). This study is done by

using four artificial catchments of 20–1500 km2 and

three different hydrological models. Bell and Moore

(2000) present an implementation of high spatial reso-

lution of rainfall that has specially utilized in the con-

vective rainfall event case.

A promising approach to capture the rainfall spatial is

satellite based data. Near real time satellite products are

now conveniently obtainable in the world, especially in

developing countries. The uses of earth observation satel-

lites have been about 30 years ago however these data have

contained error from estimating rainfall dataset. In a recent

year, the rainfalls produced by satellite have been

increasing to application on basin scale of distributed

hydrological model. Accuracy of satellite rainfall data have

been increased as GPM data that is the new open source

satellite product generated by using several new techniques

such as merge different satellite.
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Modelling of hydrological processes to generate runoff

have used a several different satellite based rainfall prod-

ucts, Global Satellite Mapping of Precipitation (GSMaP),

Tropical Rainfall Measuring Mission (TRMM), CPC

MOPGHing technique (CMORPH), and Precipitation

Estimation from Remotely Sensed Information using

Artificial Neural Networks (PERSIANN). Sayama et al.

(2012) demonstrated that GSMaP data performed a good

agreement simulated by using the Rainfall-Runoff-Inun-

dation model for large-scale area flood, in comparing its

discharge and inundation results with observed data and

referent flood map produced by MODIS satellite. Pakok-

sung and Takagi (2015) showed that TRMM precipitation

data performed the better precipitation data set to simulate

runoff in the upper part of Nan river basin, Thailand,

whereas Tan et al. (2015) showed that TRMM estimated a

good rainfall rates that CMORPH and PERSIANN rainfall

product over Malaysia. Jiang et al. (2010) used CMORPH

product to simulate runoff that the result were better cor-

relation than TRMM, to implement in the Laohahe river

basin, northern part China. Chintalapudi et al. (2014) rec-

ommended that PERSIANN represented by coarse resolu-

tion data have produced better discharge results than higher

resolution data such as TRMM over the Guadalupe

watershed in USA.

The main objective of this research is to consider how

well satellite rainfall products can capture the rainfall in

temporal and spatial for purposing on rainfall-runoff

modelling. The study area is located in the northern of the

Thailand represented by a rural catchment of 13,000 km2.

RRI model based on a physical based rainfall-runoff

modelling is available from modelling runoff for this study

area. For this study area, satellite based rainfall as well as

data from a rain gauge are available. Rainfalls were

interpolated by the rain gauge as well as the satellite based

rainfall products that are used to define the rainfall spatial

during the wet season 2014. The rainfall characteristic in

spatial and temporal is anticipated for the river basin

catchment scale, especially at small time series even such

as flood even. The different rainfall datasets are utilized in

a sensitivity study such as input to the RRI model, and its

results are compared with observation discharge hydro-

graph. The sensibility of the river basin scale response

computed by using the model is hypothesized to reflect the

actual river basin scale response. This study was achieved

only for a sensitivity study, while its calibration was not

performed. The outcome from the RRI model on runoff

was investigated only the impact of different precipitation

input, whereas the model calibration would mark the bias

among input on the RRI variable.

The information of the river basin, data sets and the RRI

model are described in Sect. 2 that is provided by the detail

of rainfall data in the study area. Section 3 presents the

methodology such as storm event selection of rainfall, RRI

model parameter setup, and performance statistic index.

The results are shown in Sect. 4 with discharge hydro-

graph, while conclusions and discussion of the study are

report in Sect. 5.

Data and hydrological modelling

Study area

Nan River Basin in upper part area or upstream watershed

of the SIRIKIT dam is important area because releases

water of the SIRIKIT dam have been supplied for the

central plain of Thailand, including Bangkok area. Figure 1

show the study basin area locates in the northern region of

Thailand with the total catchment area of 13,000 km2. The

river originates from Bor Klua District, Nan Province, is

situated between latitude 17�4201200N to latitude

19�3704800N and longitude 100�0603000E to longitude

101�2104800E. In this river basin, the mountain area

accounts for 88 % and about 12 % residents inhabit in the

middle of watershed. From the Sirikit dam identified as a

river outlet of model to the upstream 150 km, the river bed

slop is steep about 1/1500. Upstream of this part, the slop is

flat (1/10,000) and next is very steep (1/600). The topog-

raphy levels mention to mean sea level varies from 70 to

1200 m. The mean annual rainfall is 1380 mm. There are

some important tributary such as the Wa River, Nam Pua

River and Nam Yao River. Flooding in this area, over flow

from river bank have occurred in some vulnerable area,

Tawang Pha, Muang Nan and Wiang Sa district.

Topography data

Shuttle Radar Topography Mission (SRTM) provided by

US Geological Survey (USGS) that was occurred from a

joint mission between the National Imagery and Mapping

Agency (NIMA) and the National Aeronautics and Space

Administration (NASA). SRTM are available online on the

Consultative Group for International Agriculture Research

Consortium for Spatial Information (CGIAR-CSI). The

SRTM data have covered the terrain of the Earth about

80 %, covering latitude 60� north to 56� south. This data as
a digital elevation model (DEM) is based on 1 arc second

or about 30 m not convenient for all countries but the 3 arc

second (about 90 m) provided for the other location around

the Earth. For the provided DEM, a vertical accuracy is

16 m to present in a linear error at 90 % confidence and a

horizontal accuracy is 20 m to consider with circular error

at 90 % confidence (Jarvis et al. 2012). According to the

spatially pixel of SRTM DEM is about 90 m, but in this

study it has been up scaled to 500 m of pixel size (about

143 Page 2 of 14 Model. Earth Syst. Environ. (2016) 2:143

123



15 9 15 arc-second). For numbers of pixel, row and col-

umn numbers are 457 and 292 respectively to present the

watershed area (Fig. 3a) as 13,000 km2. The index No.

srtm_57_09 was downloaded above the study area.

Land cover and soil type

The land cover and soil type data sets were collected from

Global Land Cover Characteristics (GLCC) of USGS and

Land Development Department (LDD) of Thailand. These

datasets were modified on a projection and down scaling to

overlay to the DEM resolution. GLCC observed in 2000 is

1 km resolution from Advanced Very High Resolution

Radiometer (AVHRR) in 10-day NDVI (Normalized Dif-

ference Vegetation Index) composites. These are core data

set to use in a land cover characterization, during 1 year,

April 1992 through March 1993 for source imagery data

sets (Thenkabali et al. 2009). The land cover based on the

GLCC data is shown in Fig. 3c that was divided by six

types. Forest is dominant land cover on the study area with

70.69 % that are distributed over the border area of the

watershed. Second largest land cover is crop-land about

14.58 %, followed as grassland (9.61 %), water bodies

(2.1 %), deforestation (1.91 %), and urban area (1.1 %)

(see Table 1). The crop-land and urban area are along the

main stream distributed in the flood plain area between

upstream to middle part of the river basin. The soil type’s

datasets provided from the LDD, Thailand in Fig. 3d were

divided into nine types, of which stone type is located in

the mountain area and eight are located in the flood plain

area. The stone area is the main soil type about 83.68 %, to

follow with silty clay, clay loam, sand clay, sandy loam,

silty loam, sand clay loam, loam, and clay (see Table 2).

Precipitation data

The ground rainfall observation product was collected from

the Royal Irrigation Department (RID), Thailand. There are

28 stations as presented in Fig. 3b, of which 17 stations are

located in the study area while 11 stations are located on

the west side. The rain gauge temporal data is daily data-

sets during 28 years (1988–2015). The 28 stations were

used to construct the rainfall spatial distribution by using

Kriging algorithms. The semi-variogram model of the

Kriging method is based on the spherical semi-variogram

equation, that the geostatistical theoretical can be referred

Fig. 1 Location of the study

area

Table 1 Land cover classification in watershed presented on

percentages

Land cover type Percentage area (%)

Forest 70.69

Deforestation 1.91

Grasslands 9.61

Cropland 14.58

Urban and build-up 1.10

Water bodies 2.10
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to the previous studies (Chiles and Delfiner 1999; Webster

and Oliver, 2007; Ly et al. 2011). Model parameter, the

nugget variance (C0) is 0.425, the partial sill (C) is 1.404

and the range (a) is 0.545�, are analysed from the observed

rain gauges and applied for interpolating to grid spatial

rainfall to represent the observed rainfall.

Global Precipitation Measurement (GPM) mission is orig-

inated generally from the United States and Japan that have

been supported from Europe, France, India, and China with

international cooperation. In this development, themicrowave

radiometers have investigated a microwave emission from

precipitation is measured on many low-orbit satellites and

downscaled into the interval to 3 h in exploration time for each

area on the earth (Kubota et al. 2014). However, the sampling

error problem occurs when the global precipitation data are

smaller than 3 h. Therefore, it is essential for implementing a

gap-filling algorithm for creating precipitationmaps with high

definition on temporal scale,which ismoderately significant to

apply such as flash flood warning systems.

The Global Satellite Mapping of Precipitation (GSMaP)

development is supported and developed by JST-CREST and

the JAXA Precipitation Measuring Mission (PMM) Science

Team respectively (Okamoto et al. 2005). GSMaP, have

applied the Kalman filter algorithm to estimate the current

surface rainfall intensity from the infrared brightness tem-

perature about 0.1� pixel size, using the GEO-IR satellites, is

implemented for this study. The detail of the algorithm can be

referred in the literature (Aonashi and Liu, 2000; Ushio et al.

2009). The GSMaP contained by the highest temporal and

spatial resolution, can capture a precipitation event with real

situation as observed rainfall, however, the precipitation

quantity mostly has been underestimated (Fukami et al. 2010;

Kubota et al. 2009; Makino, 2012; Seto 2009; Shretha et al.

2011). The GSMaP presents a good correlation on monthly

and daily data using data in Japan (Seto 2009),which appear to

be enough for flood early warning.

Tropical Rainfall Measuring Mission (TRMM) on

3B42V7 collected product number is the satellite based

rainfall that locates in the tropical zone in the present day,

which is a joint operation between NASA of USA and

JAXA of Japan under the cooperation project in monitoring

and exploration of space (Huffman et al. 2007). TRMM is

the first satellite for monitoring variables, dynamic of

precipitation, and latent heat of the precipitation process.

The precipitation in the tropical zone is two-third of the

total precipitation in the world, which plays an important

role of the weather cycle. TRMM measurement is the

combination between visible infra-red and microwave

sensor with high frequency for monitoring and recording

data both space and time. The satellite operation has been

built for measuring the occurrence of precipitation both in

the earth and the equatorial since 1997. The satellite is

consisted by five main type sensor, Precipitation Radar

(PR), TRMM microwave Image (TMI), Visible Infra-red

Scanner (VIRS), Clouds and the Earth’s Radiant Energy

System (CERES), and Lighting Imaging Sensor (LIS). It

has a circular and non-sun-synchronous orbit. The satellite

observes from 305 km above the ground and 35� of orbit

angle to equator, and it moves around the earth in 90 min

or 16 times a day.

CPC Morphing Technique (CMORPH) presents a global

precipitation data in real-time monitoring for global scale

and has established by NOAA’s Climate Prediction Center

(CPC). CMORPH has provided the high resolution about

8 km spatial and 30 min temporal scale. In the CMORPH

technique, the sensors, geostationary satellite IR tempera-

ture data and polar orbiting passive microwave (PMW), are

implemented. The morphing algorithm is used to estimate

the precipitation by the PMW and interpolate temporal

weight in linearly (Joyce et al. 2004). In this study, the

CMORPH resolution about 0.25� spatial and 3 h temporal

product is implemented for comparing with other satellite

rainfall; this product can be download from National

Centers for Environmental Prediction (NCEP) CMORPH

website.

Precipitation Estimation from Remotely Sensed Infor-

mation using Artificial Neural Networks (PERSIANN) is

developed by using the artificial neural networks (ANN)

for monitoring rainfall intensity based on merged infra-red

product of brightness temperature from geostationary

satellite (Hong et al. 2004). The detailed procedure of

developing PERSIANN products are explained in the study

of Sorooshian et al. (2014). This study implemented to use

the PERSIANN about 0.25� spatial and 3 h temporal res-

olution products to compare with the other satellite prod-

ucts, that the dataset can be downloaded from the

PERSIANN website.

Table 2 Soil textural classification in watershed presented on

percentages

Soil textural Percentage area (%)

Clay 0.07

Clay loam 2.29

Loam 0.14

Sand clay 1.29

Sand clay loam 0.28

Sandy loam 1.00

Silty clay 10.74

Silty loam 0.52

Stone 83.68
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Rainfall-Runoff-Inundation (RRI) model

Rainfall-runoff-inundation (RRI) model, a new developed

model in a two dimension, was established by Dr. Sayama

on 2010. Figure 2 is shown the model to deal with slopes

and river channels. The river channel is located on the

grid cell while the model assumes both slope and river as

the same grid cell. The channel is assumed as a single

direction along the centreline of the slope grid cell. This

channel denotes an extra flow path between grid cells

lying over the actual river course. Lateral flows are sim-

ulated on slope cells on a two dimensional basis. Slope

grid cells on the river channel include two water depths,

the channel and the slope (or floodplain). Inflow-outflow

interacted between the slope and river is computed based

on different overflowing formulae to depend on condi-

tions of water-level and levee-height. Flow rate equation

in governing equation of the RRI model is mass balance

equation based on continuity equation as Eq. (1). For

unsteady flow, the momentum equation is included in the

governing equation of the RRI model in x Eq. (2) and y

Eq. (3) directions.

oh

ot
þ dqx

dx
þ oqy

oy
¼ r; ð1Þ

oqx

ot
þ ouqx

ox
þ ovqx

oy
¼ �gh

oH

ox
� sx
qw

; ð2Þ

oqy

ot
þ ouqy

ox
þ ovqy

oy
¼ �gh

oH

oy
� sy
qw

; ð3Þ

where h is the water height in local surface, t is the time

step, qx and qy are discharge per unit width in x and y

directions, r is rainfall intensity or lateral inflow, H is the

height of water from a datum, u and v are flow velocities in

x and y directions, qw is the density of water, g is gravi-

tational acceleration, and sx and sy are shear stress in x and

y directions. On the right hand side of Eqs. (1) and (2), a

second term is computed by using Manning’s equation.

The RRI model is used to apply diffusive wave routing for

solving the two-dimensional equation by using the fifth-

order Runge–Kutta method in numerical scheme. In Fig. 2,

water surface slope is estimated by using difference of

water height from cell 1 to cell 2 based on combination

between water depth and ground elevation.

Methodology

The uncertainty of five satellite based rainfall products

were investigated in this study, of which two are high

resolution dataset and three are low resolution dataset. The

accuracy of the satellite data product was assessed at daily

time scale by comparing with the rain gauges. Using the

five products as input to the RRI model, their outputs have

performed an accuracy assessment with observation dis-

charge at runoff station (Fig. 3b) on the five performance

statistical coefficients.

Storm event selection

The availability of different satellite products is presented

in the Table 3 with GPM only available from April 2014

and TRMM to June 2015. Hence, the simulated storm

event is selected from April 2014 to June 2015. According

to the objective of this study is specific to the flood event

that the storm event on the selected period occurs in the

study area from monsoon during August to September.

Large monsoon during 28–30 August 2014 across the

northern part of Thailand brought a heavy rainfall about

100–150 mm. The heavy rainfall caused severe flooding

and river bank over flow. Thus, the five satellite-based

rainfall products were collected from August, 15 to

September, 14 covering the flood event of the study area

(Fig. 4).

Simulation model set-up

Input data sets of the RRI model are four data types;

rainfall product, DEM presenting the topography from

SRTM such as 500 m resolution, land cover using GLCC

and soil type. On the definition of the distributed hydro-

logical model to implement on the RRI model, the used

hydrological parameters in this study are recommended

by previous study such as Chow et al. (1988); Sayama

et al. (2012); Sriariyawat et al. (2013); Pakoksung and

Takagi (2015). Those parameters have been based on

calibration in previous RRI model studies. According to

the mathematics modelling of the RRI model, flow rout-

ing is based on the Manning’s roughness that correlates

Fig. 2 RRI model schematic
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with the land cover type. Table 4 show the Manning’s

roughness of the land covers type in this study. According

to the hydrological soil type parameters represented by

the Green-Amp parameter of soil is presented in Table 5.

The parameters as shown in the Tables 4 and 5 were

utilized to simulate on the RRI model for different rainfall

sources.

For the characteristic of river channel, the re-sampled

DEM was used for generating a flow direction to identify

with eight directions, 0�, 45�, 90�, 135�, 180�, 225�, 270�

Fig. 3 Watershed datasets in

the study area
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and 315�, depended on elevation of downstream pixel. The

flow direction was used for counting numbers of the

upstream pixels to identify a flow accumulate value to a

specific pixel. In this study, the flow accumulation was

used for estimation width and depth of the river channel

followed as Eqs. (4) and (5) by Sayama et al. 2012.

W ¼ 16:93 � A0:186
basin ; ð4Þ

D ¼ 16:93 � A0:120
basin ; ð5Þ

where W is the channel width in m, Abasin is the catchment

area in km2, and D is the channel depth in m.

Performance statistical

The estimation results driven by the several spatial distri-

bution methods based on the daily rain gauge data were

evaluated to analysis bias of runoff volume (Vbias), bias of

peak discharge(Pbias), root mean square error (RMSE), cor-

relation coefficient (R2), and mean error (ME). The follow-

ing formulas (see Table 6) were applied to evaluate

simulation performance. The volume bias and peak bias

estimate the systematic bias ofmodelled runoff in percentage

(%). The correlation index is quantification in correlation of

two data sets, simulated and observed runoff, which 0 is no

correlation while 1 is perfect correlation. The RMSE is a

different measure of difference magnitude between two

datasets, while the ME is the bias from two datasets.

Results and discussion

Rainfall products

All rainfall products of satellite were implemented with

different resolution of spatial and temporal. GPM and

GSMaP have the high resolution of spatial scale about 0.1�

Fig. 4 Average satellite based

rainfall product over the study

area in temporal scale

Table 4 Land cover parameter represented by the n manning

coefficient

Land cover type n manning

Forest 0.50

Deforestation 0.40

Grasslands 0.30

Cropland 0.35

Urban and build-up 0.05

Water bodies 0.04

Table 3 Information of rainfall products

No. Name Spatial/temporal resolution Covering Period References

1 Rain gauges Point data Study area 1987-present RID, Thailand

2 GPM 0.10�/0.5 h Global/(90�N–S) 2014-present Kubota et al. (2014)

3 GSMaP 0.10�/0.1 h Global/(60�N–S) 2006-present Okamoto et al. (2005)

4 TRMM 0.25�/3.0 h Global/(50�N–S) 2000-Jun, 2015 Huffman et al. (2007)

5 CMORPH 0.25�/3.0 h Global/(50�N–S) 2002-present Joyce et al. (2004)

6 PERSIANN 0.25�/3.0 h Global/(60�N–S) 2000-present Sorooshian et al. (2014)
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and different temporal scale of 0.5 and 1.0 h, respectively.

TRMM 3B42V7, CMORPH, and PERSIANN have the

course resolution about 0.25� of spatial and 3.0 h of tem-

poral. Figure 4 show the watershed average rainfall com-

parison during the flood event on 2014 (August, 15 to

September, 14). All satellite products were quite different

from the observed rainfall pattern at some peak. On the first

peak, all products were different from the observed data on

magnitude and time. The TRMM showed highest overes-

timation, while GSMaP and PERSIANN revealed the

similar magnitude. At the third peak, the TRMM and GPM

presented the best fit on magnitude; however, the GPM was

different on time scale about 1 day. The other three prod-

ucts were difference value at this peak. The fourth and fifth

peak was quite different on overestimation.

Figure 5 shows the average spatial distribution of

satellite-based rainfall and ground observation products

during the storm event. During in the period 30 days, the

differences rainfall values were about 1–18 mm over space

of 200 km. The TRMM 3B42V7 rainfall products pre-

sented that maximum rainfall intensities were located in the

western part along the border of watershed and also the

other three products (GSMaP, CMORPH, and PER-

SIANN). This distribution was similar to the observed

spatial interpolation product, but it was different in the

northern part. By the contract, the high intensities of GPM

were in the northern part inside the boundary of the

watershed, that the spatial pattern was similar to the

observed rainfall spatial. However, the GPM was different

in the western part.

The total rainfall amount for five satellite-based rainfall

and ground observation products for flood events in 2014

were presented in the Table 7, which was estimated by

accumulating the rainfall input over the catchment area. In

overall, TRMM was the largest amount of rainfall volume

followed by GPM, while PERSIANN was smallest. The

GPM and CMORPH presented the total volume close to

the rainfall volume of rain gauge. However, the GPM was

overestimation and the CMORPH underestimation the

observation rainfall.

Effect of spatial distribution among the observation

rain gauges

All satellite-based rainfall products revealed low accura-

cies by significant differences among comparing with rain

gauges based on the performance statistical (Table 8).

GSMaP and PERSIANN underestimated rainfall based on

Volume bias by about 23.6 and 38.3 %, respectively. Mean

bias revealed that both products underestimated rainfall

about 2.15 and 3.5 mm/day, respectively. The both prod-

ucts were also underestimation, reported by the previous

studies (Kidd et al. 2012; Tian et al. 2008; Qin et al. 2014;

Sohn et al. 2009; Asadullah et al. 2010). The fact that most

satellite based rainfall data have been represented in

underestimation might be due to the algorithm of estima-

tion (Tian et al. 2008). The GSMaP underestimate rainfall

represented by the mean bias in China about 0.53 mm/day

and also in Columbia about 2.3 mm/day (Qin et al. 2014;

Table 5 Soil type parameter represented by the Green-Amp coefficient

Soil textural Soil depth (m) Saturated hydraulic

conductivity (ka), (cm/h)

Green-Ampt parameter

K (cm/h) Porosity Capillary head (cm)

Clay 1.0 0.462 0.06 0.475 31.63

Clay loam 1.0 0.882 0.20 0.464 20.88

Loam 1.0 2.500 1.32 0.463 8.89

Sandy clay 2.0 0.781 0.12 0.430 23.90

Sandy clay loam 1.5 2.272 0.30 0.398 21.85

Sandy loam 1.5 12.443 2.18 0.453 11.01

Silty clay 1.0 0.366 0.10 0.430 29.22

Silty loam 1.0 2.591 0.68 0.501 16.68

Stone 1.5 – – – –

Table 6 Description of performance statistical

Statistical index Description

Volume bias (%) Vbias ¼ Qvo�Qvsj j
Qvo

� 100

Peak bias (%)
Pbias ¼

Qpo�Qpsj j
Qpo

� 100

Root mean square
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

i¼1
Qo ið Þ�Qs ið Þð Þ2
n

r

Correlation
R2 ¼

Pn

i¼1
Qo ið Þ� �Q0ð Þ� Qs ið Þ� �Qsð Þð Þ2

Pn

i¼1
Qo ið Þ� �Q0ð Þ2 �

Pn

i¼1
Qs ið Þ� �Qsð Þ2

Mean bias
ME ¼

Pn

i¼1
Qo ið Þ�Qs ið Þð Þ
n

, where Qvo is observation

volume Qvs is simulation volume Qpo is

observation peak Qps is simulation peak Qo is

observation data Qs is simulation data n is total

number of sample
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Dinku et al. 2010). TRMM and GPM represented by the

Volume bias overestimated rainfall about 49.2 and 19.9 %,

respectively. The Mean bias of both products was about 4.5

and 1.54 mm/day, respectively. Overestimation of TRMM

has been reported by the previous studies that bias is about

30.5 % in the USA and 4.5 % in the China (Behrangi et al.

2011; Chen et al. 2011). It presented that the GPM has

overestimated about 4.0 % in Iran (Sharifi et al. 2016).

Volume bias and Mean bias of CMORPH on underesti-

mation were 11.06 % and 1.01 mm/day, respectively. The

CMORPH has underestimated rainfall reported by the other

studies (Tan et al. 2015; Qin et al. 2014; Asadullah et al.

2010). This study found that the CMORPH was the best

performance compared with the other products.*The best

evaluated value

The Underestimation of peak rainfall had occurred in

four products, GPM, GSMaP, CMORPH, and PERSIANN,

while TRMM overestimated peak rainfall. In overall, the

TRMM performed the best match of peak bias, but the

GPM was the best among the underestimation products.

The low accuracies on comparison, GPM presented the

best linear correlation with observed data (R2 ¼ 0:327) to

follow with TRMM, GSMaP, CMORPH, and PERSIANN.

All satellite products had range of RMSE about 16–

20 mm/day. The GSMaP was the best performance with

lowest RMSE value, and the TRMM was the highest value

Fig. 5 Average satellite based rainfall spatial products
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with low performance. The low performance of the TRMM

based on the RMSE value could be referred by the previous

study (Qin et al. 2014).

Estimation accuracy of evaluated satellite rainfall prod-

ucts over the Nan river basin of Thailand with information

was based on the spatial distribution of RMSE from flood

events in 2014. Figure 6 showed theRMSEof satellite-based

rainfall products on the flood event, which GSMaP was the

best agreement with the observed rainfall. Interestingly, the

lowest RMSE value for all methods was found in the middle

part of watershed boundary. The northern part and north-

eastern part is represented by the high mountainous area,

where all products have estimated on the high RMSE value.

This indicated that the satellite-based rainfall could not

explore to obtain a good performance covering the mountain

area because of classification of warm clouds from the IR

sensors and numerical modelling of microwave signal

(Yilmaz et al. 2005; Huffman et al. 2007).

Table 7 Volume of rainfall products amounts over the study

watershed

Rainfall products Rainfall volume (MCM)

Rain gauge 7899.97

GPM 8495.00

GSMaP 5639.10

TRMM 12,254.51

CMORPH 7223.27

PERSIANN 5252.20

Fig. 6 Root mean square error (RMSE) daily rainfall between rain gauge and satellite based rainfall products
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Runoff simulation

The hydrological model (RRI model) was driven for flood

events in 2014. The six rainfall products was simulated at

daily on a temporal scale to match the Royal Irrigation

Department Thailand observed discharge data. Three

observation stations were selected in the Nan river basin

(Fig. 3b), the first one belonging to the upstream sub-

catchment (N.64), the second one belonging to the middle

area (N.1) and the third one belonging to the downstream

area (N.13A), to show the daily hydrograph that results

from the different interpolation scenario. Figure 7 present

the hydrographs for all rainfall products with the three

observation station, N64, N.1 and N.13A.

All simulated runoff driven by different products was to

provide the temporal pattern similar to the observed

hydrograph for the flood event. Over view of all the runoff

station, GPM symmetrically captured the peak at the same

time with the observation, while the other five products

symmetrically lagged about 1 day. PERSIANN, GSMaP

and CMORPH systematically underestimated observed

runoff, while the other three products were underestima-

tion. For N.13A, all patterns of rainfall products were

underestimation to compare with the observed hydrograph.

All of three runoff station on the daily hydrograph were

analysed and calculated for evaluation by the performance

statistical. The results are given in Table 9 that is con-

cluded by five indexes. GPM estimated discharge was the

best closed to the observed data represented by the highest

R2 of 0.885 and lowest RMSE of 141.77 m3/s. This simu-

lated runoff overestimated the runoff volume, peak flow

and mean runoff by 10.6, 3.55 % and 44.6 m3/s, respec-

tively. TRMM simulated runoff was high Correlation and

low RMSE, however, its simulated runoff was overesti-

mation of Volume bias of 13.27 % and Mean bias of

55.84 %. The peak flow of the TRMM underestimated

about 17.8 %. The three products, GSMaP, CMORPH and

PERSIANN, was significantly underestimation on the

runoff volume, mean runoff, and peak flow, with high

RMSE and low R2 value. Rain gauge simulated runoff was

low RMSE value of 163.88 m3/s with strong R2 value of

0.821, this simulated results overestimated the runoff vol-

ume, and mean runoff by 6.4 %, 27 m3/s, respectively. The

peak flow of the Rain gauge underestimated about 34.6 %.

In summary performance on estimating the discharge,

the best of the satellite-based rainfall products was GPM

that statistical presented some value better than the Rain

gauge interpolated product. The GPM product was repre-

sented on the high resolution products, while TRMM

product was the best performance among the coarse reso-

lution products.

Conclusions

The evaluation of six rainfall products (Rain gauge, GPM,

GSMaP, TRMM, CMORPH and PERSIANN) was input to

the physical-based hydrological model (RRI model) over

the Nan river basin Thailand. According to the aim of this

study used the flood event for estimating the streamflow to

evaluate the performance of each product. The simulation

of the streamflow was done by using without a calibration

of the hydrologic parameter to specific product. The

streamflow were simulated and reported at daily to match

with the RID observed runoff.

The average satellite-based rainfall product whole

watershed a comparison results presented that the

CMORPH, products were the best fit with volume and

mean bias to the observed rainfall, however, there

underestimation the peak flow. The results of well per-

formance on the CMORPH agree with the previous

studies (Dinku et al. 2008; Vera et al. 2012; Zeweldi

et al. 2011). TRMM was overestimation the peak bias;

however, it was the best performance of peak flow.

GSMaP presented the lowest value of the RMSE that

indicated the best degree of estimates different from the

observation. GPM indicated the best degree of the linear

relationship between estimation and observation with the

correlation measures.

GPM demonstrated to be the best satellite-based rain-

fall product to model a streamflow for flood event on

2014. The result of the GPM agrees with the previous

study (Tang et al. 2016). The simulated runoff of TRMM

also closed to the observed dataset; however, it overesti-

mated the runoff volume and mean runoff. The peak flow

of the TRMM was underestimation. GSMaP and

CMORPH underestimation the runoff volumes, mean

runoff, and peak flow. PERSIANN was the highest

Table 8 Performance statistical

of rainfall spatial products
Rainfall products Volume bias (%) Peak bias (%) RMSE (mm) Correlation Mean bias (mm)

GPM 16.94 -5.33 18.15 0.327* 1.54

GSMaP -23.66 -57.87 16.08* 0.270 -2.15

TRMM 49.21 2.89* 20.22 0.285 4.48

CMORPH -11.06* -50.44 16.46 0.258 -1.01*

PERSIANN -38.35 -62.47 16.77 0.233 -3.49

* The best evaluated value
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underestimation of runoff volume, peak and mean runoff,

with high RMSE and weak correlation value. In conclu-

sion, the GPM simulated was the best performance

satellite product for hydrological modelling to estimate

the runoff on the river basin scale, representing with the

high resolution products. However, the TRMM was the

best among the course resolution products.

Satellite-based rainfall products, can capture the overall

rainfall pattern, are alternative for implementation in the

remote area such as the ungauged basins. Among five

Table 9 Performance statistical

of runoff from the rainfall

spatial prediction products

Rainfall products Volume bias (%) Peak bias (%) RMSE (cms) Correlation Mean bias (cms)

Rain gauge 6.40* -34.60 163.88 0.821 26.94*

GPM 10.60** 3.55* 141.77* 0.885* 44.61**

GSMaP -39.05 -54.02 266.06 0.681 -164.39

TRMM 13.27 -17.86 192.35 0.761 55.84

CMORPH -30.35 -48.51 222.88 0.767 -127.73

PERSIANN -66.43 -73.86 348.26 0.742 -279.60

* The best evaluated value

** The best evaluated value among the satellite based rainfall data

Fig. 7 Daily discharge

hydrograph at runoff

observation station of flood

event based on satellite base

rainfall products
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satellite-based rainfall products, GPM and TRMM have

potential to produce a simulated streamflow on the

hydrological modelling. The satellite-based rainfall prod-

ucts might be needed a bias correction before application as

input to the hydrological modelling. More studies on the

bias correction of satellite rainfall products are in the lit-

eratures (Habib et al. 2014; Muller and Thompson, 2013;

Vernimmen et al. 2012).
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