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Abstract Random forest (RF) machine learning technique

and geographical information system (GIS) have been

applied to delineate groundwater flowing well zones in the

southern desert of Iraq. A spatial database consists of target

variable, i.e., geographic locations of 93 flowing wells and

predictor variables, i.e., the factors that control ground-

water occurrence was prepared for this purpose. Eleven

predictor variables were selected based on data availability,

literature review, and field conditions which include ele-

vation, slope, profile curvature, aspect, topographic wet-

ness index, stream power index, distance to Abu Jir fault,

distance to Euphrates River, major aquifer group, total

hydraulic head, and well depth. The RF model in R

package along with ArcGIS 10.2 was used to generate

groundwater flowing well potential index for the study

area. The obtained potential indices were classified using

natural break classification scheme into five categories

namely, very low, low, moderate, high, and very high. The

results revealed that high or very high groundwater flowing

well potential zones occupy 15 %, moderate potential zone

covers 6 %, and low or very low potential zones cover

79 % of the southern desert of Iraq. The groundwater

flowing well zone map was validated using relative oper-

ating characteristic (ROC) curve. The areas under the ROC

curve for success and prediction rates were 0.98 and 0.97,

respectively, indicating excellent capability of RF model to

delineate groundwater potential. It is expected that the

method development in this study can be used for rapid but

efficient evaluation of groundwater flowing well potential

from limited amount of data.

Keywords Random forest � Groundwater � Southern desert

of Iraq � ROC � GIS

Introduction

Iraq has abundant surface water resources compared to

other countries in the Arabian Peninsula. However, mis-

management of this precise resource and interventions in

the upstream of Tigris and Euphrates rivers as well as their

tributaries by riparian countries bordering Iraq have made

surface water gradually a scarce resource in Iraq (Al-An-

sari 2013). It is anticipated that groundwater will play an

important role in the area to supplement water supply to

growing population and agricultural activities in near

future. The southern desert of Iraq contains huge amount of

groundwater resources suitable for agricultural and indus-

trial uses and even for drinking after appropriate treatment.

In the east and north parts of the desert, a set of springs and

flowing wells exists which extends parallel to the

Euphrates River. The spatial demarcation of this hydro-

geological system can facilitate groundwater resources

management and development efficiently, and thus agri-

cultural development in the west of the Euphrates River.

Delineation of groundwater potential zones is an impor-

tant prerequisite for implementation of successful ground-

water development, protection, and management program

(Ozdemir 2011a). Twomain approaches are usually used for

demarcation of groundwater potential zones namely, data-
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driven and knowledge driven (Bonham-Carter 1994). The

data-driven approaches use known locations of well/spring

as dependent variable and groundwater occurrence control-

ling factors as independent variables. The advantages of

these methods are that they need little data, and they are less

affected by potential bias in human input (McKay and Harris

2015). Examples of these techniques are frequency ratio

(Ozdemir 2011a; Oh et al. 2011; Manap et al. 2011;

Moghaddam et al. 2013; Pourtaghi and Pourghasemi 2014;

Naghibi et al. 2014; Elmahdy andMohamed 2014; Al-Abadi

2015b), artificial neural networks (Corsini et al. 2009; Lee

et al. 2012), weights of evidence (Corsini et al. 2009;

Ozdemir 2011b; Lee et al. 2012; Pourtaghi and Pourghasemi

2014; Al-Abadi 2015a), maximum of entropy (Rahmati et al.

2016), evidential belief functions (Nampak et al. 2014;

Mogaji et al. 2014; Pourghasemi and Beheshtirad 2015),

logistic regression (Ozdemir 2011a; Pourtaghi and Pour-

ghasemi 2014), and Shannon’s entropy (Naghibi et al. 2014;

Al-Abadi 2015b). In recent years, machine learning tech-

niques such as, boosted regression tress, classification and

regression tress (CART), decision tress, and random forest

(Lee and Lee 2015; Naghibi et al. 2016; Rahmati et al. 2016)

have also been used of spatial zoning of groundwater

potential. On the other hand, knowledge driven approaches

do not need geographic information of wells or springs,

rather they rely on the data to determine the weights or

importance of independent groundwater occurrence con-

trolling factors. Examples of these approaches are index

overly (Jha et al. 2010; Machiwal et al. 2010; Manap et al.

2011; Abdalla 2012; Pandey et al. 2013; Al-Abadi and Al-

Shamma’a 2014), fuzzy logic (Shahid et al. 2002), and

analytical hierarchical process (Adiat et al. 2012; Rahmati

et al. 2014).

The random forests (RF) algorithm is a machine learn-

ing technique which has been applied recently as a data-

driven predictive model for groundwater potential mapping

(Naghibi et al. 2016; Rahmati et al. 2016). Machine

learning is defined as a field of computer science that gives

computers the ability to learn without being explicitly

programmed. The RF is one of the most powerful, fully

automated machine learning techniques (Fernandez-Del-

gado et al. 2014). It can handle data from various mea-

surement scales without any statistical assumptions

(Rahmati et al. 2016). At the same time, RF is computa-

tionally inexpensive than other machine learning algo-

rithms like, neural networks or support vector machines

(Rodriguez-Galiano and Chica-Olmo 2012). Another

advantage of the RF is that it allows assessment of the

importance of input variables in prediction (Rahmati et al.

2016). Although RF has been applied recently in many

earth science disciplines including groundwater potential

mapping, its capability to delineate groundwater flowing

well zones is still not well explored.

The major objective of this study is to delineate the

artesian zone in the southern desert of Iraq using RF and

GIS. The methodology proposed in the study can be used

for quick but efficient mapping of groundwater resources

with limited amount of data and human interference. It is

also expected that the groundwater artesian zone map

development in the present study will allow efficient

planning, management and development of groundwater

resources in the study area.

The study area

The southern desert locates in the southern part of Iraq,

south of Euphrates River, encompass an area of about

78,390 km2 (Fig. 1). Four administrative governorates

share the area of the southern desert namely, Najif,

Samawa, Nasiriya, and Basra. The most parts of the

southern desert are unpopulated due to extreme climate and

severe water scarcity. Few urban centers are located along

the Euphrates River, while small towns such as Al-Shbicha,

Al-Salman, and Al-Busaiya are sparsely distributed

through the area. The topography of the study area is

mostly flat with a rising elevation from the northeast to the

southwest (Al-Jiburi and Al-Basrawi 2008). The elevation

ranges between 1 and 494 m with an average of 229 m

(Fig. 2). The climate in major portion of the southern

desert is arid with an annual average rainfall typically in

range of 100–150 mm. However, the rainfall varies extre-

mely from year to year. Most of the rainfall occurs between

October and May with little or no rainfall in other months

(Parsons 1955). Despite small amount of rainfall, different

types of vegetation grow in the southern desert as rainfall

mostly occurs in winter when evaporation is less. The

climatic data at nine meteorological stations within and

around the study area for the time period 1980–2015 show

that the annual average of rainfall, temperature, evapora-

tion, relative humidity, and wind speed in the area are

108 mm, 30.4�C, 352 mm, 46 %, and 2.9 m/s, respec-

tively. The geological formations exposed in the study

area, from oldest to youngest are the Aidah, Rus and

Dammam with their various limestone members, and the

Zahra, Euphrates, Fatha, Dibdibba and recent alluvium

(Parsons 1955). In general, all the formations contain

groundwater in varying amounts and quality. Since most of

the springs and flowing wells occur with the Euphrates,

Dammam, and Quaternary rocks, a brief description of

these rocks is given here. The Euphrates Formation is the

most widely spread formation of the Early Miocene

sequence in Iraq with thickens up to 160 m. It comprises

8 m thick shalley chalky and well bedded recrystallized

limestones with texture ranging from oolitic to chalky,

which locally contain corals and shell coquinas (Jassim and
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Goff 2006). The Dammam Formation mainly consists of

chalky limestone, dolomite, mark and Shales. The Qua-

ternary formation in the eastern part of the study area

consists of sand and alluvium deposits of recent and

Pleistocene ages. The geological map of the study area is

given in Fig. 3.

From the tectonic point of view, the southern desert is a

part of the Arabian Platform, which is characterized by the

presence of block tectonics and the absence of tectonic

folds (Buday and Jassim 1987). The main structural fea-

tures include several northeast-southwest transversal faults.

The eastern boundary of the southern desert is sharply

marked by the southern extension of Hit-Abu Jir fault

system. This fault system represents structural and geo-

logical boundary zone that separates the desert from the

Mesopotamia Zone.

There are five major aquifer groups in the study area

(Jassim and Goff 2006), which are termed as 4, 5, 6, 7, and

10 aquifer groups (Fig. 4). The aquifer group 4 represents

limestone of the Palaeogene–Neogene Euphrates Forma-

tion, Kirkuk Group and Ghar formations of the Western

and Southern desert of the Rutba Subzone and the Salman

Zone. The aquifer group 5 represents the karstified and

fractured limestones of the Palaeogene Um-Er Radhuma,

and Jill and Dammam formations of the southern desert of

the Salman zone. The aquifer group 6 depicts the sandstone

and conglomerate of the Miocene to Pleistoncen Ghar and

Zahra formations and the Nukhaib Graben fill of the

western and southern deserts of the Rutba subzone and the

Salman zone (Jassim and Goff 2006). The aquifer group 7

represents the sandstone of the Mio-Pliocene Dibdibba

Formation of the southern desert in the Salman Zone, while

the aquifer group 10 represents the sands of the Quaternary

Mesopotamian flood plain of central and the south of Iraq

in the Mesopotamian zone. A detailed description of these

aquifer units with relevant information can be found in

Jassim and Goff (2006). Groundwater in the study area

moves from the west and the southwest (recharge areas) to

the east and the northeast (discharge areas) (Fig. 5).

Groundwater level varies from ten meters in recharge areas

to near surface or artesian in discharge areas (Al-Jiburi and

Al-Basrawi 2008). Groundwater quality in the study area

can be classified into three types namely, mixed saline with

either sulfates of chlorides dominant, carbonate water and

high nitrate waters (Parsons 1955).

The main aquifers underlying the study area from oldest

to youngest are: Hartha, Tayart, Umm Er Radhuma,

Dammam, Ghar-Euphrates, Dibdibba, and Quaternary

(Fig. 5). A hydraulic connection is possible between these

water bearing layers as a result of the piezometric changes

throughout these aquifers. Since Dammam aquifer has high

hydraulic pressure, most of the wells drilled in this aquifer

is flowing artesian well. A brief description of these aqui-

fers is given here. Dammam formation comprises of

limestone, dolomite, limestone and dolomite, with marl

and evaporates. Dammam aquifer is characterized by high

permeability due to presence of cavities, karstfiied features,

factures, fissures, and joints. The Dammam aquifer is

considered as the main regional groundwater aquifer in the

southern desert due to its wide extension and huge amount

of stored groundwater (GEOSURV 1983). The hydrologi-

cal characteristic of the Dammam aquifer is presented in

Table 1. The transmissivity of the aquifer ranges from 3.1

to 4752 m2/day, and thus it regards as extremely hetero-

geneous. The hydraulic conductivity ranges from 0.1 to

100 m/day, while static water level ranges from 0 to 170 m

Fig. 1 Location map of the study area
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below the earth surface. The total dissolved solid is in the

range of 350 to 8530 mg/l. The dominant water type is

sulphatic, in addition to chloride and biocarbonatic water

types. The source of sulphate is attributed to the presence

of evaporates within the rocks or gypsiferous soil (Al-Jiburi

and Al-Basrawi 2000).

Random forest algorithm

The RF is an ensemble of learning techniques that generate

many classification tresses which are aggregated to com-

pute a classification or regression (Breiman 1984; 2001).

Ensemble learning (EL) is a method that generates many

classifier and aggregate their results. EL can be classified

into two well-know methodologies: boosting and bagging.

In boosting, successive trees give extra weight to point

incorrect prediction by earlier predictors, and finally a

weighted vote is taken for prediction (Liaw and Wiener

2002). In bagging, successive tress is independently con-

structed using a bootstrap sample of the dataset, and do not

based on generated earlier trees. The prediction is taken as

a simple majority vote. RF belongs to the family of

ensemble methods appeared in machine learning at the end

of 1990s (Dietterich 2000). The principle of RF is to

combine many binary decision tresses built using several

bootstrap samples coming from the learning sample L and

choosing randomly a subset of explanatory variable X at

each node (Genuer et al. 2008). Roughly, two-third of the

learning samples (also called bag samples) is used for

Fig. 2 Elevation (m) map of

the study area
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prediction, while the remaining one-third [also called out-

of-bag (OOB)] is used for validation. RF algorithm splits

the target variable (parent node), into binary pieces, where

the child nodes are ‘purer’ than the parent node (Carranza

and Laborte 2015a). Each node is split using the best

among a subset of predictors randomly chosen at that node.

The process of data splitting in each internal node is iter-

ated until a pre-specified stop requirement is reached

(Carranza and Laborte 2015a). After that, a simple

regression model is attached for every child node (leaf).

The final output of RF is the majority of output from all

decision tress. The RF algorithm for growing a random

forest of k classification trees is as follows (Peters et al.

2007; Hastie et al. 2009):

i. for i = 1 to k do:

1. Draw a bootstrap sample (subset Xi) from the

original dataset X;

2. Use Xi to grow an unpruned classification tree to the

maximum depth with the following modification

compared with standard classification tree building:

(a) randomly select m variables from p variables;

(b) choose the best split among these variables; and

(c) split the node into two daughter nodes.

ii. Predict new data according to the majority vote of

the ensemble of k trees.

An unbiased estimate of the error rate is obtained during

the construction of a RF based on the training data as:

i. At each bootstrap iteration, predict the data in OOB

that are not used in the construction of the ith tree.

ii. At the end of the run, aggregate the OOB predic-

tions, calculate the error rate, and call it the OOB

estimate of error rate.

A more detailed description of the RF algorithm can be

found in Breiman (2001) and Liaw and Wiener (2002).

Materials and methods

Data used

The data used in the creation of spatial zones of ground-

water flowing wells involve target variable (geographic

location of the flowing well) and various predictor vari-

ables represented by thematic layers of groundwater

affecting occurrence factors. The flowing well inventory

Fig. 3 Geological map of the study area (after Sissakian 2000)
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was developed by a team of General Commission of

Groundwater, Ministry of Water Resource of Iraq through

extensive filed survey in the year 2013. In total, 93

perennial flowing wells were identified. This dataset is

randomly partitioned using random algorithm in MINITAB

16 software into two sets: training and testing. Of the 93

flowing well locations, 65 wells (70 %) were used as

training dataset, and the remaining 28 wells (30 %) were

used as validation dataset.

Eleven predictors were used in this study, which were

selected based on literature review, expert opinion, data

availability, and field conditions. These variables are

elevation, slope, profile curvature, aspect, topographic

wetness index (TWI), stream power index (SPI), distance

to Abu Jir fault, distance to Euphrates River, major

aquifer group, total hydraulic head, and well depth. The

thematic maps of all predictors were prepared as raster

layer with 30 9 30 m resolution in ArcGIS 10.2 software.

The total number of pixels for each thematic raster layer

was 144,007,200 (12,204 columns and 11,800 rows).

Topographic variables namely, elevation, slope, profile

curvature, aspect, TWI, and SPI were prepared using

Advanced Spaceborne Thermal Emission and Reflection

Radiometer-Global Digital Elevation Model (ASTER-

GDEM) data with a spatial resolution of 30 m, download

from United State of Geological Survey (USGS) website

(earthexplorer.usgs.gov). The importance of these vari-

ables in delineating groundwater potential zones are

extensively described in literatures (Ozdemir 2011a, b;

Oh et al. 2011; Pourtaghi and Pourghasemi 2014; Naghibi

et al. 2014). The surface elevation map was directly

derived from DEM and classified into five categories

(McDonald et al. 1990): plains (0–9 m), rises (9–30 m),

low hills (30–90), hills (90–300 m), and mountains

([300 m) (Fig. 2). Slope (%) map was also derived from

filled DEM and classified into five classes (de Winnaar

Fig. 4 Spatial distribution of

aquifer groups in the southern

desert of Iraq [after Jassim and

Goff (2006)]
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et al. 2007): flat (\2 %), undulating (2–8 %), rolling

(8–15 %), hilly (15–30 %), and mountainous ([30 %)

(Fig. 6a). Profile curvature was classified into three clas-

ses namely, concave (\0), flat (0), and convex ([0)

(Fig. 6b). Aspect was classified into ten classes (Fig. 6c):

Flat (-1), North (0–22.5), Northeast (22.5–67.5), East

(67.5–112.5), Southeast (112.5-157.5), South

(157.5–202.5), Southwest (202.5–247.5), West

(247.5–292.5), Northwest (292.5–337.5), and North

(337.5–360.0). The secondary topographic predictor

variables namely, TWI and SPI were derived using fol-

lowing equations (Moore et al. 1991),

Fig. 5 Geological cross sections in the Iraqi Southern Desert [after Araim (1984)]

Table 1 Hydrogeological data of Dammam aquifer in southern desert of Iraq [after Al-Jiburi and Al-Basrawi (2008)]

Well No. Well depth (m) Static water level (m) Flow rate (m3/day) K (m/day) T (m2/day) TDS (mg/l) Water type

5534 22 6.0 118 20.4 309 3481 Sulphatic

5560 30 7.5 691 30.9 879 7536 Sulphatic

5510 170 136 44 2.0 5 6478 Chloridic

5518 106 57 588 17.9 878 3159 Sulphatic

5579 200 88.2 396 2.4 227 2382 Sulphatic

5616 120 57 660 7.2 446 3686 Sulphatic

K 4/10 940 104.3 1037 100 4750 3612 Sulphatic

K 4/5

KH 1 400 60.5 584 – 7 2504 Choridic

KH 2- 140 60 86 – 23 4210 Sulphatic

KH 3 420 6.5 2877 – 1636 3120 Choridic

KH 4 419 42.7 501 – 1549 1080 Sulphatic

KH 5- 605 69 2160 – v. high 4648 Choridic

KH 7- 585 52.6 1469.3 – 625 4228 Choridic

KH 8- 300 75.5 164 – 3 6510 Sulphatic

KH 9- 195 113.5 1123 – 171 6120 Sulphatic
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Fig. 6 a Map showing the

distribution of slope (%) in the

study area. b Map showing

spatial distribution of total

curvature in the study area.

c Aspect map of the study area.

d The topographic wetness

index (TWI) map of the study

area. e The stream power index

(SPI) map of the study area.

f Map showing the distances to

Abu Jir fault (m). g Map

showing the distances to

Euphrates River. h Total head

distribution over the study area

(after Al-Jiburi and Al-Basrawi

2008). i Spatial distribution of

groundwater depth in the study

area
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Fig. 6 continued
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Fig. 6 continued

96 Page 10 of 17 Model. Earth Syst. Environ. (2016) 2:96

123



Fig. 6 continued
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TWI ¼ ln
a

tan b

� �
ð1Þ

SPI ¼ As tan b ð2Þ

where, a is the local unslope area draining through a certain

point per unit contour length and tan b is the local slope in

degrees, and As is the specific catchment area. The Raster

Calculator in ArcGIS software was used to derive TWI and

SPI layers and finally classified into five categories to

prepare the thematic maps of those variables as shown in

Fig. 6d, e, respectively.

The proximity variables namely, distance to Abu Jir

fault and distance to Euphrates River were prepared by

using Euclidean Distance method in ArcGIS environment.

Both variables were classified into ten classes using equal

interval classification scheme (Fig. 6f, g). It was found that

the correlation between well locations and distance from

these linear features decreases as the distance increase, and

thus a strong negative correlation exists.

Three predictor variables related to hydrogeological

characteristics namely, total hydraulic head, well depth,

and major aquifer groups were used in this study. Hard

copy of total hydraulic head map (Al-Jiburi and Al-Bas-

rawi 2008) was scanned, georeferenced, and then digitized

using ArcGIS software (Fig. 6h). Generally, groundwater

moves from recharge areas (northeast) to discharge areas

(southwest). Groundwater either discharges in form of

springs or flows underground into Mesopotamian plan

sediments (GEOSURV 1983). Data presented in Table 1

were used to create the map of groundwater depth. The

values of groundwater depth were interpolated using

inverse distance weighting technique (IDW) method to

prepare the map. IDW is a deterministic interpolation

technique traditionally used to interpolate groundwater

depth (Reed et al. 2000). In IDW, deterministic interpola-

tion techniques create surface from sample points using

mathematical functions, based on either the extent of

similarity or the degree of smoothing (radial basic function

RBF) (Adhikary and Dash 2014). In mathematical terms,

IDW is written as:

zðx�Þ ¼

P1
i¼1

xi
h
b
ijP1

i¼1
1

h
b
ij

ð3Þ

where, z x�ð Þ is the interpolated value, n is total number of

sample data, xi is the ith data value, hij is the separation

distance between interpolated value and sample data value,

and b is the weighting power factor. The optimal weighting

power depends on the spatial structure of the data and is

influenced by the coefficient of variation, skewness and

kurtosis of the data (Mueller et al. 2001). The map of

groundwater depth is shown in Fig. 6i. The figure shows

that the depth to groundwater increases from south to north.

To create the aquifer group layer, a hard copy of this

predictive variable (Fig. 4) was scanned, georeferenced,

digitized and finally convert from vector to raster using

conversion tool in ArcGIS.

Mapping groundwater flowing well potential zone

The randomForest package in R software was used for the

development of RF model. The target variable, the loca-

tions of well was represented by 1 for flowing wells and 0

for non-flowing wells. For the training of RF mode, equal

number of flowing and non-flowing wells was selected to

get the optimal result (Carranza and Laborte 2015b). Non-

flowing locations should be distal to any flow location

because locations proximal to existing potential zone are

likely to have similar multivariate spatial data signatures as

the potential zone and thus preclude achievement of

desired results (Carranza and Laborte 2015a). Therefore,

the point pattern analysis was used to find the distance from

any flowing location and corresponding probability that

there is one flowing location situated next to it. The point

pattern analysis showed that the distance for any non-

flowing well location in which there is 100 % probability

Fig. 6 continued
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of a neighboring flowing well location is approximately

10 km. Hence, the 65 non-flowing well locations were

selected from areas beyond 10 km of every flowing well

location. At flowing and non-flowing well locations, the

values of predictor variables were extracted using ArcGIS.

These data were stored as *.csv text file and exported to R

statistical software to run RF model. Obtained results of RF

model were the values between 0 and 1, where 1 refers to

high probability of getting flowing well, while 0 refers to

non-flowing well. Finally, the probability of getting 1 were

stored as text file and exported to the ArcGIS as point

shape file. The point data were finally interpolated to pre-

pare the map of groundwater flowing well potential.

Validation of the results

The accuracy of the RF model developed in this study to

delineate groundwater flowing well zone are investigated

using relative operating characteristics (ROC) curve. The

ROC curve is commonly used for examining the quality of

deterministic and probabilistic detection and forecast sys-

tem (Swets 1988). It is a common method used to assess

the accuracy of a diagnostic test (Egan 1975). The ROC

plots the sensitivity (false postive rate) on X axis against

100-specificity (true positive rate) on Y axis. In ROC

analysis, the area under the ROC curves (AUC) used to

measure the prediction accuracy qualitatively (Maier and

Dandy 2000). The predictive capability of a model is

excellent if AUC = 1–9; very good 0.8–0.9; good 0.8–0.7;

average 0.7–0.6; and poor 0.6–0.5 (Yesilnacar 2005).

Usually, the AUC are used to evaluate the performance

during both model training (success rate) and testing

(prediction rate). The success rate explains how well the

resulting groundwater potential map classified the area of

flowing well locations during training (Al-Abadi 2015a),

while prediction rate provides a measure of the accuracy of

predictive model with unseen data (testing dataset).

Fig. 7 Plot of out-of-bag (OOB) error of random forest model

Fig. 8 Mean decrease accuracy

and mean decrease GINI of

effective predictors
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Results and discussion

The parameters required to run RF algorithm in R packages

are the number of trees (ntree) and the number of predic-

tors (mtry) randomly sampled at each split node. These

parameters are determined using OOB error. The OOB

error rate is a helpful estimator of the generalization error

depending on the number of trees (Rahmati et al. 2016).

The OOB error rate depicted in Fig. 7 shows that the OOB

error rate decreases as the number of trees increase. When

the OOB equals to 0.01, mtry and ntree are equal to 3 and

500, respectively. The mtry value is further checked using

the equation proposed by Breiman (2001), which postulates

that the mtry should be less than log2(M ? 1) in order to

Table 2 Accuracy of RF

models using all predictor and

only the five most important

predictors of target variable

Parameters Developed RF models

All variables (model I) The most important variables (model II)

OOB error 0.0391 0.0547

Correctly classified instances 120 (93.75 %) 122 (95.31 %)

Incorrectly classified instances 8 (6.25 %) 6 (4.68 %)

Kappa statistic 0.875 0.906

Mean absolute error 0.109 0.086

Root mean square error 0.231 0.215

Fig. 9 Groundwater flowing

well potential index map of the

study area
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minimize the generalization error and correlation among

decision tress, where M is the number of predictors used.

As the number of predictors in this study is 11, the mtry

should be less than int(log2(11 ? 1) or 3. On the other

hand, Rodrigues-Galiano et al. (2014) proposed that ntree

value of 1000 results relatively low prediction errors and

most stable predictions (ZhenJie et al. 2015). From OOB

plot in (Fig. 7), it is obvious that error rate stabilizes at 500

(ntree), and therefore, ntree value of 500 was adopted in

the study.

One of the most attractive features of the RF algorithm

is its capability to rank the importance of predictors

according to predictor’s marginal effect on the target

variable while keeping all the other predictors constant

(Carranza and Laborte 2015a). In order to assess the pre-

dictor’s importance in RF model developed in the study,

two parameters were used namely, mean decrease accuracy

(MeanDecreaseAccuracy) and mean decrease in Gini

coefficient (MeanDecreaseGini) (Fig. 8). The mean

decrease accuracy is a measure to explain how the model fit

decreases as a variable dropped from the analysis. The

greater the drop, the more significant the variable. On the

other hand, the mean decrease in Gini coefficient is a

measure of how each variable contributes to the homo-

geneity of the nodes and leaves in the resulting RF model.

The Gini index is often used to describe the overall

explanatory power of the predictors. Therefore, mean

decrease accuracy is more important for variable selection,

while Gini index is important in defining the explanatory

association among the variables selected. The mean

decrease accuracy plot (Fig. 8) identified the elevation,

well depth, distance to Euphrates River, Distance to Abu-

Jir fault, aquifer groups, and groundwater heads as most

importance predictors. The same results were obtained

using Gini index with different ranks of importance. Both

measures indicate that the slope, curvature, aspect, TWI,

and SPI have lower effect on the groundwater flowing well

potential in the study area. Therefore, these predictors were

removed and the RF model was run again. The overall

accuracy for both RF runs are presented in Table 2. It is

obvious from Table 2 that removal of the less important

predictors caused an increase in model accuracy from

93.75 % (model I) to 95.31 % (model II). According to

Landis and Koch (1977) the coefficient is the best index of

fit between the predictors and the target variable. Kappa

values [0.8 = strong fit, 0.4–0.8 = moderate fit, and

\0.4 = poor fit. Both RF model have Kappa coefficients

greater than 0.8 and thus regard as excellent accuracy

models but the model II more accurate than model II (0.87

versus 0.91 kappa coefficient, for models I and II, respec-

tively). Therefore, results of the RF model II were used for

further analysis. The RF model gave a probability value

between 0 and 1 at 128 observation points. In ArcGIS, the

probability of getting 1 was interpolated using IDW algo-

rithm to generate the flowing well potential map, as shown

in (Fig. 9). The probability values were classified into five

categories using brake classification scheme namely, very

low (0.00–0.11), low (0.11–0.34), moderate (0.34–0.61),

high (0.61–0.83), and very high (0.83–1.0). It was found

that the high and very high potential zones cover an area of

about 11,868 km2 or 15 % of the total area, which are

mainly concentrated in northeastern parts of the study area.

The moderate zones encompass total area of about

4342 km2 or 6 % of total study area. The majority of the

study area, 62,180 km2 or 79 % of total area was identified

as very low and low potential for groundwater flowing

well. The low potential zones are found to concentrate

mainly in the southwestern parts of the study area. The

high and very high potentiality zones are basically asso-

ciated with low elevation values, closeness to the Abu Jir

fault, closeness to the Euphrates River, aquifer groups 10

and 4, and low hydraulic heads.

The plot of ROC curves for RF model is shown in

(Fig. 10). The AUC for success and prediction rates were

0.98 and 0.97, respectively, which correspond to 98 and

97 % accuracy, respectively. This indicates the excellent

capability of RF model in delineating groundwater flowing

well potential zone in the study area.

Conclusions

The efficacy of RF machine learning technique in demar-

cating flowing well potential zone at southern desert of Iraq

has been investigated in the present study. The spatial

associations between target variable (locations of flowing

wells) and set of predictors (groundwater occurrence con-

trolling factors) were used to model groundwater potential

using RF model. Eleven predictor variables namely, eleva-

tion, slope angle, curvature, aspect, TWI, SPI, distance to

Abu Jir fault, distance to Euphrates River, major aquifer

group, total hydraulic head, and well depth were used for

Fig. 10 ROC plot of random forest model
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demarcation of groundwater flowing well potential zones.

The study revealed that elevation, well depth, distance to

Euphrates River, distance to Abu-Jir fault, aquifer groups,

and groundwater heads are the most importance predictors,

while the slope, curvature, aspect, TWI, and SPI have less

influence in delineating groundwater potential in the study

area. The groundwater flowing well potential index map

shows that the high to very high, moderate, and low to very

low potential zones occupy 15, 6, and 79 % of the total area

of southern desert of Iraq, respectively. The validation of RF

model using ROC curve revealed that the AUC’s of success

and prediction rates were 0.98 and 0.97, respectively, which

indicate the excellent capability of RF model in delineating

groundwater flowingwell potential inGIS. It is expected that

the map developed in this study will provide valuable

information for the development of groundwater resources

to solve the long lasting water scarcity in the region. In

future, the performance of RF model can be compared with

other conventional methods to show its efficacy. Further-

more, other state of art data drivenmodels can also be used in

future for mapping groundwater potential zone.
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