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Abstract This study explores application of multi agent

system (MAS) to simulate spatial patterns of urban growth

in Chandigarh and its surrounding region (India). A

numerical simulation model is developed with MAS con-

sidering the dynamics of urban and rural population as the

principal driver of urban growth. The model utilizes static

and dynamic environment variables initialized using a

logistic regression model. The logistic regression model

uses pixel wise change/no-change information derived

using Landsat TM data (1989–1999) as dependent variable

and proximity, density, elevation and slope as independent

variables. The optimum resolution of 90 m for modelling is

decided using fractal analysis of series of transition prob-

ability surfaces generated using logistic regression from 30

to 240 m spatial resolution at 30 m interval. The model

was finally calibrated using sensitivity analysis and beha-

viours space experiments with multiple simulation runs. A

change to built-up area of 32.55 km2 is observed during

1989–1999 and 113.51 km2 in 1999–2009. The modelling

shows a total 14.42 % disagreement between predicted

map and reference map for the year 2009. The results were

validated using ROC statistics and accuracy estimates with

satellite data. The model was further used to predict urban

growth for the year 2019. Diversity index was used to

determine the potential of the model to capture overall

spatial patterns of urban growth.

Keywords Logistic regression � Fractal analysis �
Shannon’s diversity index � Support vector machine �
Population growth

Introduction

Urban growth comprises of changes in physical and func-

tional components of built environment resulting from

transition of rural landscape to urban forms (Thapa and

Murayama 2011). Such transformations often give rise to

environmental problems such as declining ecosystem ser-

vices (Su et al. 2012), net primary productivity (Xu et al.

2007), avian population (Green and Baker 2003), agricul-

tural land (Seto et al. 2000), and increasing flood prone

areas (Suriya and Mudgal 2012), solid waste (Vij 2012),

human health risk (Moore et al. 2003), and others. In order

to deal with such issues in social, economic and environ-

mental dimensions, we first need to answer the questions

how, why and where urban areas develop. The answers to

these fundamental questions will also help in effective

management of natural resources and sustainable built

environment planning, while providing better infrastructure

services and checking environmental degradation.

Increasing population is considered as the major driver

for urban growth (Torrens 2006; Lagarias 2012). Accord-

ing to United Nations, the percentage of urban population

in India has increased from 17 % in 1950 to 30.9 % in

2010 (United Nations 2010). By 2050, the percentage of

urban population in India is expected to be 51.7 % (United

Nations 2010). In order to deal with the pressures from
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rapid urbanization, planners and policy makers require

information about growth rate, dynamics and patterns of

urban areas and extents of urban growth (Sudhira et al.

2004; Taubenböck et al. 2009) for which remote sensing

and GIS are widely used (Yeh and Li 2001; Sudhira et al.

2004; Taubenböck et al. 2009). Different approaches have

been developed to understand urban dynamics using these

spatial tools. These include empirical urban growth esti-

mation (Sudhira et al. 2004; Hu and Lo 2007), fractal

analysis (Ma et al. 2008), landscape metrics (Sudhira et al.

2004; Taubenböck et al. 2009), artificial neural network

(Tayyebi et al. 2011), cellular automata (He et al. 2008;

Vliet et al. 2009; Feng et al. 2011) and agent based models

(ABMs) (Loibl and Toetzer 2003; Tian et al. 2011). Many

of such approaches are not much successful (Torrens and

Benenson 2005; Tian et al. 2011) becauase urban growth is

a complex process with highly non-linear interactions

among various social, economic and environmental com-

ponents (Thapa and Murayama 2011). In such circum-

stances, multi-agent system (MAS) serves as a promising

tool in decision making while embracing complexities

associated with dynamic processes (Tian et al. 2011; An

2012). Adaptive agents in MAS interact with one another

and with environment which causes varied influence on

emerging results for the system (Tian et al. 2011). The

models developed using MAS capture individual and/or

group level interactions and emerging landscape change

pattern. Such analysis includes prediction of changes and

their processes (Rui and Ban 2010; Tian et al. 2011),

assessment of alternative scenarios (Tian et al. 2011) and

understanding of the system (Evans and Kelley 2004).

Some of the related examples are, urban growth (Loibl and

Toetzer 2003; Rui and Ban 2010; Tian et al. 2011), resi-

dential dynamics (Benenson 1998; Li and Liu 2007) and

land-use and land-cover change (Evans and Kelley 2004;

Valbuena et al. 2008). Apart from these capabilities it has

tremendous potential to support and assist policy makers

while addressing ‘what if’ scenario analysis (Valbuena

et al. 2008; Tian et al. 2011).

While realising the increasing pressures of urbanization

in developing countries towards land-use change, this study

aims at development of a MAS model to simulate spatial

patterns of urban growth in Chandigarh city and its sur-

rounding region. The urban population of Chandigarh has

increased by 340.32 % from 1971 to 2011 (see Fig. 1). The

massive increase in the urban population among other

factors has resulted in urban growth in Chandigarh and also

in the surrounding areas. The surrounding region has wit-

nessed encroachments on fertile agricultural land and

vegetation cover due to development and expansion of

urban areas in the recent past (Singh 2008). The city has a

great potential to attract people from all income groups due

to high quality lifestyle and high development rate (Sheffer

and Levitt 2010). In 1952, the periphery control Act was

passed which regulated all developments within 16 km of

city limits. However due to pressures from skilled and

unskilled labor of low income groups for housing, the

government took various schemes for settlement of such

people in 1975 (Sheffer and Levitt 2010). The overall

mechanism of development of Chandigarh city and its

surrounding region is complex and involves multi actor

decision making. This study emphasizes on increasing

population as a potential driver of urban expansion.

Study area and data

Study area

Chandigarh is located in the foothills of Shivalik range of

Himalaya in Northwest India. The geographic location of the

city is 30�450N latitude and 76�470E longitude coordinates.

The city is surrounded by Rupnagar and Patiala district of

Punjab, and Ambala district of Haryana. These districts

include several satellite towns namely Kharar, Morinda,

Kurali, Mohali (S. A. S Nagar), Zirakpur, Panchkula, Derra

Bassi and few others. Apart from these populated areas,

several villages are in close proximity to the city and the

surrounding satellite towns. The majority of land use within

a buffer of 30 km from the city cente are agricultural and

waste lands with fragments of forest. The surrounding areas

have witnessed tremendous increase in built up and reduced

agricultural land. The high rates of urbanization have

brought massive change in spatial structure of built-up area

(Saini and Kaushik 2011). We defined our study area using

point location of population area retrieved from GRUMP v1

Fig. 1 Population of Chandigarh from 1971 to 2011
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settlement dataset and Google Earth images while consid-

ering substantial urban growth that have occurred in and

around the city. The settlement points were used to generate

a convex hull with a buffer of 5 km. This approach enabled

the potential populated areas to be included in the study

while excluding the effects of nearby prominent cities like

Rajpura, Ambala, Ludhiana and others (Fig. 2). The dis-

tribtion of area is 118 km2 of Chandigarh city, 86.52 km2 of

Ambala and 892.78 km2 of Rupnagar and Patiala districts.

The total area under investigation is 1097.60 km2.

Satellite and ancillary data

Landsat TM (Thematic Mapper)—5 data (1989, 1999 and

2009) were used to map built-up area for the study area.

Survey of India open series maps (1:50000 scale) were

used to generate GIS layers which were further utilized in

the model. The scanned maps were georeferenced and

mosaicked. The mosaicked map was digitized to obtain

vector layers of features representing roads, national

highways, railway, water bodies, reserved and protected

forest boundaries, point location of villages, hospitals,

dispensaries, post offices, railway stations, and educational

institutions. Table 1 summarizes the data specifications.

SRTM digital elevation model (DEM) was downloaded

from www.cgiar-csi.org.

Methodology

Built-up area extraction

Support vector machine (SVM) classifier with radial basis

function (RBF) kernel was used to extract four land use

classes namely vegetation, built-up, barren land and water

body for years 1989, 1999 and 2009. Binary images with

classes, built-up and non-built-up were produced after

masking vegetation, barren and water body. Accuracy

assessment was carried out for 1999 and 2009 binary

images using Google Earth images. Due to lack of refer-

ence for 1989, we used raw Landsat TM 5 image. The error

matrix was generated using random stratified samples

(n = 50) points, representing each class (Congalton 1991).

This error matrix was further used to generate an unbiased

population matrix (Pontius and Millones 2011). Quantity

disagreement and allocation disagreement were calculated

to quantify the errors (Pontius and Millones 2011).

Raster based environment variables

The model environment was specified using variables in

the raster format using ESRI ArcGIS v9.3.1 software.

These include proximity, density, elevation and slope. The

proximity were calculated by finding out the Euclidean

Fig. 2 Study area (convex hull

with 5 km buffer)
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distance from the nearest source feature. SRTM DEM of

90 m resolution was resampled to 30 m (used as elevation)

and slope was calculated in degrees. The rasters obtained

were divided by its respective maximum value and then

subtracted from 1. The density was calculated using simple

density function with search radius matching the grid

extent. Further the raster was normalized to its respective

maximum value. The variables thus obtained include

(i) proximity to roads, national highways, railways, water

bodies, reserved and protected forests, attractiveness, vil-

lages and existing urban and (ii) density of roads, national

highways, railways, attractiveness and villages. It is note-

worthy to mention that the proximity to attractiveness

raster includes information on medical facilities including

hospitals and dispensaries, education institutions including

schools and universities and railway stations. Figure 3

shows all environment variables.

Logistic regression model

A logistic regression model was developed to associate

driving factors with change in built-up between 1989 and

1999 and thus generate urban growth probability surface.

The urban growth probability surface was further utilized

to initialize ABM. Samples were taken with sample size

calculated as described by Peduzzi et al. (1996) (Eq. 1).

N ¼ 10k

p
; ð1Þ

where, p is the smallest of the proportion of negative or

positive cases in the population and k is the number of

independent variables.

Backward stepwise logistic regression was carried out in

‘‘R’’ using glmulti package. The automated model devel-

opment process is based on iteratively minimizing the AIC

(Akaike Information Criterion) statistics (Calcagno and

Mazancourt 2010) using Eq. 2.

AIC ¼ 2k � 2 logðLÞ; ð2Þ

where, k is number of parameters in the model and L is

maximized value of the maximum likelihood function for

an estimated model. A model with high AIC represents a

poor fit. The step wise regression iteratively adds or drops

the variables thereby finding the best set of variables

explaining urban growth process i.e., transitions from non-

built-up to built-up. After the parameters for the model

were iteratively determined, the regression beta values

were used to generate the probability transition (Pt) sur-

face. The Pt surface was calculated as given in Eq. 3.

Pt ¼ 1

1 þ e� boþb1X1þb2x2þb3x3þ���þbnxnð Þ ð3Þ

where, Pt is the probability of transition from non-built-up

to built-up, x1, x2, x3���xn are the driving variables, b1, b2,

b3���bn are the corresponding regression coefficients and bo

is constant.

Multi-scale modelling and fractal analysis

Fractal analysis is one means of identification of spatial

scale at which a geographical process is operating (Lam

and Quattrochi 1992). The fractal analysis was carried out

on the Pt rasters calculated at different resolution i.e., 30 to

240 m at 30 m intervals, using stepwise logistic regression

while generalizing raster datasets with aggregation using

averaging method (Hu and Lo 2007). These were classified

using natural groupings, into three classes i.e., low proba-

bility, medium probability and high probability. The high

probability pixels were given a value 0 and the rest of the

pixels as value 1. The binary images were imported into

FRACTALYSE software to calculate fractal dimension

using linear logarithmic regression. Relative operating

characteristic (ROC) statistics for Pt rasters was calculated

to check for consistency of result from the fractal analysis.

Log N eð Þ½ � ¼ D: log eð Þ þ c; ð4Þ

where N(e) is the number of cells representing high prob-

ability, e is the grid distance and D is the fractal dimension.

Urban growth simulation with MAS

We used Netlogo, a programmable multi agent modelling

environment for the model implementation (Wilensky

1999). Our spatially explicit model briefly contains three

procedures, (1) model initialization and parameter specifi-

cation, (2) model simulation run, and (3) model termination

and model outputs. The model initialization requires

specifying the model parameters which includes, urban and

rural population growth rates, percentage similarity,

neighbourhood type, radius of spatial influence of the

Table 1 Satellite and ancillary

data used
Satellite and Sensor Path/row Date of acquisition Cloud cover

Landsat TM 5 147/39 25/10/1989; 27/03/1999; 06/03/2009 0 %

Open series map no. Scale Edition Updated on

H43K14 1:50,000 1st Edition, 2010 2005–2006

H43K5; H43K9; H43K13 1:50,000 1st Edition, 2009 2005–2006

H43K10 1:50,000 1st Edition, 2008 2005–2006
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agent, urban and rural agent’s utility threshold and output

year. During the model initialization all the environment

variables were also loaded in the model so as to simulate

the regional landscape. Netlogo uses a pseudo-random

system to ensure that the model is reproducible. The ran-

dom seed specified in the model ensures generation of

random numbers in the model to be deterministic. After

initialization, the model is run for specified number of

iterations. The model terminates with an output grid

showing the final utility value which corresponds to the

potential of a cell for urban growth in a scale of zero to one.

The final grid is subjected to thresholding with highest

percentile values showing urban growth for the prediction

period.

Population growth drives the changes in the landscape

resulting in increase in built-up areas (Sudhira et al. 2004). We

hypothesized that the spatial distribution and interaction of

urban and rural population in a regional landscape with mixed

urban and rural settings also has influence on the transition of

landscape towards built environment. Such interplay of urban

and rural population result a specific spatial pattern is difficult

to model using empirical modeling techniques. MAS was thus

utilized to model spatial distribution and interaction of pop-

ulation with one another and with the environment, resulting

specific spatial patterns of urban growth. The main assump-

tion of the model is that rural population residing in areas with

limited infrastructure, utilities and other services restricts the

potential of the area for urban growth while urban population

promotes urban growth.

The model uses population growth as the global driver

of urban growth in the study area. Urban and rural popu-

lation growth rates were calculated using Census of India

Fig. 3 Raster based environment variables (i) Slope, (ii) Proximity to

roads, (iii) Proximity to national highways, (iv) Proximity to railways,

(v) Proximity to water bodies, (vi) Proximity to forests, (vii)

Proximity to villages, (viii) Proximity to infrastructure services, (ix)

Proximity to urban areas, (x) Density of villages, (xi) Density of roads

(xii) Density of railways, (xiii) Density of Highways, (xiv) Density of

infrastructure services, and (xv) Elevation
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data from 1971 to 2011. The weighted average was used to

determine the population representing urban and rural

population. The weights were determined according to the

fraction of geographic area that each administrative region

contributes. The rationale to follow this approach was that

our study area does not correspond to specific administra-

tive boundary and therefore there was little spatially

explicit information of the urban and rural population. The

population figures were utilized to calculate the growth rate

of the population (Eq. 5).

Growth Rate ¼ Pt

Pt�1

� �1
n

�1; ð5Þ

where n is the difference between the initial and final year

and t is the final year.

Also, with the unavailability of sufficient census data to

find out the exact population growth function, we assumed

that the population growth in our study area follows an

exponential function as given in Eq. 6 (Tobler 1970).

Pt�1 ¼ Pt � ex; ð6Þ

where, x is the population growth rate.

The two groups of the agents in our model: urban and

rural agents were programmed to develop corresponding to

the population figure reported by the system dynamics

modeler. The model utilizes the probability surface

obtained from logistic regression to initialize. Our further

discussion pertaining to the action of the agents will cor-

respond while taking example of a sample agent from

urban population group. The iteration in our synchronous

model involves the agent to evaluate the neighboring cells

within the radius initially defined, for percentage of similar

agents (agents of same group). In case of absence of

minimum percentage of similar agents, the agent searches

neighboring cells and migrate to another location. Sec-

ondly, as agent reaching a particular cell evaluates the

utility value of the cell. The utility value of the cell is

derived from a heuristic utility function (Eq. 7) defined

distinctly for urban and rural population agents (Li and Liu

2007). Initially, the ‘‘value’’ variable in the utility function

is derived from the transition probability raster, however

during the simulation the agent’s action changes ‘‘value’’

variable depending upon the agent and action type.

Utility value¼ W1�PROXattractivnessð Þþ W2�PROXforest

� �
þ W3�PROXnational�raodsð Þ
þ W3�PROXrailways

� �
þ W4�PROXroadð Þ

þ W5�PROXurbanð Þþ W6�PROXvillage

� �
þ W7�PROXwaterð Þ
þ W8�PROXinverse�slope

� �
þ W9�valueð Þ:

ð7Þ

Weights (Table 2) for defining the utility function were

derived using Saaty’s pair wise comparison (Li and Liu

2007; Tian et al. 2011). Consistency ratio was examined to

ensure consistency in the pairwise comparison matrix.

The urban agent increases the ‘‘value’’ varible only if

the utility value of a cell under consideration is higher than

its threshold value else the agenet searches neighbouring

cells for higher utility value. The same procedure operates

for the rural agents as well. But the rural agents instead of

increasing, decreases the ‘‘value’’ variable. The value

variable layer remain dynamic during the model run while

the other environment variables remains static. The overall

stucture of the model is summarized in Fig. 4.

ROC statistic was calculated for the model output

considering real change/no-change in built-up areas dur-

ing the period 1999–2009. Sensivity analysis was carried

for each of the model parameters while nullifying the

effect of other model parameters by modifying the model

code. The model output for each of the simulation run

during sensitivity analysis was compared with real

change/no-change in built-up areas during 1999–2009.

This approach enabled us to explore model dependency

on individual parameters.

The resultant transition probability images were vali-

dated using the ROC statistics. This approach enabled to

explore the model dependency on individual parameters.

Table 2 Distinct weights for

urban and rural agent types
Environment variable Weights (urban agents) Weights (rural agents)

Proximity to attractiveness 0.0599 0.0654

Proximity to forest 0.0173 0.119

Proximity to national highways 0.0659 0.0318

Proximity to railways 0.034 0.0232

Proximity to roads 0.1626 0.0464

Proximity to existing urban 0.3001 0.0179

Proximity to village 0.0153 0.3623

Proximity to water bodies 0.0162 0.1905

Inverse slope 0.1673 0.1102

Dynamic environment 0.1616 0.0334
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However, in an ABM different model parameters affect

each other and thus produce significant variations in the

model outcomes. Multiple simulations run were carried to

perform behaviours space experiments to produce a cali-

brated model. All the model parameters i.e., neighborhood

type, radius for the neighborhood, percentage similarity in

the agents, urban and rural utility threshold, number of

initial urban and rural agents, and the value by which the

agents will increase or decrease the transition probability,

were varied. Table 3 summarizes the induced changes in

the model parameters for each run. A reporter function was

defined to report cells with high transition probability val-

ues (highest percentile) and where real change has occurred

during 1999–2009. This function when maximized reflects

the optimum model parameter settings.

The calibrated model output in the form of transition

probability was compared with real dataset to compute

ROC statistic. Thresholding was further done on the tran-

sition probability based on the highest percentile and

quantity disagreement, and allocation disagreement was

calculated against the real reference map for the year 2009.

The model output for the year 2009 and real map of

1989,1999 and 2009 consisting of built up and non-built up

classes were used to calculate Shannon’s diversity index

(SHDI) at landscape level (McGarigal and Marks 1995).

SHDI is a relative index given in Eq. (8), used to assess the

urban growth in terms of compactness or dispersion at

landscape level. The values of SHDI varies from 0 to log n,

where n is the total number of patches. A positive change

in the value of SHDI represents dispersed growth (Yeh and

Li 2001; Sudhira et al. 2004).

SHDI ¼ �
Xm
i¼1

Pi � lnPi; ð8Þ

Fig. 4 Urban growth

simulation model
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where Pi is the proportion of the landscape occupied by a

specific patch type i.

SHDI obtained for model output for the year 2009 was

compared with the SHDI obtained from the 2009 binary

reference raster. The calibrated model was also used to predict

future urban growth for 2019 and, SHDI were calculated to

assess the spatial patterns of predicted urban growth.

Results

Built-up and non-built up area extraction

The SVM classifier with RBF kernel produced the best results

with c parameter set to 0.7. The results indicate increase in

built-up area from 62.78 km2 in 1989 to 208.95 km2 in 2009

(Fig. 5). The predominant change to built-up area of

113.51 km2 is observed between 1999 and 2009. During

1989–1999 there was a marginal increase in built-up area of

32.55 km2. Most of the growth is concentrated in the areas

adjoining Chandigarh. The satellite cities and towns in close

proximity of Chandigarh city namely, Zirakpur, Kharar,

Panchkula, Naya Gaon and others showed recent urban

growth. The small cities i.e., Kurali, Morinda and Dera Bassi,

connected to Chandigarh city with the national highways also

show significant increase in the built up area. Overall dis-

agreement (allocation and quantity disagreement) in the built

up/non-built up binary map was found to be 9.76, 3.38 and

3.04 % for the year 1989, 1999 and 2009, respectively.

Multi scale modelling and fractal analysis

Fractal analysis of the transition probability raster obtained

at different resolutions from logistic regression pointed out

90 m spatial resolution as the optimal for modelling urban

growth in the study area (Fig. 6). ROC statistic obtained

from the probability surfaces confirmed the operational

scale of urban growth process as indicated by fractal

analysis. The probability surface generated at 90 m was

therefore further used for modelling (Fig. 7). Table 4

shows the regression coefficients and standard errors of the

variables at 90 m spatial resolution for urban growth.

Model calibration and validation

The initial sensitivity analysis revealed the dependency of

individual model parameters on model outcomes (Fig. 8). The

utility thresholds when kept high resulted decreasing ROC

statistic. A lower utility threshold also causes immobility to the

agents. In case of urban utility threshold a significant decrease

in the ROC statistic was observed when the utility threshold

increased from 0.8 to 1. It was also observed that with an

increase in neighbourhood radius the ROC statistic decreased.

The magnitude was observed to be higher in case of Moore

neighbourhood as compared to Von-Neumann neighbour-

hood. In case of percentage similarity, a higher percentage

similarity causes aggregation of similar agent types, where as

lower percentage similarity causes disaggregated distribution

of agent in the spatial domain. ROC is directly related to the

percentage similarity and was found to increase with the cor-

responding increase in percentage similarity values.

It was interesting to observe the individual impacts of

model parameters on model outcomes while nullifying the

effect of other model parameters, however these relation-

ships could not make significant contribution towards

model calibration. The behavioursspace experiments

enabled to determine the optimum parameter values for the

model. The reporter function was found to be maximized

with parameter settings as Von-Neumann neighbourhood

with radius: 1, percentage similarity: 65 %, urban utility

threshold: 0.75, rural utility threshold: 0.5, increase in

transition probability in central cell and cell neighbourhood:

0.01 and 0.005 respectively, decrease in transition proba-

bility in central cell and cell neighbourhood: 0.01 and 0.005

respectively (Table 5). The calibrated model with the above

stated parameter specifications was used to predict built-up

Table 3 Change in model parameters for maximizing the reporter function

Model parameter Extent of variation in model parameters Magnitude of change in model

parameters for each model run

Neighborhood type Moore and Von-Neumann –

Neighborhood radius 1–5 1 cell

Percentage similarity 0–100 % 25 %

Urban utility threshold 0–1 0.25 Unit

Rural utility threshold 0–1 0.25 Unit

Increase in probability 0.025–0.01 0.025 Units

Increase in probability in the surrounding cells 0.025–0.01 0.025 Units

Decrease in probability 0.025–0.01 0.025 Units

Decrease in probability in the surrounding cells 0.025–0.01 0.025 Units
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Fig. 5 Increase in built-up area

from 1989 to 2009 in

Chandigarh and surrounding

areas

Fig. 6 Fractal dimension and

relative operating characteristic

values for probability surfaces

generated using logistic

regression plotted against

spatial resolution
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areas for the year 2009. The ROC statistic for the model

output was calculated to be 0.889. The new transition

probability surface obtained was subjected to thresholding

to obtain only highest percentile values as built-up areas and

the rest as non built-up areas. Figure 9 shows the predicted

urban growth for the year 2009.

The model output for the year 2009 shows that model is

able to capture urban growth from 1999 to 2009 to some

extent. However there are areas where the model under

predicted especially in case of urban growth in Chandigarh

city peripheries in the south west direction. The allocation

disagreement and quantity disagreement for the model

output and reference map was calculated as 9.68 and

4.73 %, respectively. The total disagreement between the

predicted map and the reference map for the year 2009 is

14.42 %. Figure 10 shows the model prediction for the

Fig. 7 Transition probability

surface (90 m resolution) for

non built-up to built-up

Table 4 The regression

coefficients and standard errors

of the variables (90 m spatial

resolution) for urban growth

patterns in Chandigarh and

surrounding areas (statistically

significant at 98 % confidence

interval)

Driver variables Regression b values Standard error 2.75 % 97.5 %

Intercept 61.16 3.4311 54.5217 67.9718

Proximity to forest -1.3297 0.1859 -1.6957 -0.9666

Proximity to national highway -3.1128 0.4939 -4.0885 -2.1516

Inverse slope -1.9165 0.8273 -3.5386 -0.2932

Density of national highway 0.5418 0.1857 0.1773 0.9055

Density of roads 0.9654 0.2974 0.3779 1.5446

Density of villages 0.7501 0.2341 0.2915 1.2097

Proximity to rail 1.5723 0.3463 0.8955 2.2534

Proximity to roads -24.1049 3.0769 -30.1864 -18.1220

Proximity to existing urban -37.65 2.2995 -42.2147 -33.1998

Proximity to water bodies 1.9413 0.6008 0.7644 3.1204

Cox and Snell R square 0.39

Nagelkerke R square 0.42

Cox and Snell R square is based on log-likelihood and takes the sample size into account. It is identity (an

upper bound 1) for normal theory linear regression

Nagelkerke R Square means the power of explanation of the model. Its maximum value can be 1
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year 2019. The model prediction results show the emer-

gence of new random built up patches along the roads,

national highways and existing built-up area.

SHDI was calculated as 0.2202, 0.2951 and 0.4873 for the

years 1989, 1999 and 2009, respectively. The distribution of

built-up area was more compact in 1989 than in 2009, which

showed more dispersed built-up area. SHDI calculated for

the model output for the year 2009 was 0.5028. A very little

difference in the value of SHDI (0.0155) for the model output

and the reference data for the year 2009, revealed that the

model captured similar characteristics of built up area as

observed from the empirical data.

Fig. 8 ROC statistic plotted against major model parameters

Table 5 Cumulative effect of model parameters on model outcomes

Neighbourhood

type

Radius %

Similarity

Urban

utility

threshold

Rural

utility

threshold

Increase in suitability

value

Decrease in suitability

value

Cells with high

value and real

change
Central

cell

Cell

neighbourhood

Central

cell

Cell

neighbourhood

Moore 1 75 0.75 0.75 0.01 0.005 0.005 0.0025 9385

Moore 1 75 0.75 0.5 0.01 0.005 0.005 0.0025 9928

Moore 1 75 1 0.5 0.01 0.005 0.005 0.0025 8976

Von– Neumann 1 75 0.75 0.75 0.01 0.005 0.005 0.0025 9913

Von–Neumann 1 75 0.75 0.5 0.01 0.005 0.005 0.0025 10,215

Von-Neumann 1 75 1 0.5 0.01 0.005 0.005 0.0025 9091

Von-Neumann 1 75 1 0.75 0.01 0.005 0.005 0.0025 9873

Von-Neumann 2 75 0.75 0.75 0.01 0.005 0.005 0.0025 9899
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Discussion and conclusion

Urban growth is a highly complex, non-linear and hetero-

geneous process which involves multi actor decision

making. Among all, human behaviours and decision

making forms the basis of urban growth. Several different

models exist which helps to understand the underlying

processes of urban growth. These models are largely

empirical in nature and most of the time fails to incorporate

population behaviours and decision making. Specifically,

while modelling urbanization dynamics beyond the city

boundaries it is important to understand the role of urban

and rural population taken together in shaping the regional

landscape. ABMs provide opportunities to understand a

system which cannot be simply described using mathe-

matical formula (Crooks 2012). Urban growth is deter-

mined by the spatial and temporal interactions of several

causal factors. At a regional scale, the function of capital

and population are the key factors that determine regional

urban area demand (He et al. 2008). This study demon-

strates complex interactions of urban and rural population.

These complex interactions influence and shape the urban

morphology (Rui and Ban 2010). In our study area, the fast

rate of urban population growth among several other fac-

tors, have triggered urban growth in the surrounding

satellite towns as well as in the Chandigarh city. Our

simulation model takes into account the interactions of two

groups of population i.e., rural and urban population and its

influences on shaping the urban morphology. The two

groups of population show spatial segregation in the

regional landscape. Also, the dynamics of the two groups

have a vast influence on urban growth. Our simulation

model thus incorporates two fundament concepts of spatial

segregation and population dynamics to simulate urban

growth. The two types of agent groups interact with each

other and with the environment dynamically in the wholeFig. 9 Model prediction for the year 2009

Fig. 10 Model prediction for

the year 2019
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simulation process. These agents correspond to artificial

life geospatial agents (Sengupta and Sieber 2007). During

the simulation the dynamic environment also affects the

behaviour of the agents. Our simulation result shows that

the aggregated population level interactions can be mani-

fested in simulating urban growth phenomenon in the

regional landscape. The distinct preferences of urban and

rural population, enabled to define the tendencies of these

groups to reside in spatially distinct environments. Essen-

tially, the main motive of giving different weightages to

different variables was to simulate the aggregated level

preferences of the population. Also, the dynamic variable

defined in the utility function enabled the agents to react to

the changing environment as they attempt to maximize

their individual utility functions.

Logistic regression is used in several studies for pre-

diction of probability of occurrence of an object, event, or

phenomenon (Li et al. 1997; Hu and Lo 2007; Ozdemir

2011; Singh and Kushwaha 2011). If the nature of change

of land use and land cover is binary, hence the probability

of change from non built-up to built-up follows a logistic

curve, described by the logistic function (Hu and Lo 2007).

The changes in fractal dimension values across multiple

spatial scales can be interpreted positively and the scale at

which the highest fractal dimension is observed should be

the one at which the most of the process operates (Good-

child and Mark 1987; Lam and Quattrochi 1992; Hu and

Lo 2007). Since we calculated fractal dimensions using

grid algorithm on binary images, it was imperative to find

out if the model actually performs better at the resolution

observed as turning point during fractal analysis. MAS

proved to be a suitable technique to explore these inter-

actions and address the spatial patterns and dynamics of

urban areas within a conceptual modelling framework. The

model can be further extended to include additional pre-

dominant factors for urban growth such as migration of

population, employment opportunities in the region and

others, to explore the interactions of rural and urban pop-

ulation and produce a realistic simulation of urban growth

in a given region. Currently, the model does not incorpo-

rate the planning process and multi actor decision making,

responsible for urban growth. A much greater effort is

required in order to unravel the complete potential of MAS

for modelling urban dynamics and provide support to

policy makers.
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Taubenböck H, Wegmann M, Roth A, Mehl H, Dech S (2009)

Urbanization in India: spatiotemporal analysis using remote

sensing data. Comput Environ Urban Syst 33:179–188

Tayyebi A, Pijanowski BC, Tayyebi AH (2011) An urban growth

boundary model using neural networks, GIS and radial param-

eterization: an application to Tehran, Iran. Landsc Urban Plan

100:35–44

Thapa RB, Murayama Y (2011) Urban growth modeling of

Kathmandu metropolitan region, Nepal. Comput Environ Urban

Syst 35:25–34

Tian G, Ouyang Y, Quan Q, Wu J (2011) Simulating spatiotemporal

dynamics of urbanization with multi-agent systems—a case

study of the Phoenix metropolitan region, USA. Ecol Model

222:1129–1138

Tobler WR (1970) A computer movie simulating urban growth in the

Detroit region. Econ Geogr 46:234–240

Torrens PM (2006) Simulating sprawl. Ann Assoc Am Geogr

96(2):248–275

Torrens PM, Benenson I (2005) Geographic automata systems. Int J

Geogr Inf Sci 19:385–412

United Nations (2010) World urbanization prospects, 2009 revision.

Population Division, Department of Economic and Social

Affairs, United Nations, New York

Valbuena D, Verburg PH, Bregt AK (2008) A method to define a

typology for agent-based analysis in regional land-use research.

Agric Ecosyst Environ 128:27–36

Vij D (2012) Urbanization and solid waste management in India:

present practices and future challenges. Procedia-Soc Behav Sci

37:437–447

Vliet JV, White R, Dragicevic S (2009) Modeling urban growth using

a variable grid cellular automaton. Comput Environ Urban Syst

33(1):35–43

Wilensky U (1999) NetLogo. http://ccl.northwestern.edu/netlogo.

Center for Connected Learning and Computer-Based Modeling.

Northwestern University, Evanston

Xu C, Liu M, An S, Chen JM, Yan P (2007) Assessing the impact of

urbanization on regional net primary productivity in Jiangyin

County, China. J Environ Manag 85(3):597–606

Yeh AGO, Li X (2001) Measurement and monitoring of urban sprawl

in a rapidly growing region using entropy. Photogramm Eng

Remote Sens 67(1):83–90

14 Page 14 of 14 Model. Earth Syst. Environ. (2015) 1:14

123

http://crgp.stanford.edu/publications/working_papers/Sheffer_Levitt_Diffusion_of_Energy_Saving_WP0057.pdf
http://crgp.stanford.edu/publications/working_papers/Sheffer_Levitt_Diffusion_of_Energy_Saving_WP0057.pdf
http://ccl.northwestern.edu/netlogo

	Numerical modelling spatial patterns of urban growth in Chandigarh and surrounding region (India) using multi-agent systems
	Abstract
	Introduction
	Study area and data
	Study area
	Satellite and ancillary data

	Methodology
	Built-up area extraction
	Raster based environment variables
	Logistic regression model
	Multi-scale modelling and fractal analysis
	Urban growth simulation with MAS

	Results
	Built-up and non-built up area extraction
	Multi scale modelling and fractal analysis
	Model calibration and validation

	Discussion and conclusion
	References




