
RESEARCH ARTICLE

What Caused over a Century of Decline in General Intelligence? Testing
Predictions from the Genetic Selection and Neurotoxin Hypotheses

Michael A. Woodley of Menie1,2
& Matthew A. Sarraf3 & Mateo Peñaherrera-Aguirre4

& Heitor B. F. Fernandes4 &

David Becker5

Published online: 16 January 2018
# Springer International Publishing AG, part of Springer Nature 2018

Abstract
Several converging lines of evidence indicate that general intelligence (g) has declined in Western populations. The causes of these
declines are debated. Here, two hypotheses are tested: (1) selection acting against genetic variants that promote g causes the decline and
(2) the presence of neurotoxic pollution in the environment causes the decline. A linear mixedmodel was devised to test (1) and (2), in
which the secular decline in a “heritable g” (g.h) chronometric factor (comprised of convergent indicators of simple reaction time,
working memory, utilization frequencies of high difficulty and also social-intelligence-indicating vocabulary items and per capita
macro-innovation rates) was predicted using a neurotoxin chronometric factor (comprised of convergent secular trends among
measures of lead, mercury and dioxin + furan pollution, in addition to alcohol consumption) and a polygenic score chronometric
factor (comprised of polygenic score means for genetic variants predictive of g, sourced fromUS and Icelandic age-stratified cohorts).
Bivariate correlations revealed that (other than time) only the polygenic score factor was significantly associated with declining g.h
(r = .393, p < .05 vs. .033, ns for the neurotoxin factor). Using a hierarchical linear mixed model approach incorporating 25 year lags
between the predictors and g.h, time period, operationalized categorically as fifths of a century, accounted for the majority of the
variance in the decline in g.h (partial η2 = .584, p < .05). Net of time period and neurotoxins, changing levels of polygenic scores also
significantly predicted variance in the decline in g.h (partial η2= .253, p < .05); however, changing levels of neurotoxins did not
significantly predict variance in g.h net of time (partial η2 = .027 ns). Within-period analysis indicates that the independent significant
positive effect of the polygenic score factor on g.h was restricted to the third fifth of a century period (β = .202, p < .05).
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Introduction

Sir Francis Galton (1869) made the earliest scientific prediction
concerning temporal trends in intelligence, a trait that he
thought should be declining across generations owing to the

relative fertility advantage of those with lower compared to
those with higher socioeconomic status (which Galton used
as a proxy for intelligence, given the absence of direct measures
of the phenotype). Negative associations between measured
intelligence (IQ) and fertility were subsequently observed in
the 1920s and 1930s, leading psychologists to predict that in-
telligence, being a heritable trait, would decline by around one
to three points per generation due to the action of this “dysgen-
ic” selection (Cattell 1937). Cross-sectional studies conducted
in later decades, in which the IQ scores of age-matched cohorts
were compared, revealed that IQ, rather than declining, was in
fact increasing substantially (Cattell 1950). This anomaly be-
came known as Cattell’s paradox (since Raymond B. Cattell
was the first to draw significant attention to it; Higgins et al.
1962)—the apparent incongruity between observations of (con-
comitant) rising IQ and "dysgenic" selection. This rapid increase
in population-level IQ was subsequently termed the Flynn effect
(Herrnstein and Murray 1994), after James Flynn, who
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demonstrated that these gains are ubiquitous across modernized
and modernizing countries and are found on many cognitive
ability measures (Flynn 1987; Pietschnig and Voracek 2015).
Recent molecular research has confirmed that selection is acting
directly against genetic variants associated with cognitive ability
and related phenotypes, such as educational attainment, in cer-
tain populations (Beauchamp 2016; Conley et al. 2016; Kong
et al. 2017; Woodley of Menie et al. 2016). Of particular note is
a large study of the population of Iceland, which found evidence
that an educational attainment polygenic score (a normally dis-
tributed genetic index comprised of multiple single nucleotide
polymorphisms which collectively significantly predict pheno-
typic variance in a trait of interest) has declined over time across
cohorts, at a rate consistent with the strength of selection acting
against variants captured by this score in this population (Kong
et al. 2017). The observation that the frequencies of genes for
cognitive ability are declining in Western populations, despite
the Flynn effect, adds further significance to Cattell’s paradox.

The Co-occurrence Model

A recently proposed solution to Cattell’s paradox is the co-oc-
currence model (Woodley and Figueredo 2013), which is based
on the observation that genetic selection and environmental in-
fluences act on different variance components of intelligence.
Far from being a homogeneous phenotype, intelligence is com-
prised of both general mental ability (g) and specific perfor-
mance components (s), i.e., those variances that are specific to
certain abilities and tests (Spearman 1904). Utilizing theMethod
of Correlated Vectors (MCV), a simple statistic that correlates
the g loadings of a given set of subtests with an associated effect
size (such as the magnitude of inbreeding depression effects or
the strength of the correlation between test performance and
reaction speed) in order to determine the degree to which the g
loading moderates that effect size, it has been found that the
strength of selection acting against intelligence correlates posi-
tively with subtest g loading (ρ = .87, p < .05, 95% CI = .87 to
.87, N = 108,040; Woodley of Menie et al. 2017a), whereas the
magnitude of the Flynn effect correlates negatively with g load-
ings (ρ = − .38, p < .05, 95% CI = − .39 to − .38, N = 16,663; te
Nijenhuis and van der Flier 2013). Positive vector correlations
are termed Jensen effects (after Arthur Jensen, who developed
MCV; Rushton 1998), with negative vector correlations corre-
spondingly termed anti-Jensen effects. Jensen effects are typi-
cally associated with biological and genetic variables, such as
subtest heritabilities (Kan et al. 2013; Voronin et al. 2015,
Table 3, p. 3), effects of inbreeding depression, and physiolog-
ical correlates of intelligence, such as nerve conduction velocity
and measures of neural metabolic efficiency (Jensen 1998).
Anti-Jensen effects, by contrast, are typically associated with
influences on intelligence that arise from the environment and
culture, such as IQ points gained by lower-ability adoptees from
rearing in higher-ability households (te Nijenhuis et al. 2015),

educational interventions (te Nijenhuis et al. 2014), and test
practice effects (Lievens et al. 2007; Reeve and Lam 2007; te
Nijenhuis et al. 2007). This indicates that selection acts on the
highly heritable g factor, whereas environmental influences
(such as increasing exposure to education and increasing famil-
iarity with cognitive testing) act on the least heritable and most
specialized ability variances, thereby producing the Flynn effect.
Hence, it is predicted that gains in s can co-occur with losses in g
and that such gains and losses have been co-occurring in at least
some modern populations.

The co-occurrence model led to the specific prediction that
not all cognitive ability measures will exhibit positive temporal
trends. A subset should in fact be tracking the long-term decline
in g due (in part) to selection. Evidence has been found for this
temporal pattern using simple single-parameter measures of
endophenotypes considered basic to g, such as simple visual
and auditory reaction times (Madison et al. 2016; Silverman
2010; Woodley et al. 2013, Woodley et al. 2014; Woodley of
Menie et al. 2015b) and color discrimination ability (Woodley
of Menie and Fernandes 2016a)—which all track potential de-
clines in neural efficiency—and also declining 3D rotational
ability (Pietschnig and Gittler 2015), backwards digit span per-
formance (Wongupparaj et al. 2017; Woodley of Menie and
Fernandes 2015), and Corsi Blocks performance
(Wongupparaj et al. 2017), which all track declines in working
memory. Single-parameter ratio-scale measures such as these
have the potential advantage of measurement invariance with
respect to facets of g over time (an indicator exhibits measure-
ment invariance if, say, the parameter that it measures at time
point A is the same parameter that it measures at time point B).
Conventional pencil-and-paper IQ tests by contrast are typically
not measurement invariant across cohorts (Fox and Mitchum
2013; Wicherts et al. 2004), consistent with the Flynn effect
being associated with increasing ability specialization over time
(Woodley and Madison 2013). Other indicators that potentially
track declining g are those that are relatively insensitive to en-
vironmental influences by virtue of being highly heritable (high
heritability by definition implies low environmentality, since
each variance component is expressed as a percentage of the
overall variance explained; Sesardic 2005). Vocabulary exhibits
both the highest heritability and the highest g loading of any
intelligence measure (Kan et al. 2013). The utilization frequen-
cies of the four highest difficulty (thus likely hardest to learn
and use appropriately) vocabulary target words from the
WORDSUM short-form test appear to have declined across
155 years of written text in Google Ngram viewer (Woodley
of Menie et al. 2015a). Consistent with expectations, this fre-
quency decline was predicted by the two-way interaction be-
tween the strength of the negative correlation between fertility
and item pass rate (capturing selection strength) and item re-
sponse theory difficulties (both computed using data from the
General Social Survey), net of temporal autocorrelation, word
age, and population written literacy rates.
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Similar declines have also been noted in the utilization fre-
quencies across over a century of texts of words connoting high
levels of altruism, especially altruism directed towards the
group to which the originator of the text belongs (Woodley of
Menie et al. 2017a). Altruismmay function as a costly signal of
g (Millet and Dewitte, 2007) and may be an important locus of
selection favoring higher population levels of g under condi-
tions of inter-group competition; thus, its decline may signal
reduced levels of the more g-loaded aspects of social intelli-
gence (Woodley of Menie et al. 2017a). Potentially consistent
with this, a cross-temporal meta-analysis of performance on a
related measure (ability-based emotional intelligence) found
statistically significant indications of decline with respect to
one performance domain (perceiving emotions) across 14 years
(2001-2015) (Pietschnig and Gittler, 2017).

Population-level measures of complex problem-solving ability
constitute another class of indicator that seems to track declines in
g. Such measures include per capita rates of macro-innovation
(i.e., conspicuously novel and disruptive innovation, as
convergently rated by historians of science and technology;
Galton 1869; Huebner 2005; Murray 2003). Since the mid-
nineteenth century, it has been found that per capita rates of mac-
ro-innovation, and also the rates of eminent individuals responsi-
ble for them, have declined (Huebner 2005;Murray 2003), which
is consistent with selection against g having reduced the numbers
of ultra-high ability individuals capable of solving complex sci-
entific and engineering problems (Woodley 2012; Woodley and
Figueredo 2013). Collectively, these indicators of long-term de-
clines in g have been termedWoodley effects (Sarraf 20171).

Recently, it was found that a chronometric factor (i.e., a latent
variable comprised of various temporal trends) capturing the
decline in “heritable” general intelligence (g.h) and comprised
of five measures potentially indicative of declining g exhibited
both high internal consistency among its component indicators
and discriminant validity relative to two other chronometric fac-
tors, tracking somatic modifications (such as changes in height,
cranial fluctuating asymmetry, BMI) and indications of cognitive
ability specialization (such as increasing concretization in lan-
guage use, improvements in short-term memory, increased utili-
zation frequencies of easy-to-learnwords) respectively (Woodley
of Menie et al. 2017a). It was also found that the vector of the
loadings of the g.h factor on each of the three psychometric
ability indicators used in the construction of the factor (simple
visual reaction times, backwards digit span, and high-difficulty
vocabulary items) correlated significantly with the vector of the
strength of selection acting against each indicator (r = .97,
p < .05, 95% CI = .97 to .97, N = 15,576). This is precisely in
line with the expectation that the g.h chronometric factor is

tracking a phenotypic decline in g due to the action of selection,
as the psychometric variables that co-vary in time with g.h to the
greatest degree are the ones under strongest selection.

Neurotoxins

Various researchers have proposed a role for intelligence-
depressing neurotoxins in driving secular trends in cognitive
measures. Nevin (2000) suggests that declining levels of lead
exposure during parts of the twentieth century in the US may
have been responsible for both the Flynn effect and changes in
the life history characteristics of this population, such as de-
creasing rates of violence and out-of-wedlock pregnancy.
Silverman (2010) claims that increased exposure to lead,
chlordane, trichloroethylene and mercury, as byproducts of
industrial growth in the West since the nineteenth century,
may have slowed simple reaction times, as exposure to these
toxins is known to reduce processing speed. ten Tusscher et al.
(2014) also contend that dioxin exposure may be associated
with reaction speed decline. More recently, Clarke (2015) has
proposed the antiinnatia theory, which holds that mercury
exposure has increased the prevalence of autism, via interfer-
ence with normal patterns of gene expression, and has pro-
moted the Flynn effect as a byproduct. Another proponent of
neurotoxin-based explanations of intelligence change is
Barbara Demeneix, whose 2014 book Losing Our Minds
posits that thyroid hormone disruption provides a bridge
linking the effects of neurotoxins with declining cognitive
functioning, via such disruption's effects on patterns of gene
expression in development. In addition to declining g (p.6),
Demeneix also posits a larger nomological network of behav-
ioral abnormalities, such as autistic spectrum and attention
deficit/hyperactivity disorders, increasing frequencies of
which may also stem from the action of endocrine-disrupting
neurotoxins (Demeneix, 2014, 2017). Demeneix (2014) dis-
cusses the effects of "ever-present neurotoxins" (p.12),
such as lead and alcohol, on g, in addition to biphenols,
mercury, and dioxins along with other more recently
manufactured potentially endocrine-disrupting chemical
pollutants.

Unlike the co-occurrencemodel, where predictions are explic-
it (specifically that indicators of g.h should decline due to genetic
change, whereas specialized abilities should increase, tracking
environmental improvements), it is not at all clear what neuro-
toxin models are predicting. Different researchers seem to be
predicting different things. Nevin (2000) suggests that lead levels
have generally declined in industrialized nations during the twen-
tieth century and that this phenomenon is promoting the Flynn
effect, whereas Demeneix (2017) argues that gmight be increas-
ing or decreasing over time—if the former is occurring, the in-
crease is lower than it would otherwise be due to the presence of
various neurotoxins, but if the latter is occurring, neurotoxins
explain at least some significant portion of the decline, and, in

1 The term appears to have been coined in 2015 by Charles Murray. Sarraf
(2017, p. 239), however, first defined Woodley effects as “secular trends that
plausibly result, in part or in whole, from population-level degradation of the
integrity of genetic factors that underlie g.”
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either case, even if lead levels have fallen (pp. 75–91)2.
Conversely, Silverman (2010) suggests that lead and other
industrial byproducts might be increasing over time and that
this might be slowing simple reaction speed. Clarke (2015) sug-
gests that increasing exposure to mercury actually boosts intelli-
gence, whereas Demeneix (2014) maintains the opposite. Very
little effort has beenmade to test any of the predictions of variants
of this model using secular trend data. Proponents of the neuro-
toxin model have typically relied upon either “visual correlation”
(i.e., juxtaposing different graphs; e.g., Clarke, 2015) or simple
assertions that a given neurotoxin could account for a given
change in a cognitive indicator, without subjecting the claim to
temporal analysis (e.g., Demeneix 2014, 2017; Nevin 2000;
Silverman 2010; ten Tusscher et al. 2014).

A key question is whether neurotoxins of one sort or another
have their effects on g—or in other words, is the intelligence loss
that results from exposure to various neurotoxins associated
with the Jensen effect? Establishing that this is the case is
important to determining how temporal trends in levels of
various neurotoxins might impact different variance
components of intelligence. Unfortunately, only limited
research has been conducted on this question. A bare-bones
meta-analysis found that among Western and Chinese
children, the impact of lead toxicity on subtests is largely
indiscriminate with respect to their g loadings, being
associated with a low-magnitude Jensen effect (N-weighted
ρ = .06, p < .05, 95% CI = .02 to .10, N = 2041; Woodley of
Menie et al. 2018). The effect of prenatal methylmercury expo-
sure on young adults and young children is associated with a
modest-magnitude Jensen effect (r = .42, p < .05, 95% CI = .37
to .47, N = 1022; Debes et al. 2015). This is consistent with the
results of a multi-group confirmatory factor analysis conducted
by the same group, which found evidence for a small-magnitude
moderation effect of g on the group difference (Debes et al.
2016). Reanalysis of published data on the effects of organic
mercury exposure in another study (Marques et al. 2016)
reporting these data for the five subscales of the Stanford-Binet
V test in a sample of Amazonian children yields a weak magni-
tude anti-Jensen Effect by contrast (r= − .18, p < .05, 95% CI =
− .28 to − .08, N = 365). Alcohol (which, like lead, is an “ever-
present neurotoxin”) most adversely affects the intelligence of
infants exposed to it in utero. Flynn et al. (2014) found that fetal
alcohol effects on cognitive abilities, as with lead toxicity, are
associated with a low-magnitude Jensen effect (ρ = .12, ns, 95%
CI =− .06 to .29, N = 125). Flynn et al. (2014) found that fetal

cocaine exposure, by contrast, is associated with a low-
magnitude anti-Jensen effect (ρ =− .23, p < .05, 95% CI = − .35
to − .10, N = 215). Finally, Calderón-Garcidueñs et al. (2008)
reported data on the negative effects of atmospheric pollution
(which causes neuroinflamation) on cognitive ability using the
WISC-R for a sample of 55 individuals sourced from Mexico
City, compared with a control group of 18 sourced from the
countryside. Metzen (2012) reanalyzed these data utilizing
MCV, finding a low-magnitude anti-Jensen effect (r= − .17, ns,
95% CI = − .39 to .06, N= 73). Aggregating across all of these
vector correlations reveals a low-magnitude Jensen effect
(ρ = .11, p < .05, 95% CI = .08 to .14, N = 3841).

These results suggest that increased exposure to various
neurotoxins might reduce g; however, it is unclear whether
the results of these vector correlation analyses are entirely
meaningful, given that in many of these studies, the healthy
control groups (against whom the exposure groups are com-
pared) are likely to have higher g, simply as a consequence of
the tendency of lower levels of g to predispose individuals to
poorer quality life outcomes in many respects (see Herrnstein
and Murray 1994). Thus, the comparison of group means on
subtests is likely contaminated with a pre-existing g difference
between comparison groups. This will in turn confound to
some degree differences in s stemming from the direct action
of neurotoxins on narrow cognitive abilities, potentially yield-
ing zero-magnitude vector correlations.

The assumption that neurotoxic chemicals do not have sub-
stantial effects on g in infants and children - or, at the very
least, effects that persist through to adulthood - is bolstered by
the observation that g is only very weakly associated with
measures of developmental instability such as fluctuating
asymmetry (Banks et al. 2010), indicating that the trait is
strongly canalized against environmental factors that would
disturb its development (Woodley of Menie and Fernandes
2016b). g also has a very high narrow-sense heritability in
adulthood (.54–.88, Bouchard Jr 2004, p. 150; .86, when g
is directly modeled as a latent variable, Panizzon et al. 2014),
which appears to be relatively stable across time, social
groups, and countries (Bates et al. 2016; Figlio et al. 2017;
Plomin 2002, Rushton 1989, Sundet et al. 1988, cf. Tucker-
Drob and Bates 2016). An implication of these findings is that,
in adults, g has low global trait modifiability (Sesardic 2005)
and is correspondingly resistant to factors that would substan-
tially alter its heritability in the course of development (such as
the sort of gene-environment interactions on which
Demeneix’s (2014) model relies heavily; Sesardic (2005)
notes that despite decades searching for gene-environment
interactions on g, no unambiguous examples have been
found—apparent environmental effects on children typically
fade out in adulthood as additivity rises). The preponderance
of the data does not therefore appear supportive of a non-
trivial role for neurotoxins in causing secular declines in g
among the adult populations of Western nations.

2 Demeneix’s (2014, 2017) somewhat confused qualitative inferences might
result in part from an apparent lack of familiarity with the literature on secular
trends in intelligence. In discussing the Flynn effect (Demeneix 2017, pp. 75–
91), for example, she wrongly maintains that Woodley et al.’s (2013) finding
of a decline in g is at odds with studies revealing Flynn effects. However,
Woodley et al. (2013, 2014) made clear that the Flynn effect and dysgenesis
on g can co-occur as they involve different phenotypic variance components of
intelligence.
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Directly Testing the Genetic and Neurotoxin
Causation Models

Although the weight of evidence reviewed thus far indicates
that the neurotoxin causation model is considerably weaker
than the genetic causation model, a direct test of both models
is possible utilizing temporal analysis. A chronometric g.h
factor comprised of various converging indicators of declining
g.h has already been described and validated in a previous
temporal analysis (Woodley of Menie et al. 2017a). The
existence of data on secular trends in both polygenic scores
associated with cognitive ability and neurotoxins allow for a
potentially very direct test of the influence of genetic and
neurotoxic factors on the chronometric g.h factor. Based on
the foregoing considerations, it is expected that the decline in
the g.h factor will be driven predominantly by the genetic
predictor and not by the neurotoxin predictor.

Methods

Variables

Three chronometric factors were computed, capturing declining
g.h, polygenic scores comprised of variants predictive of educa-
tional attainment and g (the two measures share around 60%
linkage-pruned genetic variance; Okbay et al. 2016) and neuro-
toxins respectively. In an effort to ensure high spatial contiguity,
the data are mostly sourced from populations or (in the case of
some of the neurotoxin measures) physical environments in the
US and UK, the two exceptions being one of the polygenic
score trends, which came from the population of Iceland (where
the pattern of selection against educational attainment mirrors
that found in the US and UK), and the dioxin trend, which came
from sediments sourced from a lake in Europe. Missing data
among these chronometric factors were handled via multivariate
imputation (McKnight et al. 2007). All data utilized in the pres-
ent analysis are publicly available on Dryad (https://doi.org/10.
5061/dryad.nb301).

Chronometric “Heritable g” Factor

This chronometric factor captures the common temporal trend
variance among five indicators of declining g.h and was com-
puted using unit-weighted factor scoring which simply in-
volves standardizing the indicators and creating an aver-
age—with the indicator-average correlations serving as factor
loadings (Gorsuch 1983). This “course-grained” factor analy-
sis is recommended when either indicator or case numbers are
low and it furthermore avoids problems associated with sam-
ple specificity of factor scoring coefficients generated by stan-
dard errors of inconsistent magnitudes across differently sized
samples (Gorsuch 1983). The g.h-decline indicators include

(i) US and UK simple visual reaction timemeans corrected for
methods variance (sourced fromWoodley et al. 2014); (ii) US
backwards digit span means (sourced fromWoodley ofMenie
and Fernandes 2015); (iii) a common factor comprised of the
utilization frequencies in Google Ngram Viewer of four high-
difficulty (as determined via item response theory)
WORDSUM words (sourced from Woodley of Menie et al.
2015a; see Woodley of Menie et al. 2017a, p.78, Table 9 for
information on the unit-weighted factor loadings for each
item); (iv) a common factor among the utilization frequencies
of 10 altruism-indicating words employed by Charles Darwin
(Darwin 1871; see Woodley of Menie et al. 2017a, p.78,
Table 8 for information on unit-weighted factor loadings of
each item) in his description of the phenomenon of social
selection. And, finally, (v) declining per capita rates of
macro-innovation sourced from the US and UK and weighted
by the population sizes of these countries (from Bunch and
Hellemans 2004, as utilized in the analysis of Huebner 2005).
Therefore, the chronometric g.h factor captures declining g.h
as measured by processing speed, working memory, vocabu-
lary ability, social intelligence and complex problem-solving
ability. The data were available for the years 1850 to 2008, and
the properties of the chronometric g.h factor are fully de-
scribed by Woodley of Menie et al. (2017a; the indicator-
level data are available in full in the Nexus 200 supplementary
data appendix).

Chronometric Educational Attainment Polygenic Score Factor

The educational attainment polygenic scores were sourced from
two populations. The first was computed using a framework set
of approximately 620,000 high-quality single nucleotide poly-
morphisms covering the entire genome in a large sample (N =
129,808 individuals) representative of the entire population of
Iceland (Kong et al. 2017). Kong et al. (2017) break their sample
out into eight lots of birth year bins (spanning 1916 to 1986) and
fit a curve to the means. The data were extracted directly from
their Figure 2 (p. E729). The second polygenic score trend was
obtained from Domingue et al. (2017), who compute an educa-
tional attainment polygenic score, drawing from a set of 1.7 M
single nucleotide polymorphisms, for a combined sex sample of
8845 non-Hispanic Whites, sourced from the US Health and
Retirement Study. The data are available for 37 years, spanning
the 1919 to 1955 birth cohorts (these being the cohorts for which
sampling was highest). The data were extracted directly from
Figure 5 in the bioArxiv version of their paper (p. 27) at yearly
intervals. The presence of selection acting directly against these
variants in this particular sample has been confirmed in earlier
studies by Conley et al. (2016) and Beauchamp (2016), with the
latter finding that selection against these variants should be re-
ducing attained years of education by around 1.5 months per
generation, which equates to loss in g of 1.06 IQ points
(Woodley of Menie et al. 2017a). The two secular trends are

276 Evolutionary Psychological Science (2018) 4:272–284

https://doi.org/10.5061/dryad.nb301
https://doi.org/10.5061/dryad.nb301


here concatenated into a single unit-weighted polygenic score
chronometric factor, the loadings of which are presented in
Table 1. The loadings are extremely high magnitude, indicating
that the factor is well specified. The data span the years 1916 to
1986, encompassing 42 observations.

It must be noted that only the trends with respect to the
1940 and more recent birth cohorts can be said to mostly
capture the effects of genetic selection, as longevity and g
are positively correlated; hence, the older samples will have
higher polygenic scores in part due to a survival bias—indeed,
longevity and educational attainment/g are genetically, as well
as phenotypically, correlated (Domingue et al. 2017; Kong
et al. 2017). Nevertheless, it has been found that the secular
decline persists even after explicitly controlling for survival
bias (Kong et al. 2017); thus, the decline in the means of the
polygenic scores utilized in the present analysis can be said to
be due to a mixture of both selection and survival bias.

Chronometric Neurotoxin Factor

Neurotoxin indicators were selected on the basis that they
satisfy Demeneix’s (2014) criterion of being “ever present.”
This is taken to imply that the substances in question have
been present in the environment for over a century (i.e., since
the Industrial Revolution of the nineteenth century at the
least). The “ever present” criterion is significant, as indications
of declining g have been noted since the nineteenth century
(Woodley of Menie et al. 2017a), thus for neurotoxic sub-
stances to have been primarily responsible for these trends,
they must have been present in the environment at least since
then. Four neurotoxins were found to qualify as “ever present”
(based on the aforesaid definition): (i) mercury pollution, mea-
sured as concentrations (ng/l) using ice cores obtained from
the Fremont Glacier, Wyoming (data available from 1879 to
1994, from Clarke 2015, extracted from Figure 1, p. 47, orig-
inally from Schuster et al. 2002); (ii) lead pollution. Measured
based on exposure (in tons per thousand of the US population
for both gasoline and white lead; data available from 1876 to
1986, from Nevin 2000, extracted from Figure 12, p. 21);

PCDD/PCDF (dioxin and furan) pollution, estimated based
on toxic equivalent sediment concentration (ng/kg) from
Lake Constance, Europe (data available from 1895 to 1993,
fromHagenmeier andWalczok 1996, extracted from Figure 2,
p.103; data on sediment core B was used, as pollutant levels
were sampled for more time points), and finally alcohol con-
sumption, which was obtained for the years 1899 to 1995 for
the UK (measured in liters of ethanol consumed per capita,
sourced from portmangroup.org.uk) and for the years 1876 to
1995 for the US (measured in gallons consumed per capita for
all beverages, sourced from Vinepair.com). Both UK and US
alcohol consumption data were combined into a common
unit-weighted alcohol factor (the temporal correlation be-
tween both measures was 0.26, p=0.055, N=55 years).

In order to conserve Brunswik (1952) symmetry, the
neurotoxin trends were matched to the same level of
chronometric aggregation as the g.h factor (five indica-
tors) and the polygenic score factor (two indicators).
There is furthermore a reasonable expectation of tempo-
ral covariance among these indicators as their time
trends should be jointly influenced by industrialization
(which will have driven up environmental levels of lead,
mercury and dioxin, and also alcohol production).
Therefore, the four neurotoxin trends were standardized
and loaded onto a unit-weighted chronometric neurotox-
in factor. The loadings are listed in Table 2—consistent
with expectations, all are positive in sign and all load
significantly onto the factor, indicating that the factor is
reasonably well specified. The data span the years 1876
to 1995, encompassing 120 observations.

Results

Model Specifications and Output

Two analyses were conducted. The first involved simply es-
tablishing a matrix of temporal bivariate correlations among
time and the chronometric factors. The second analysis in-
volved a more detailed linear mixed model, in which the poly-
genic score and neurotoxin chronometric factors were used to
predict the g.h factor, lagged by one “standard” (25 year) gen-
eration (so, for example, 1916 polygenic scores were aligned
with 1941 g.h etc.). If neurotoxins have their biggest negative
effects on g in childhood or infancy (or even in utero), the
suppressing effects should manifest at a later point in time,
subsequent to exposure. The polygenic score means were col-
lected from different birth cohorts; thus, the impact of changes
in these means on population g.h will also only manifest in
subsequent decades. To avoid any temporal confounds, the
continuous variable of time was polytomized into fifths of a
century 20 year periods and used as a nesting variable con-
taining toxicity and polygenic scores independently.

Table 1 Unit-weighted loadings of the polygenic score chronometric
factor onto each polygenic score trend along with year range,
observation number and source

Polygenic
score
indicators

Polygenic score
factor loadings

Range
(years)

Number of
observations

Source

Icelandic
polygenic
scores

.951** 1916-1986 8 Kong et al.
(2017)

US polygenic
scores

.989** 1919-1955 37 Domingue
et al.
(2017)

**p < .001
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All data were analyzed via a hierarchical linear mixed model.
Consequently, to predict g.h., the time period variable was en-
tered first followed by neurotoxins nested within fifths of a
century periods and polygenic scores nested within periods.
To determine whether autoregressive effects were present
among the data, the covariance parameter estimate was comput-
ed using a first-order heterogeneous autoregressive structure
(ARH(1)). The results of this analysis indicated no significant
effect of autoregression upon the time trends analyzed. Toxicity
and polygenic scores were standardized prior to the analysis.
Partial η2 were computed for each variable in the model.

Table 3 presents the bivariate temporal correlation matrix
among time, the polygenic score, neurotoxin and g.h chrono-
metric factors.

Among the bivariate temporal correlations, time and poly-
genic scores both significantly predict the decline in g.h.

Neurotoxins do not predict the decline in g.h; neither are they
predicted by time. There appears to be a significant positive
association between neurotoxins and polygenic scores (neuro-
toxin levels are higher when polygenic score levels are higher).
There is no theoretical reason to expect such an association,
which may simply reflect chance variation.

The nested (within period) and non-nested (between peri-
od) hierarchical linear mixed model analyses are presented in
Tables 4 and 5. For the nested analysis, the intercepts were
modeled as random effects. All analyses were conducted
using SAS 9.3; for the second set of analyses, the command
proc MIXED was used.

ThenestedhierarchicalLMMrevealsnosignificantdifferences
in the g.hmeanswhen themeans for the third and fourth fifth of a
century periods are comparedwith the reference period (fifth fifth
of a century,β= 0).The first and second fifth of a century periods

-4

-3

-2

-1

0

1

2

3

4

1876 1901 1926 1951 1976 2001

erocS
)

Z(
dezidradnatS

Year

Heritable general intelligence
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Fig. 1 Temporal trends for the neurotoxin and polygenic score chronometric factors along with g.h (with the predictors lagged by 25 years)

Table 2 Unit-weighted loadings of the neurotoxin chronometric factor onto each neurotoxin indicator along with year range, observation number and
source

Neurotoxin indicators Neurotoxin factor loadings Range (years) Number of observations Source

Lead .314* 1876-1986 111 Nevin (2000)

Mercury .871** 1879-1994 50 Schuster et al. (2002)

Alcohol consumption
(US+UK)

.888** 1876-1995 106 Portmangroup.org.uk (UK), Vinepair.com (US)

Dioxin+Furan .602* 1895-1993 14 Hagenmeier and Walczok (1996)

**p <.001; * p < .01
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were associated with too much "missingness" among the covari-
ates; therefore theywere excluded from the analysis.

Among the predictors, only the decline in polygenic
scores in the third fifth of a century period significantly
predicted the decline in g.h; however, neurotoxins have
no significant within period effects on g.h.

The hierarchical LMM reveals that only time (operational-
ized as fifth of a century periods) and polygenic scores inde-
pendently predict significant amounts of the variance in de-
clining g.h.

The temporal trends of the three factors (with 25 year lag-
ging) are graphed in Fig. 1.

Discussion

The results of both of the analyses are consistent with the pre-
diction, as the polygenic score factor is the only one of the two
predictors (other than time period) to significantly predict var-
iance in declining g.h. The relationships are furthermore not
confounded with autoregressive effects (as established via the
0 value for the ARH(1) step in the multi-level model). Only
polygenic scores in the third fifth of a century period had sig-
nificant positive effects as predictors of g.h decline; neurotoxins
had no significant within-period effects and predicted a non-
significant amount of the overall variance.

While the results of the linear mixed model analysis are
consistent with our prediction, the amount of variance in the
g.h decline explained overall by the polygenic score chrono-
metric factor is modest (25.3%). There are several potential
reasons for this. First, the most densely sampled of our poly-
genic score data in time (from the US cohort) came from the
smaller of the two cohorts, which necessarily introduces mea-
surement error into the point estimations of mean polygenic
score by birth year. This is likely largely responsible for the
high year-on-year heterogeneity observed among these data
points. Conversely, the Icelandic sample (which had > 14
times the number of individuals) was much more poorly sam-
pled across time (eight measurement occasions in total),

Table 4 Nested hierarchical linear mixed model examining the effect of the standardized neurotoxins (ZT) and standardized polygenic score (ZPGS)
factors upon g.h nested within time periods (operationalized as fifths of a century)

Multilevel Linear Model

Model Fit

AIC BIC -2RLL

13.8 -8.2 -8.2

Solution for Random Effects

Covariance Parameter Estimate Standard Error Z-value Significance

ARH (1) 0 . . .

Residual .048 .011 4.47 <.0001

Solution for Fixed Effects

Effect Estimate (β) Standard Error Denominator DF t-value Significance

Intercept -.697 .454 40 -1.53 .133

Third fifth 20th Century .59 .093 40 .2 .842

Fourth fifth 20th Century .231 .469 40 .49 .624

Fifth fifth 20th Century 0 . . . .

ZT (Third fifth 20th Century) .248 .133 40 1.86 .07

ZT (Fourth fifth 20th Century) .014 .091 40 .15 .879

ZT (Fifth fifth 20th Century) .375 .457 40 .82 .417

ZPGS (Third fifth 20th Century) .202 .058 40 3.48 .001

ZPGS (Fourth fifth 20th Century) -.08 .091 40 -.89 .38

ZPGS (Fifth fifth 20th Century) .211 .265 40 .80 .43

Table 3 Bivariate correlation matrix among time, the g.h, polygenic
score and neurotoxin chronometric factors utilizing the full range of
years for which each factor was available

g.h Time Neurotoxins Polygenic score

g.h – − .89** .033 .393*

Time – .004 − .577**

Neurotoxins – .319*

Polygenic score –

***p< .0001, **p < .01, *p < .05
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entailing that relatively high levels of “missingness” were
present in those data. Polygenic scores are themselves rela-
tively crude and suffer from the “missing heritability” problem
(i.e., they predict much less variance in the traits of interest
that is known to be under genetic control based on the results
of classical behavior genetic studies). This means that a great
many of the variants used in constructing these scores may be
“false positives” for the trait of interest and that many addi-
tional variants that are under selection are likely to be absent
from these scores. This potentially reduces their validity sub-
stantially. Second, measurement error is also present among
the indicators comprising the g.h chronometric factor (al-
though these are relatively muchmore densely sampled across
time for the most part), in addition to which a case could be
made that the factor is contaminated with variance stemming
from additional sources, which is consistent with the observa-
tion fromWoodley of Menie et al. (2017a) that two of the five
indicators (simple visual reaction time and the social intelli-
gence measure) did not exhibit the higher affinity for the par-
ent chronometric g.h factor (relative to the latent Nexus factor
common to all three chronometric factors) that the other three
measures did. One of the indicators (declining per capita mac-
ro-innovation rates), while showing high affinity for its parent
chronometric factor, is clearly not exclusively a product of
declining g either and could plausibly be driven in part by
social, economic and scientific factors operating in tandem
with selection (such as efficiency ceilings, low hanging fruit
e.g. Huebner, 2005). These “contaminants” will necessarily
diminish the validity of the factor, introducing additional mea-
surement error. Third, there are other genetic and demographic
factors that will contribute to the decline in g, whose contri-
butions will not be detected utilizing the polygenic score chro-
nometric factor employed here. These include the effects of
replacement migration involving lower-ability individuals im-
migrating to (predominantly Western) countries populated by
higher-ability individuals (this has been found to be a signif-
icant predictor of the anti-Flynn effect or the tendency for tests
that once showed secular gains to show declines instead, es-
pecially when the aggregate g loading of the test is high;
Woodley of Menie et al. 2017b). Another factor contributing
marginally to the decline in g might be the accumulation of
deleterious mutations resulting from the relaxation of purify-
ing selection on industrialized populations (Woodley ofMenie
and Fernandes 2016b). It is expected that the effects of these

additional factors will be captured by the effects of time peri-
od, which corresponds to all time-varying factors that contrib-
ute to the decline in g.h above and beyond the predictors.

As was mentioned in the “Methods” section, the polygenic
score declines are not purely capturing genetic selection acting
against these variants but are also capturing survival bias or mor-
tality selection. This additional effect will potentiate the apparent
cross-sectional decline in the polygenic scores among older co-
horts (the effects of survival bias become exponentially more
pronounced as a function of cohort age; Kong et al. 2017); thus,
it might be the case that the significant effect of polygenic scores
on g.h in the third fifth of a century period (which would contain
the oldest cohorts) is confounded with this survival bias. This
could be countered with the observation that the secular decline
in polygenic scores persists, even when explicitly controlled for
survival bias in the case of very large N samples (such as the
Icelandic cohort utilized in Kong et al. 2017). Furthermore, al-
though non-significant, the effect of polygenic scores in the fifth
of a century period was also positive in sign, which is suggestive
of thepresenceof theeffect among theyoungest cohorts also.The
use of other very largeN samples containing cognitive polygenic
score data (such as UK BioBank, N > 500,000) and controlling
explicitly for survival bias can allow for this issue to be compre-
hensively addressed in future research.

It might also be claimed that the polygenic score data
supporting the “dysgenic” theory of decreases in g.h only appear
to do so because they cover a relatively short span of years
(compared to the neurotoxin factor)—in other words, what ap-
pears to be evidence for the “dysgenic” theory may be an in-
stance of capitalizing on chance. The likelihood of this is low,
however, in light of the fact that there are data indicative of
selection against g, captured in terms of negative correlations
between fertility and both IQ (Lynn 1996; Lynn and van Court
2004) and educational attainment (Skirbekk 2008), dating back
to the early to mid-nineteenth century. This indicates a poten-
tially constant downward trend in polygenic scores for a century
and a half, at least in parts of the West.

Despite limitations, our analysis appears to be supportive of
the central prediction of the co-occurrence model, i.e., that de-
clining cognitive polygenic scores potentially resulting from
selection have actually had real-world impacts on phenotypic
indicators of g, rather than having their “dysgenic” effects atten-
uated by environmental improvements (via, e.g., establishment
of the sorts of gene-environment interactions that might have

Table 5 Hierarchical linear mixed model examining the effect of time period (operationalized as fifths of a century), polygenic score, and neurotoxin
factors upon g.h. The partial η2 values were estimated via a type I sum of squares GLM

Effect Numerator DF Denominator DF F value Significance Partial η2

Fifths of a century 2 40 25.72 < .0001 .584

ZT (fifths of a century) 3 40 .18 .906 .018

ZPGS (fifths of a century) 3 40 3.5 .027 .253
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driven down the penetrance of these g-related variants, allowing
“phenotypic” intelligence and educational attainment to rise—
which represents an alternative solution to Cattell’s paradox
(Beauchamp 2016; Lynn 1996; cf. Woodley of Menie 2016).
These results also constitute the first comprehensive test of neu-
rotoxin theories of the decline in g. Since the temporal trends of
a reasonable subsample of “ever-present” neurotoxic substances
do not predict declining g across a reasonable span of years at
the level of direct correlation or when competed with polygenic
scores for a more restricted subset of years, neurotoxin caustion
theories can in all likelihood be ruled out as accurate explana-
tions of the so-called Woodley effect.

Some proponents of neurotoxin models of g (or more broad-
ly intelligence) decline will doubtless be skeptical of the results
of our study. Demeneix (2017, p. 88) suggests that Woodley
et al.’s (2013) “dysgenic” argument denies the relevance to g
decline of neurotoxic influences, (partly) in light of the fact that
the lead levels of modernized environments have fallen in re-
cent decades—for this constitutes a failure to appreciate the
rising prevalence of other neurotoxins and their possible dele-
terious effects. She also raises the familiar but long-dead
(Sesardic 2005) corpse of “biological determinism and genetic
determinism”3 (p. 87) to discredit the “dysgenic” theory.

These concerns would surely apply in equal measure to the
present study but are nonetheless without merit, reflecting lack
of familiarity with the germane science. As indicated earlier,
Demeneix’s (2014, 2017) theory does not explicitly offer test-
able predictions and furthermore appears to be constructed in
such a way as to guard against disconfirmation, thus exhibiting
the key feature of a “degenerating” research program (Lakatos
1970). Provided that Demeneix’s (2017) theory is explicitly said
to be compatible with both negative or positive (and so presum-
ably even stable) temporal trajectories of population-level intel-
ligence, it is unclear how the theory could be tested at all or what
precisely it adds to explanations of time trends in intelligence.
Should it be noted that changes in lead exposure (coupled with
the other neurotoxins considered here) lack a meaningful statis-
tical relationship with g (or more broadly speaking intelligence),
Demeneix and similarly inclined researchers can (and have)
simply invoke(d) some of the other innumerable putative neu-
rotoxins—while shirking the obligation to offer predictions or
subject their claims to appropriate testing.4 But since the neuro-
toxins considered here appear to be unrelated to levels of g.h
over time, despite having well-established intelligence-depress-
ing effects, why suppose that other neurotoxins are to blame?
Demeneix might update her theory to contend that neurotoxins
have their adverse impact primarily or exclusively on narrow
abilities (s), which are generallymore sensitive to environmental

insult; but distinguishing such an impact from the countervailing
factors driving the Flynn effect (in order to demonstrate that the
former actually exists) would require substantial statistical anal-
ysis; purely or largely qualitative theorizing simply would not
do.

There are further reasons to doubt that neurotoxins have
any significant bearing on changes in g, reasons which con-
nect with Demeneix’s (2017) allegation of “biological . . . and
[sic] genetic determinism.” In the first place, and as reviewed
in the "Introduction", the weight of empirical evidence leaves
little doubt that g is under far stronger genetic than
environmental control. Both Flynn et al. (2014) and
Gottfredson (2005) make it clear that environmental insults
and deprivations have little effect on g, and even in the worst
cases (e.g., severe malnutrition and infectious disease burdens
not known in the West for decades), losses of intelligence are
rarely permanent (Gottfredson 2005, p.316). Moreover, ef-
forts to raise intelligence, and certainly g (Jensen 1998), via
direct environmental intervention in childhood are almost
never successful (Bailey et al. 2017; Protzko 2015; te
Nijenhuis et al. 2014). The politicized objection of “genetic
determinism” does nothing to vitiate these findings.

Furthermore, one must ask why the environmentalist
obfuscations5 that Demeneix (2017, pp. 87–88) employs
in her critique of the allegedly “genetic determinist” “dys-
genic” theory do not apply with equal force to her own
model. Given the degree to which g is under genetic con-
trol, it is entirely unsurprising that decreased population-
level enrichment for g-related genetic variants stemming
from selection has caused g to decline. Conversely, sub-
stantial environmental influences on g would be highly
surprising in that no environmental factor has been shown
to unambiguously or persistently affect g in adults, con-
gruent with other evidence of the trait’s low global mod-
ifiability. If, then, genes should not be expected to have
rather direct effects on g levels (because of the supposedly
inextricable contributions of genetic, epigenetic, and en-
vironmental factors to phenotypic development), such that
a “dysgenic” theory of the sort offered here would be
illegitimate, why should it be anticipated that environ-
mental factors, which at most only very weakly affect g,
do have such effects? What allows Demeneix (2014,
2017) and others to straightforwardly infer from increas-
ing levels of neurotoxin exposure a secular loss, whether
relative or absolute, in intelligence if the interactions
among relevant causal factors are simply too complex to
disentangle? As a general rule, environmental determinists
about intelligence, are almost never aware that their en-
deavors to complicate the relationship between genes and

3 Without distinguishing the two, giving the charge a pleonastic quality.
4 This is perfectly consistent with environmental determinist stratagems used
to trivialize or eliminate the role of genes in generating differences in intelli-
gence (see Brand 1999).

5 One example of these can be seen in her effort to explain IQ differences
among individuals as a function of “modulat[ed] gene expression” related to
“prenatal placental blood supply and nutrition” (Demeneix 2017, p. 87).
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intelligence would create problems no less, or even more,
serious for their favored theoretical models compared to
hereditarian ones.

Finally, it needs to be stated that our findings as they
pertain to temporal trends in neurotoxins and g.h should
not be taken to indicate that environmental neurotoxin
exposure is cognitively harmless. As Flynn et al. (2014)
note, even though factors such as prenatal alcohol and
cocaine exposure do not have strong effects on g, they
still suppress performance on intelligence tests and reduce
quality of life for the afflicted. Furthermore, our findings
do not rule out the possibility that neurotoxin exposure
may have influenced other, potentially more environmen-
tally sensitive, aspects of human psychology. The results
of Nevin’s (2000) temporal analysis of the temporal trend
in per capita lead exposure and out-of-wedlock pregnancy
along with various forms of criminality, indicating an ef-
fect of the former on the latter, are quite compelling and
may provide fertile grounds for exploring the impacts of
changing levels of environmental neurotoxins on human
behavioral ecology.
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