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Abstract In this paper, a nonlinear mathematical model is

proposed and analyzed to study the depletion of dissolved

oxygen and survival or extinction of fish population in a

nutrient enriched aquatic ecosystem. It is assumed in the

model that there is an external constant input of nutrients

(phosphorus and nitrogen) in the water body on account of

anthropogenic activities. Stability analysis of the equilibria

of the model is carried out and from the analysis it is shown

that the fish population will survive at very low equilibrium

level due to reduced concentration of dissolved oxygen and

excessive presence of algal biomass on account of nutrient

loading. Further, it is shown in this paper that the fish

population tend to extinction due to decrease in the con-

centration of dissolved oxygen from its threshold level.

Numerical simulations are also carried out in this paper to

support the analytical results.

Keywords Fish � Dissolved oxygen � Nutrients � Algae �
Stability � Equilibria

Introduction

Phosphorus and nitrogen are the primary nutrients that in

excessive amounts pollute our aquatic ecosystem. Human

related activities can accelerate the rate at which nutrients

enter the aquatic ecosystem. Nitrogen and phosphorus

support the growth of algae and aquatic plants which

provide food and habitat for fish, shellfish and smaller

organisms that live in water. But, too much nitrogen and

phosphorus that enter into the water due to human activities

causes algae to grow faster than ecosystems can handle.

Significant increase in algae harm water quality, food

resources and habitats, and decreases the oxygen that fish

and other aquatic life need to survive. Large growths of

algae are called algal blooms and they can severely reduce

or eliminate oxygen in the water, leading to illnesses in fish

and death of large number of fishes. Hypoxia or oxygen

depletion is a phenomenon that occurs in aquatic envi-

ronments as dissolved oxygen becomes reduced in con-

centration to a point detrimental to aquatic organisms

living in the system and it is observed that fish cannot live

below 30 % dissolved oxygen saturation. When the oxygen

level is maintained near saturation or even at slightly super

saturation at all times it will increase growth rates, reduce

the food conversion ratio and increase overall fish pro-

duction. Smith and Piedrahita (1988) in their paper have

studied the relationship between algal biomass and dis-

solved oxygen dynamics and shown that dissolved oxygen

levels would be greatly improved if algal biomass could be

maintained at intermediate levels. Associated with the

dominance of cyanobacteria (blue-green algae) are several

negative effects, such as reduced transparency, decreased

biodiversity, elevated primary production and the potential

occurrence of oxygen depletion which may result in mas-

sive fish kills (Reynolds 1991). Empirical relationships

were developed between algal bloom frequencies and total

phosphorus concentrations for three distinct regions of

Lake Okeechobee, and hypotheses were derived to explain

observed spatial variation in those relationships. When

phosphorus concentrations were between 30 and 60 lg L-1
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in the littoral regions, frequency or risk of an algal bloom

increased with phosphorus concentration. The maximum

risk of an algal bloom generally occurred when phosphorus

exceeded 60 lg L-1. This condition was observed 70 % of

the time in the open lake, 29 % of the time in the north

littoral, and 15 % of the time in the south littoral. When

phosphorus concentration exceeded 60 lg L-1, risk of

40 lg L-1 bloom was 19 % in the open lake, 28 % in the

north littoral, and 60 % in the south littoral (Walker and

Havens 1995). On a global basis, strong correlations have

been demonstrated between total phosphorus inputs and

phytoplankton production in fresh waters, and between

total nitrogen input and phytoplankton production in estu-

arine and marine waters. There are also numerous exam-

ples in geographic regions ranging from the largest and

second largest US mainland estuaries (Chesapeake Bay and

the Albemarle-Pamlico Estuarine System), to the Inland

Sea of Japan, the Black Sea, and Chinese coastal waters,

where increase in nutrient loading have been linked with

the development of large biomass blooms, leading to

anoxia and even toxic or harmful impacts on fisheries

resources, ecosystems, and human health or recreation

(Anderson et al. 2002). Extensive kills of both inverte-

brates and fishes are probably the most dramatic manifes-

tation of hypoxia (or anoxia) in eutrophic and

hypereutrophic aquatic ecosystems with low water turnover

rates (Camargo and Alonso 2006).

Dynamics of nutrient driven phytoplankton blooms has

been studied by Huppert et al. (2002) with the help of

mathematical model. A real-time three dimensional model

for eutrophication, based upon the numerically generated

boundary-fitted orthogonal curvilinear grid system with a

grid block technique and integrated with the prediction of

hydrodynamic variables simultaneously, has been imple-

mented by Chau (2004). The model simulates the trans-

port and transformation of nine water quality constituents

associated with eutrophication in the waters, including

Chl-a, DO, CBOD, organic nitrogen, NH4-N, NO2 ? -

NO3-N, organic phosphorus, PO4-P, and zooplankton.

Author in this paper has made comparison of computa-

tional results with measured data available in Tolo Har-

bour which demonstrates its capability to mimic the algal

growth dynamics and water quality process reasonably. In

the next paper (Huppert et al. 2005) proposed and anal-

ysed a mathematical model to study the dynamics of

seasonally recurring algae blooms considering a generic

bottom-up nutrient phytoplankton system. Misra et al.

(2006) investigated a nonlinear mathematical model to

study the depletion of dissolved oxygen due to discharge

of organic pollutants in a water body by considering

biodegradation and biochemical processes in the food

chain involving bacteria, protozoa, and an aquatic popu-

lation. It is shown in this paper that if organic pollutants

are continuously discharged into water body, the con-

centration of dissolved oxygen may become negligibly

small, which may consequently threaten the survival of

aquatic populations. A nonlinear mathematical model is

proposed by Shukla et al. (2007) to study the depletion of

dissolved oxygen in water body caused by industrial and

household discharges of organic matters (pollutants). The

effect of depleted level of dissolved oxygen on the sur-

vival of biological species in such an aquatic ecosystem is

also studied in this paper using mathematical model.

Using stability theory authors have shown that not only

the concentration of dissolved oxygen decreases due to

various biodegradation and biochemical processes but

also the survival of biological species is threatened. In

this paper it has been also shown that if the organic

pollutants continue to be discharged into the water body,

the concentration of dissolved oxygen may become neg-

ligibly small and the biological species wholly dependent

on it may tend to extinction. Shukla et al. (2008) studied

a mathematical model to investigate the simultaneous

effect of water pollution and eutrophication on the con-

centration of dissolved oxygen (DO) in a water body.

With the help of mathematical model (Alvarez-Vazquez

et al. 2009) have studied the interactions of nutrients,

phytoplankton, zooplankton, organic detritus, and dis-

solved oxygen in an aquatic media which is under

eutrophication process. Chen et al. (2009) in their paper

have presented a mathematical model to describe how

nitrogen and phosphorus affect the bloom, persistence,

and extinction of blue-green algae in lakes. Misra (2011)

proposed a mathematical model to study the depletion of

dissolved oxygen in a lake caused by algal bloom by

considering Holling type-III interaction between nutrients

and algal population. From the analysis of the model

author has shown that the continuous supply of nutrients

lead to algal bloom in the lake and consequently decrease

the concentration of dissolved oxygen. Author has also

shown that if the conversion rate of detritus into nutrients

increases then the density of algal bloom increases

whereas the concentration of dissolved oxygen decreases.

Chakraborty and Das (2015) have analyzed a mathemat-

ical model to investigate the effects of toxic substances

released by external agents into natural system consisting

of one-phytoplankton and two-zooplankton species system

with harvesting. Chakraborty et al. (2015) studied the

spatial dynamics of a nutrient-phytoplankton system with

toxic effect on phytoplankton and have shown that the

distribution of nutrients and phytoplankton exhibits spatio

temporal oscillation for certain level of toxicity. It is

noted here that in all these mathematical models authors

have not considered the role of algal biomass on reaera-

tion coefficient and carrying capacity of the environment

while studying the dynamics of aquatic ecosystem
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comprising of dissolved oxygen, nutrients, algal biomass

and fish population.

Therefore, in view of the above in this paper we have

proposed and analyzed a nonlinear mathematical model to

study the survival of fish population in an aquatic ecosys-

tem considering the effect of algal biomass on reaeration

process and also on carrying capacity of aquatic environ-

ment which is assumed to be deficient in dissolved oxygen

due to excessive growth of algal biomass caused by

nutrient (phosphorus and nitrogen) overloading.

Mathematical model

We consider an aquatic ecosystem in which nutrients

(phosphorus and nitrogen) are continuously discharged due

to anthropogenic activities such as runoff from agriculture

and development, pollution from septic systems and sew-

ers, sewage sludge spreading, etc.

Let F and C denote the density of fish population and

concentration of dissolved oxygen in water bodies

respectively. P denotes the concentration of nutrients

(phosphorus and nitrogen) and N represents the algal

biomass.

Keeping in view the above considerations the mathe-

matical model describing the system is given by the fol-

lowing set of differential equations:

dF

dt
¼RðCÞF � r0F

2

KðNÞ ;
ð1Þ

dC

dt
¼ � dB0 þ dB1ðN0 � NÞ þ K2ðNÞðCs � CÞ; ð2Þ

dP

dt
¼ I � rP� d1PN

bþ P
þ b1aN; ð3Þ

dN

dt
¼ d1PN

bþ P
� aN � gN2; ð4Þ

with the initial conditions as:

Cð0Þ ¼ H0 [ 0; Fð0Þ ¼ F0 [ 0; Nð0Þ ¼ A0 [ 0; P

ð0Þ ¼ P0 [ 0:

In the present analysis we assume the following forms

for functions

RðCÞ ¼ r0 þ r1ðC � C0Þ; KðNÞ ¼ K0 � K11N; K2ðNÞ
¼ K20

1þN
; C�Cs:

The function R(C) denotes the growth rate of fish popula-

tion which depends upon dissolved oxygen and is assumed

to be an increasing function of dissolved oxygen. In an

aquatic system, oxygen is available in water in dissolved

form, known as dissolved oxygen (DO). Most of the

aquatic populations e.g. fish etc. are wholly dependent on

dissolved oxygen (DO) for breathing and it is observed that

in many aquatic bodies massive death of fish population

has occured due to low level of dissolved oxygen (DO).

The function K(N) denotes the carrying capacity of fish

population which is assumed to be decreasing function of

algal biomass. Reaeration coefficient K2ðNÞ also depends

upon algal biomass and decreases as algal biomass

increases. The over growth of algal population is known as

algal bloom, which may cause eutrophication. Algae grow

very fast at high nutrient concentrations and may cover the

whole surface of the lake. The dissolved oxygen (DO) is

being produced in the lake by surface re-aeration which

includes the transfer of atmospheric oxygen to the lake.

When surface area of the water is being covered by the

floating algae, then the transfer of oxygen from air to water

is reduced.

r0 is the intrinsic growth rate of fish, r1 is control

parameter for the growth of fish population depending

upon level of dissolved oxygen, C0 is the threshold level

of concentration of dissolved oxygen, K0 is natural car-

rying capacity, K11 is reduction rate in carrying capacity

due to algal biomass, dB0 is natural depletion rate of

dissolved oxygen, N0 is threshold level of algal biomass

and it is assumed that when N is more than the threshold

level N0 then the concentration of dissolved oxygen will

decrease because when algae die and sink to the bottom

of the water body detritus is formed and detritus while

decaying uses dissolved oxygen and hence reducing the

concentration of dissolved oxygen in aquatic body but

when N is less than the threshold level N0 then the con-

centration of dissolved oxygen will increase because

dissolved oxygen is produced as a product of photosyn-

thesis from phytoplankton algae, seaweed and other

aquatic plants, dB1 is the growth rate coefficient of dis-

solved oxygen depending upon the level of algal biomass,

K20 is natural reaeration rate, Cs is saturated concentration

of dissolved oxygen, I is the input rate of nutrients

(phosphorus,nitrogen), r is the depletion rate of nutrients

(phosphorus, nitrogen), b1 is nutrients (phosphorus,

nitrogen) recycling coefficient. The nutrients are also

being supplied by detritus, which is being formed from

the dead part of the algal population, a is depletion rate of

algal biomass, g is depletion rate of algal biomass due to

crowding. The term d1PN
bþP

represents the growth of algal

biomass due to nutrients present in the water body, d1 is

the maximum specific growth rate of algae population,

b is half saturation constant. Here, all the parameters

K0;K11;K20; r0; r1; dB0; dB1;N0; I; r; d1; b; b1; a; g are taken

to be positive constants.

Equilibria of the model

The system of Eqs. (1–4) has following four feasible

equilibria:
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1. Boundary equilibrium point E1:-

E1 ¼ F�;C�;P�;N�ð Þ;
where F� ¼ 0, C� ¼ �dB0þdB1N0

K20
þ Cs; P

� ¼ I
r
; N� ¼

0 and C� [ 0 if CsK20 þ dB1N0 [ dB0 holds good.

2. Boundary equilibrium point E2:-

E2 ¼ F̂; Ĉ; P̂; N̂
� �

;

where F̂ ¼ fr0þr1ðĈ�C0ÞgðK0Þ
r0

, Ĉ ¼ Cs þ dB1N0

K20
� dB0

K20
;,

Ĉ[ 0 and F̂[ 0 provided the conditions CsK20 þ
dB1N0 [ dB0 and Ĉ[C0 are satisfied. P̂ ¼ I

r
, N̂ ¼ 0:

3. Boundary equilibrium point E3:-

E3 ¼ ~F; ~C; ~P; ~N
� �

;

where ~F ¼ 0, ~C ¼ Cs þ ðdB1ðN0� ~NÞ�dB0Þð1þ ~NÞ
K20

and

~C[ 0 and if CsK20 þ dB1N0ð1þ ~NÞ[ ðdB0 þ
dB1 ~NÞð1þ ~NÞ is satisfied.
~N ¼ 1

g
d1 ~P
bþ ~P

� a
� �

and ~N[ 0 provided ðd1 �
aÞ~P[ ab holds good.
~P is given by the positive root of the following

equation:

rg~P3 þ ~P2ðd21 � ad1ð1þ b1Þ þ a2b1 þ 2rgb� IgÞ
þ ~Pð2a2bb1 � ad1b1b� abd1 � 2bIgþ rgb2Þ
� ðIgb2 � a2b2b1Þ ¼ 0 ð5Þ

According to Descartes’ rule of sign the above

polynomial given by Eq. (5) is of third degree and

will have at least one positive root if the following

conditions are satisfied:

d21 þ a2b1 þ 2rgb\ad1ð1þ b1Þ þ Ig; 2a2b1þ
rgb\ ad1ð1þ b1Þ þ 2Ig and Ig[ a2b1:

4. Interior equilibrium point E4:-

E4 ¼ �F; �C; �P; �Nð Þ; where, �F ¼ ðr0þr1ð �C�C0ÞÞKð �NÞ
r0

and

�F[ 0 provided the conditions K0 [K11
�N;CsK20þ

dB1N0ð1þ �NÞ[ dB0ð1þ �NÞ þ C0K20 þ dB1 �N ð1þ
�NÞ are satisfied.

�C ¼ Cs þ ðdB1ðN0� �NÞ�dB0Þð1þ �NÞ
K20

and �C[ 0 if CsK20 þ dB1N0ð1þ �NÞ[ ðdB0 þ
dB1 �NÞð1þ �NÞ holds good. �N ¼ 1

g
d1 �P
bþ �P

� a
� �

and

�N[ 0 if ðd1 � aÞ�P[ ab should hold good.
�P is given by the positive root of the following

equation:

rg�P3 þ �P2ðd21 � ad1ð1þ b1Þ þ a2b1 þ 2rgb� IgÞ
þ �Pð2a2bb1 � ad1b1b� abd1 � 2bIgþ rgb2Þ
� ðIgb2 � a2b2b1Þ ¼ 0 ð6Þ

The above polynomial given by Eq. (6) is of third

degree and will have atleast one positive root if the

following conditions are satisfied: d21 þ a2b1þ
2rgb\ad1ð1þ b1Þ þ Ig; 2a2b1 þ rgb\ad1ð1þ b1Þ
þ2Ig andIg[ a2b1:

Remark 1 From second boundary equilibrium point E2,

we have

F̂ ¼ fr0þr1ðĈ�C0ÞgðK0Þ
r0

and it may be noted that the fish

population will exist if the equilibrium concentration of

dissolved oxygen is more than its threshold level.

On differentiating F̂ with respect to Ĉ, we find that
oF̂
oĈ

¼ r1K0

r0
[ 0.

From the positivity of oF̂
oĈ
, it may be noted that as the

equilibrium concentration of dissolved oxygen increases

then the equilibrium level of fish population also

increases.

Remark 2 From third boundary equilibrium point E3, we

find that

~C ¼ Cs þ ðdB1ðN0� ~NÞ�dB0Þð1þ ~NÞ
K20

and ~N ¼ 1
g

d1 ~P
bþ ~P

� a
� �

.

On differentiating ~C with respect to ~N, we obtain,

o ~C
o ~N

¼ dB1ðN0�2 ~N�1Þ�dB0
K20

\0 if N0\2 ~N þ 1.

It is noted here that if natural level of algal biomass is

less than the sum of twice of equilibrium level of algal

biomass and one then the equilibrium concentration of

dissolved oxygen decreases as the equilibrium level of

algal biomass increases.

On differentiating ~N with respect to ~P, we find that
o ~N
o ~P

¼ bd1
gðbþ ~PÞ2 [ 0.

It is noted here that as the equilibrium concentration of

nutrients increases then the equilibrium level of algal

biomass also increases. This shows that the nutrients

play an important role in algal growth.

Remark 3 From interior equilibrium point E4, we see that

�F ¼ ðr0þr1ð �C�C0ÞKð �NÞ
r0

and on differentiating �F with respect to �N, we obtain

o �F
o �N

¼ �K11ðr0þr1ð �C�C0ÞÞ
r0

þ r1Kð �NÞð�dB1ð1þ2 �N�N0Þ�dB0Þ
r0K20

\0 pro-

vided �C[C0, N0\2 �N þ 1 and Kð �NÞ[ 0.

This shows that as the equilibrium level of algal biomass

increases then the equilibrium fish population reduces

but will exist at low equilibrium provided the
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equilibrium concentration of dissolved oxygen exceeds

its threshold value.

On differentiating �F with respect to �C, we find that

o �F
o �C

¼ ðK0�K11
�NÞr1

r0
[ 0 if Kð �NÞ[ 0.

Thus, when the carrying capacity is positive then from

the positivity of o �F
o �C
, it is clear that as the equilibrium

concentration of dissolved oxygen increases then the

equilibrium fish population also increases.

�C ¼ Cs þ ðdB1ðN0� �NÞ�dB0Þð1þ �NÞ
K20

.

On differentiating �C with respect to �N, we find that

o �C
o �N

¼ dB1ðN0�2 �N�1Þ�dB0
K20

\0 provided N0\2 �N þ 1.

Hence, it is noted that if natural level of algal biomass is

less than the sum of twice of equilibrium level of algal

biomass and one then the equilibrium concentration of

dissolved oxygen decreases as the equilibrium level of

algal biomass increases.

�N ¼ 1
g

d1 �P
bþ �P

� a
� �

.

On differentiating �N with respect to �P, we obtain that
o �N
o �P

¼ bd1
gðbþ �PÞ2 [ 0.

It is noted from the above expression that as the

equilibrium concentration of nutrients increases then the

equilibrium level of algal biomass also increases.

Positivity of solutions

Model describes the effect of nutrient loading on concen-

tration of dissolved oxygen and fish population in an

aquatic ecosystem, therefore it is very important to show

that all variables will be positive for all time. Positivity

implies that the system persists. For positivity of solutions

we have to show that the solution (F(t), C(t), P(t), N(t)) of

the system given by Eqs. (1–4) with positive initial con-

ditions Cð0Þ ¼ H0 [ 0;Fð0Þ ¼ F0 [ 0,

Nð0Þ ¼ A0 [ 0;Pð0Þ ¼ P0 [ 0 are positive for all

t[ 0:

From Eq. (1) of the system, we get

dF

dt
� �

�
r1C0 þ

r0Fu

K0 � K11Nu

�
F:

On solving above differential inequality we obtain

F�F0exp � r0Fut

K0 � K11Nu

þ r1C0

� �
t

� 	
:

Hence, we find that F[ 0 as t ! 1.

From Eq. (2) of the system, we get

dC

dt
� � dB0 þ dB1Nu �

K20Cs

1þ Nu

þ K20C

� �
:

On solving above differential inequality we obtain

C�
�
� dB0 � dB1Nu þ

K20Cs

1þ Nu

� 1

K20

þ
�
H0 �

�
� dB0 � dB1Nu þ

K20Cs

1þ Nu

� 1

K20

�
expð�K20tÞ:

Thus, we find that C[ 0 as t ! 1 provided

K20Cs

1þ Nu

[ dB0 þ dB1Nu:

From Eq. (3) of the system, we get

dP

dt
�ðI � rP� d1NuÞ:

On solving above differential inequality we obtain

P� I � d1Nu

r
þ P0 �

I � d1Nu

r

� �� �
expð�rtÞ:

Therefore, it is observed that P[ 0 as t ! 1 provided

I[ d1Nu:

From Eq. (4) of the system, we have

dN

dt
� � ðaþ gNuÞN:

On solving above differential inequality we obtain

N �A0expf�ðaþ gNuÞtg:

Hence, we see that N[ 0 as t ! 1:

Boundedness of the system

In this section, we will establish that the system described

by Eqs. (1-4) is bounded. In the following lemma we have

shown that all the solutions are bounded in the region H1:

Lemma 1 All the solutions of model will lie in the region

H1 ¼ fðF;C;P;NÞ 2 R4
þ : 0�F�Fu; 0�C�Cu;

0�Pl �P�Pu; 0�Nl �N�Nug, as t ! 1, for all

positive initial values ðFð0Þ;Cð0Þ;Pð0Þ;Nð0ÞÞ 2 H1 � R4
þ

Proof From Eq. (4) of the model we have:

dN

dt
�Nðd1 � a� gNÞ;

dN

dt
�Nðw� gNÞ;

where, w ¼ ðd1 � aÞ[ 0:
Then, by usual comparison theorem (Hale 1969), we get

as t ! 1 :

lim sup
t!1

NðtÞ� d1 � a

g
¼ Nu: ð7Þ
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From Eq. (3) of the model we have:

dP

dt
� I � rPþ b1aNu;

dP

dt
þ rP� I þ b1aNu:

Then, by usual comparison theorem (Hale 1969), we get as

t ! 1 :

lim sup
t!1

PðtÞ� I þ b1aNu

r
¼ Pu: ð8Þ

From Eq. (2) of the model we have:

dC

dt
� dB1N0 þ K20Cs �

K20

1þ Nu

C;

dC

dt
þ K20

1þ Nu

C� dB1N0 þ K20Cs:

Then by usual comparison theorem (Hale 1969), we get as

t ! 1:

lim sup
t!1

CðtÞ� ðdB1N0 þ K20CsÞð1þ NuÞ
K20

¼ Cu: ð9Þ

Now from Eq. (1) of the model we have:

dF

dt
�Fr0 þ r1CuF � r0F

2

K0

:

Let r0 þ r1Cu ¼ M; then

dF

FðM � r0F
K0
Þ
� dt:

Then by usual comparison theorem (Hale 1969), we get as

t ! 1 :

lim sup
t!1

FðtÞ� MK0

r0
¼ Fu: ð10Þ

Again, from Eq. (3) of the model we have:

dP

dt
� I � rP� d1PNu

bþ P
;

dP

dt
þ P r þ d1Nu

b

� �
� I:

Then, by usual comparison theorem (Hale 1969), we get as

t ! 1 :

lim inf
t!1

PðtÞ� Ib

rbþ d1Nu

¼ Pl: ð11Þ

Now, from Eq. (4) of the model we have:

dN

dt
�N

d1Pl

bþ Pl

� a� gN

� �
;

dN

dt
�NðZ1 � gNÞ:

Let

Z1 ¼
d1Pl

bþ Pl

� a[ 0;

dN

NðZ1 � gNÞ � dt:

Then, by usual comparison theorem (Hale 1969), we get as

t ! 1 :

lim inf
t!1

NðtÞ� 1

g

d1Pl

bþ Pl

� a

� �
¼ Nl: ð12Þ

Since,

d1Pl

bþ Pl

� a[ 0:

Hence, we get

Ib

rbþ d1Nu

[
ab

d1 � a
: ð13Þ

This completes the proof of the lemma. h

Theorem 1 The Box H1 is a compact positively invariant

set in space FCPN.

Proof Consider the system comprising of Eqs. (1–4). To

prove the theorem, we consider a point D1 ¼
ðF0;C0;P0;N 0Þ outside the box H1; with F0 [Fu;C

0
u;

P0 [Pu; and N 0 [Nu and take the box H1 in the phase

space FCPN with one vertex located at the origin and other

at D1: Now, let us compute the angle that the flow makes

with each one of the faces of H1 not lying on the coordinate

planes. Consider the planes pF : F ¼ F0; pC : C ¼ C0; pP :
P ¼ P0; pN : N ¼ N 0 and let nF; nC; nP; nN are outward unit

normal vectors (with respect to box H1) respectively to

each plane. Then

nF
dD1

dt
jpF¼ F0½r0 þ r1ðC � C0Þ� �

r0F
02

KðNÞ ;

nF
dD1

dt
jpF �F0ðr0 þ r1Cu �

r0F
0

K0

Þ � r1C0F
0:

Since,

F0 [
ðr0 þ r1CuÞK0

r0
;

therefore we get,

nF
dD1

dt
jpF � � r1C0F

0;

hence,

nF
dD1

dt
jpF � 0:

Similarly we can show that,
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nC
dD1

dt
jpC � 0; nP

dD1

dt
jpP � 0; nN

dD1

dt
jpN � 0;

where,

dD1

dt
¼ dF

dt
;
dC

dt
;
dP

dt
;
dN

dt

� �
:

Thus, the flow along the normal to each of the plane is

again moving towards the box. Therefore we can say that

box H1 is a compact positively invariant box. This com-

pletes the proof of the theorem.

Now, it is clear from the above theorem that the

trajectories of the system cannot cross H1 once they enter

inside it. It is also observed that the interior equilibrium E4

lies inside the box H1: Moreover, E4 is the only attractor

inside H1; which is established in the following theorem.

h

Uniform persistence

Definition A population F(t) is said to be uniformly

persistent if there exist constants 0\a\b\1 such that

a� lim inft!1 FðtÞ� lim supt!1 FðtÞ� b for any

F(t) with Fð0Þ[ 0:

Theorem 2 For model governed by the Eqs. (1–4), fish

population F(t) will be Uniformly persistent if r0 [ r1C0 þ
b and K0 [K11Nu (He and Wang 2007, 2009).

Proof From Eq. (1) of the model we have

dF
dt
¼ RðCÞF � r0F

2

KðNÞ :

By the boundedness of the system we obtain that,

FðtÞ� MK0

r0
:

Hence,

lim sup
t!1

FðtÞ� MK0

r0
; ð14Þ

then for any given �1 [ 0 9 t1 [ 0 such that

FðtÞ\MK0

r0
þ �1 for t[ t1 and NðtÞ\ d1�a

g
þ �1 for t[ t1

dF

dt
¼ðr0 þ r1ðC � C0ÞÞF � r0F

2

K0 � K11N
;

dF

dt
�ðr0 � r1C0ÞF � r0F

2

K0 � K11ðNu þ �1Þ
;

dF

dt
�F ðr0 � r1C0Þ �

r0F

K0 � K11ðNu þ �1Þ

� �
: ð15Þ

Let r0
K0�K11Nu

¼ Z[ 0: Where, K0 � K11ðNu þ �1Þ[ 0 and

r0 � r1C0 [ b[ 0: where, b and Z are positive constants.

Then from inequality (15) we obtain

dF

dt
�Fðb� ZFÞ;

dF

Fðb� ZFÞ � dt;

on solving above eqn. we get,

F� bF0

ZF0 þ ðb� ZF0Þexpð�btÞ :

Hence,

lim inf
t!1

FðtÞ� b
Z
[ 0: ð16Þ

On using the relations (14) and (16), it can be shown with

the help of Theorem 1 and positivity of the solutions of the

system (1–4) that

b
Z
� lim inf

t!1
FðtÞ� lim sup

t!1
FðtÞ� MK0

r0
: ð17Þ

Hence, it is proved from relation (17) that the fish popu-

lation F(t) is uniformly persistent. h

Dynamical behaviour of the model

Local stability analysis

In the previous section, we have found that the model

described by Eqs. (1–4) have four equilibria, namely,

E1; E2; E3; E4: Now we will study the dynamical beha-

viour of the model about four feasible equilibria.

The variational matrix for the system of Eqs. (1–4)

evaluated at E1 is:

M1¼

r0þr1ðC��C0Þ 0 0 0

0 �K20 0 �dB1�K20ðCs�C�Þ

0 0 �r b1a�
d1P

�

bþP�

0 0 0
d1P

�

bþP��a

2

66666664

3

77777775

The eigenvalues of the characteristic equation of the matrix

M1 are k1 ¼ r0 þ r1ðC� � C0Þ; k2 ¼ �K20; k3 ¼ �r; k4 ¼
d1P

�

bþP� � a: It is noted from these eigenvalues that the equilib-

rium E1 is locally asymptotically stable if r0 þ r1C
�\r1C0

and ðd1 � aÞP�\ab otherwise E1 will be unstable.

The variational matrix for the system of Eqs. (1–4)

evaluated at E2 is:

M2 ¼

� r0F̂

K0

r1F̂ 0 � r0F̂
2K11

K2
0

0 � K20 0 � dB1 � K20ðCs � ĈÞ

0 0 � r b1a�
d1P̂

bþ P̂

0 0 0
d1P̂

bþ P̂
� a

2

66666666664

3

77777777775
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The eigenvalues of the characteristic equation of the matrix

M2 are k1 ¼ � r0F̂
K0

; k2 ¼ �K20; k3 ¼ �r; k4 ¼ d1P̂

bþP̂
� a:

It is observed from these eigenvalues that the equilib-

rium E2 is locally asymptotically stable if ðd1 � aÞP̂\ab

otherwise E2 will be unstable.

The variational matrix for the system of Eqs. (1–4)

evaluated at E3 is:

M3 ¼

r0þ r1ð ~C�C0Þ 0 0 0

0 � K20

1þ ~N
0 �dB1�

K20ðCs� ~CÞ
ð1þ ~NÞ2

0 0 � r� d1 ~Nb

ðbþ ~PÞ2
b1a�

d1 ~P

bþ ~P

0 0
d1 ~Nb

ðbþ ~PÞ2
�g ~N

2

666666666664

3

777777777775

Two eigenvalues of the characteristic equation of the

matrix M3 are k1 ¼ r0þ r1ð ~C�C0Þ;k2 ¼� K20

1þ ~N
and other

two eigenvalues k3;k4 are obtained from the roots of the

following quadratic equation i.e.

k2 þ k r þ d1 ~Nb

ðbþ ~PÞ2
þ g ~N

 !

þ d21b
~N ~P

ðbþ ~PÞ3
� d1bb1a ~N

ðbþ ~PÞ2
þ rg ~N þ d1bg ~N

2

ðbþ ~PÞ2

 !

¼ 0:

ð18Þ

Clearly, k3; k4 have negative real parts if g ~N[ b1a:
Therefore, it is noted from these eigenvalues that the

equilibrium E3 is locally asymptotically stable if g ~N[ b1a

and r0 þ r1 ~C\r1C0 otherwise E3 will be unstable.

The variational matrix for the system of Eqs. (1–4)

evaluated at E4 is:

M4 ¼

� r0 �F

Kð �NÞ r1 �F 0 � r0 �F
2K11

Kð �NÞ2

0 � K20

ð1þ �NÞ 0 � dB1 �
K20ðCs � �CÞ
ð1þ �NÞ2

0 0 � r � d1 �Nb

ðbþ �PÞ2
b1a�

d1 �P

bþ �P

0 0
d1 �Nb

ðbþ �PÞ2
� g �N

2

66666666666664

3

77777777777775

Two eigenvalues of the characteristic equation of the

matrix M4 are

k1 ¼ � r0 �F
Kð �NÞ ; k2 ¼ � K20

ð1þ �NÞ and other two eigenvalues

k3; k4 are the roots of the following quadratic equation

k2 þ k r þ d1 �Nb

ðbþ �PÞ2
þ g �N

 !

þ d21b
�N �P

ðbþ �PÞ3
� d1bb1a �N

ðbþ �PÞ2
þ rg �N þ d1bg �N

2

ðbþ �PÞ2

 !

¼ 0:

ð19Þ

Thus, it is noted from these eigenvalues that the equilib-

rium E4 is locally asymptotically stable if eigenvalues

k3; k4 have negative real parts. Clearly k3; k4 have negative
real parts if g �N[ b1a:

Global stability analysis of the interior equilibrium

point

Theorem 3 The interior equilibrium E4 2 H1 � R4
þ is

globally asymptotically stable if following inequalities

hold:

r0

K0 � K11Nl

� �
K20

1þ Nu

� �
[ r21 ; ð20Þ

2

3

r0

K0�K11Nl

� �
g[

r0 �FK11

ðK0�K11NuÞðK0�K11
�NÞ

� �2

; ð21Þ

2

3

K20

1þ Nu

� �
g[ dB1 þ

K20

ð1þ NlÞð1þ �NÞ ðCs � �CÞ
� �2

;

ð22Þ

4

3
rþ d1Nlb

ðbþPuÞðbþ �PÞ

� �
g[ b1a�

d1 �P

bþ �P
þ d1b

ðbþ PlÞðbþ �PÞ

� �2

:

ð23Þ

Proof Let us consider a positive definite function:

WðF;C;P;NÞ ¼ ðF� �F� �Fln
F
�F
Þþ 1

2
ðC� �CÞ2þ 1

2
ðP� �PÞ2

þðN� �N� �Nln
N
�N
Þ: ð24Þ

On differentiating W given by (24) with respect to time t,

we get

dW

dt
¼ dW1

dt
þ dW2

dt
þ dW3

dt
þ dW4

dt
; ð25Þ

where,

dW1

dt
¼ r1ðC� �CÞðF� �FÞf

� r0 �FK11

ðK0�K11NÞðK0�K11
�NÞ ðN� �NÞðF� �FÞ� r0

K0�K11N
ðF� �FÞ2

	
;

dW2

dt
¼ f� K20

1þ N
ðC � �CÞ2

� dB1 þ
K20

ð1þ NÞð1þ �NÞ ðCs � �CÞ
� �

ðN � �NÞðC � �CÞg;

dW3

dt
¼ � r þ d1Nb

ðbþ PÞðbþ �PÞ

� �
ðP� �PÞ2

þ b1a�
d1 �P

bþ �P

� �
ðN � �NÞðP� �PÞ

)

;
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dW4

dt
¼ �gðN � �NÞ2 þ d1b

ðbþ PÞðbþ �PÞ ðN � �NÞðP� �PÞ
� 	

:

On substituting the values of dW1

dt
; dW2

dt
; dW3

dt
; dW4

dt
in eqn. (25),

we get the following expression in region H1

dW

dt
¼�fa11ðF� �FÞ2þa22ðC� �CÞ2þa33ðP� �PÞ2þa44ðN� �NÞ2

�a12ðC� �CÞðF� �FÞþa14ðN� �NÞðF� �FÞþa24ðN� �NÞðC� �CÞ
�a34ðN� �NÞðP� �PÞg

ð26Þ

where,

Using Sylvester’s criteria we obtained the following suf-

ficient conditions for dW
dt

to be negative definite

ðiÞa11a22 [ a212; ðiiÞ
2

3
a11a44 [ a214; ð27Þ

ðiiiÞ 2
3
a22a44 [ a224; ðivÞ

4

3
a33a44 [ a234 ð28Þ

We note that the conditions (20–23) implies inequalities

obtained in (27) and (28) after using region of attraction.

Therefore,by Lyapunov’s direct method we find that E4 is

globally (nonlinearly) asymptotically stable in the region

H1: h

Numerical simulation

In this section, we present a numerical simulation to sup-

port the applicability of analytical results by choosing the

following values of the parameters in model given by

Eqs. (1–4).

r0 ¼ 3; r1 ¼ 0:001;K0 ¼ 1:2;K11 ¼ 0:06; dB0 ¼ 7; dB1
¼ 0:005;K20 ¼ 10; b1 ¼ 0:01;Cs ¼ 18; I ¼ 30; r ¼ 0:4;

d1 ¼ 1:0; b ¼ 0:081; a ¼ 0:099;C0 ¼ 5; g ¼ 0:054;N0 ¼
20:

Under the above set of parameters, it is shown that the

conditions for the existence of interior equilibrium

E4ð �F; �C; �P; �NÞ are satisfied and the equilibrium values are
�F ¼ 0:2016; �C ¼ 5:6812; �P ¼ 33:5400; �N ¼ 16:6406.

The stability region H1 is given by: fH1 ¼
ðF;C;P;NÞ 2 R4

þ : 0�F� 1:3274; 0� C� 318:5104;

0:1454�P� 75:0413; 10:0597�N� 16:6852g:
From the simulation analysis it is noted that the condi-

tions for the stability of equilibrium point E4 are satisfied in

the region H1 proving that E4 is asymptotically stable for

the above set of parameters (see Fig. 1).

Further, to illustrate the global stability of interior

equilibrium E4 of the model graphically, numerical simu-

lation is performed for the above set of parameters with

different initial conditions (see Tables 1, 2, 3) and

respective phase plane graphs for F–C, C–P and C–N are

shown in Figs. 2, 3, 4. These figures illustrate that all the

trajectories starting from different initial conditions reach

to the interior equilibrium E4 as time elapses demonstrating

the global stability.

In order to investigate the effect of I on the dynamics of

N, C, and F, we further perform numerical simulation and

plot the graphs with respect to time (see Figs. 5, 6, 7).

The boundary equilibrium point E1ð0; 3:0025; 0:1667; 0Þ
of the system is locally asymptotically stable (see Fig. 8)

for the following set of parameters: r0 ¼ 0:1; r1 ¼ 0:05;

K0 ¼ 0:2;K11 ¼ 0:04; dB0 ¼ 8; dB1 ¼ 0:001;K20 ¼ 2; b1 ¼
0:01;Cs ¼ 7; I ¼ 1; r ¼ 6; d1 ¼ 0:5; b ¼ 0:6; a ¼ 0:4;C0

¼ 6; g ¼ 0:9;N0 ¼ 5:

The boundary equilibrium point E2ð1:2000;
3:0025; 0:1667; 0Þ of the system is locally asymptotically

stable (see Fig. 9) for the following set of parameters: r0 ¼
2:0; r1 ¼ 0:001;K0 ¼ 1:2;K11 ¼ 0:04; dB0 ¼ 8; dB1 ¼
0:001;K20 ¼ 2; b1 ¼ 0:01;Cs ¼ 7; I ¼ 1:0; r ¼ 6; d1 ¼
0:5; b ¼ 0:8; a ¼ 0:4;C0 ¼ 3; g ¼ 0:9;N0 ¼ 5:0:

The boundary equilibrium point E3ð0; 0:7584;
38:2843; 16:6417Þ of the system is locally asymptotically

stable (see Fig. 10) for the following set of parameters: r0
¼ 0:33; r1 ¼ 0:05;K0 ¼ 2:5;K11 ¼ 0:05; dB0 ¼ 9:8; dB1 ¼
0:008;K20 ¼ 10; b1 ¼ 0:01;Cs ¼ 18; I ¼ 31:9; r ¼ 0:4; d1
¼ 1:0; b ¼ 0:09; a ¼ 0:099;C0 ¼ 17; g ¼ 0:054;N0 ¼ 20:

Figs. 8,9, 10 shows the stable behavior of the trajectories of

the model for equilibrium points E1;E2 and E3:

a11 ¼
r0

K0 � K11N
; a22 ¼

K20

1þ N
;

a33 ¼ r þ d1Nb

ðbþ PÞðbþ �PÞ

� �
; a44 ¼ g;

a12 ¼ r1; a14 ¼
r0 �FK11

ðK0 � K11NÞðK0 � K11
�NÞ ;

a24 ¼ dB1 þ
K20

ð1þ NÞð1þ �NÞ ðCs � �CÞ
� �

; a34 ¼ b1a�
d1 �P

bþ �P
þ d1b

ðbþ PÞðbþ �PÞ

� �
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Conclusion

In this paper, we have proposed and analyzed a nonlinear

mathematical model to study the effect of increasing algal

biomass due to nutrient overloading on the concentration of

dissolved oxygen and the survival of fish population in an

aquatic ecosystem. The local and global stability analysis

of the equilibrium points of the model is carried out. From

the stability analysis of boundary equilibrium point E1 and

E3 it is noted that the fish population tend to extinction due

to decrease in the concentration of dissolved oxygen from

its threshold level. The stability analysis of boundary

equilibrium point E2 shows that the fish population survive

because in this case concentration of dissolved oxygen is

more than its threshold level. From the stability analysis of

interior equilibrium point E4 it is observed that the fish

population will survive at very low equilibrium level due to

reduced concentration of dissolved oxygen and excessive

presence of algal biomass on account of nutrient loading.

These stability results are depicted in the Figs. 1–17 using

numerical simulation. From Fig. 5 it is shown that as the

input rate of nutrients I increases then the algal biomass

increases. Figure 6 shows that as the input rate of nutrients

I increases then the concentration of dissolved oxygen

decreases with respect to time. Figure 7 shows the

dynamics of fish population for different values of I i.e.

input rate of nutrients (phosphorus and nitrogen) with

respect to time. From this fig. it is observed that the density

of fish population decreases as the input concentration of

nutrients increases illustrating the role of nutrient over-

loading on fish population. Thus, it is concluded here that if

the nutrients are excess in amount than the required level

then the survival of fish population is threatened. These

numerical results suggest the role of nutrient loading on the

fate of dissolved oxygen and consequently on the growth

dynamics of algal biomass and fish population. The vari-

ation in fish population with respect to the concentration of

dissolved oxygen for different initial conditions are shown

in Figs. 11 and 12. From Fig. 11 it is clear that when the

concentration of dissolved oxygen decreases then fish

population also decreases. From Fig. 12 we observe that as

the concentration of dissolved oxygen increases then the

fish population increases slowly but as the concentration of

dissolved oxygen approaches to the saturated level, fish

population continues to increase and then after some time

concentration of dissolved oxygen and fish population both

starts decreasing simultaneously due to the onset of algal

bloom. Figure 13 shows the variation in algal biomass with

respect to the concentration of nutrients (phosphorus and

nitrogen) and from this we observe that as the concentra-

tion of nutrient increases then the algal biomass increases.

Figure 14 shows that as the concentration of nutrients

increases then the concentration of dissolved oxygen

decreases establishing the analytical result. The variation in

fish population with respect to the concentration of nutri-

ents (phosphorus and nitrogen) is shown in Fig. 15. From
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Fig. 1 Trajectories of the model with respect to time with initial

values (1.5, 15, 5, 4) showing stability behavior

Table 1 Different initial conditions for F and C of the model

F 0.08 0.1 0.4 0.5 0.6

C 7.5 3.2 6.5 4 8.1

Table 2 Different initial conditions for C and P of the model

C 2 3 8 11 13

P 36 29 28 31 34

Table 3 Different initial conditions for C and N of the model

C 3 5 8 8.5

N 17.5 12 19 15
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Fig. 2 Global stability in F–C plane
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Fig. 4 Global stability in C–N plane
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Fig. 5 Stable interior equilibrium level of algal biomass for different

values of I
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Fig. 6 Stable interior equilibrium concentration of dissolved oxygen

(C) for different values of I
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Fig. 8 The boundary equilibrium point E1 where F ¼ 0 and N ¼ 0 is

asymptotically stable
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Fig. 9 The boundary equilibrium point E2 where N ¼ 0 is asymp-

totically stable
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Fig. 10 The boundary equilibrium point E3 where F ¼ 0 is

asymptotically stable
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Fig. 11 Phase plane plot between fish population (F) and concen-

tration of dissolved oxygen (C) with initial values: Fð0Þ ¼ 1:5,
C(0) = 15 in the case of interior equilibrium point
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Fig. 12 Phase plane plot between fish population (F) and concen-

tration of dissolved oxygen (C) with initial values: Fð0Þ ¼ 0:05;
Cð0Þ ¼ 1:5 in the case of interior equilibrium point
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Fig. 13 Phase plane plot between concentration of nutrients (phos-

phorus and nitrogen) (P) and algal biomass (N) with initial values:

P(0) = 5, N(0) = 4 in the case of interior equilibrium point
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this figure it is noted that as the concentration of nutrients

(phosphorus and nitrogen) increases, the fish population

decreases on account of reduced equilibrium level of dis-

solved oxygen. In Fig. 16 it is shown that the fish popu-

lation decreases when the algal biomass increases due to

excessive nutrient concentration. Figure 17 shows the

variation in concentration of dissolved oxygen with respect

to algal biomass. This figure shows that the concentration

of dissolved oxygen initially increases with the increase in

the density of algae but when the algal biomass is more

than what the aquatic ecosystem can handle then the dis-

solved oxygen concentration starts decreasing (see fig. 1 in

the paper of Smith and Piedrahita 1988).
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Fig. 14 Phase plane plot between concentration of dissolved oxygen

(C) and concentration of nutrients (phosphorus and nitrogen) (P) with

initial values: C(0) = 15, P(0) = 5 in the case of interior equilibrium

point
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Fig. 15 Phase plane plot between concentration of nutrients (phos-

phorus and nitrogen) (P) and fish population (F) with initial values:

P(0) = 5, Fð0Þ ¼ 1:5 in the case of interior equilibrium point

4 6 8 10 12 14 16 18
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Phase plane graph

Algal biomass

F
is

h 
po

pu
la

tio
n

Fig. 16 Phase plane plot between algal biomass and fish population

(F) with initial values: Nð0Þ ¼ 4;Fð0Þ ¼ 1:5 in the case of interior

equilibrium point
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Fig. 17 Phase plane plot between algal biomass (N) and concentra-

tion of dissolved oxygen (C) with initial values: N(0) = 4, C(0) = 2

in the case of interior equilibrium point. The phase plane trajectory

shown in this graph is qualitatively similar to the behaviour as shown

graphically (fig. 1) in the paper by Smith and Piedrahita (1988)
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