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Abstract
The generation of real-world evidence (RWE), which describes patient characteristics or treatment patterns using real-world 
data (RWD), is rapidly growing more popular as a tool for decision-making in Japan. The aim of this review was to sum-
marize challenges to RWE generation in Japan related to pharmacoepidemiology, and to propose strategies to address some 
of these challenges. We first focused on data-related issues, including the lack of transparency of RWD sources, linkage 
across different care settings, definitions of clinical outcomes, and the overall assessment framework of RWD when used for 
research purposes. Next the study reviewed methodology-related challenges. As lack of design transparency impairs study 
reproducibility, transparent reporting of study design is critical for stakeholders. For this review, we considered different 
sources of biases and time-varying confounding, along with potential study design and methodological solutions. Addition-
ally, the implementation of robust assessment of definition uncertainty, misclassification, and unmeasured confounders 
would enhance RWE credibility in light of RWD source-related limitations, and is being strongly considered by task forces 
in Japan. Overall, the development of guidance for best practices on data source selection, design transparency, and analyti-
cal methods to address different sources of biases and robustness in the process of RWE generation will enhance credibility 
for stakeholders and local decision-makers.

Key Points 

The real-world data landscape is rapidly evolving in 
Japan, with more than 20 patient-level data sources 
available.

The Pharmaceuticals and Medical Devices Agency 
is organizing two main data repositories, namely the 
Medical Information Database Network and the Clinical 
Innovation Network.

A methodological framework of how to conduct real-
world evidence studies needs to be developed to ensure 
transparency, robustness, and reproducibility.

1 Introduction

In Japan, the use of real-world evidence (RWE) for hypoth-
esis generation and decision-making has become an area 
of focus to overcome the limitations of clinical trials. The 
Pharmaceuticals and Medical Devices Agency (PMDA) 
has recognized the importance of using real-world data 
(RWD) for regulatory purposes, and discussions regard-
ing the acceptability of RWE for regulatory submissions 
have already been initiated. However, there are multiple 
challenges that still need to be addressed, including RWD 

availability, quality, and completeness; accurate definition of 
clinical outcomes; and analytical approaches used in RWE 
studies [1]. To address some of these issues and promote the 
utilization of RWD throughout the drug life cycle, includ-
ing post-marketing drug safety assessment, relevant guide-
lines have been published, and multiple initiatives have been 
launched in Japan [2].
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The number of available RWD sources is steadily increas-
ing, with 22 patient-level databases listed in the Japanese 
Society for Pharmacoepidemiology database in 2022 [3]. In 
a previous work focusing on RWD in Japan, we described 
the advantages and challenges of the commercially available 
databases Medical Data Vision (MDV) and JMDC (formerly 
known as Japan Medical Data Center) [4]. Another resource, 
the Japanese National Database of Health Insurance Claims 
and Specific Health Checkups (NDB), was established in 
2009 to generate data and assist in health policy planning 
and regulation of public healthcare expenditures. NDB 
includes almost all the administrative claims data collected 
from the insured population in Japan [5], as well as data 
from yearly health checkups offered to people who are cov-
ered by the National Health Insurance schemes [6]. How-
ever, NDB is currently used only by academic researchers 
and is not accessible to private companies [5].

Most studies using RWD from MDV and JMDC focus 
on describing patient characteristics and treatment patterns 
since such RWD sources contain little information on clini-
cal characteristics and outcomes [4]. A recent review that 
assessed the types of studies conducted between 2015 and 
2020 using claims databases in Japan found that descriptive 
studies were the most common, accounting for 63%, 43%, 
and 41% of the studies conducted using NDB, MDV, and 
JMDC data, respectively [7]. To address this issue of miss-
ing data and to create a high-quality medical information 
database for conducting rigorous assessments of drug safety, 
the Medical Information Database Network (MID-NET) was 
launched in April 2018, in collaboration with 23 hospitals 
from 10 healthcare organizations across Japan.

The strength of the MID-NET database lies in the rich 
clinical data and standardized coding procedures across dif-
ferent contributing hospitals, allowing integrated analysis. 
For example, an important effort is in progress to improve 
signal detection using this database [8]. MID-NET is also 
well recognized for post-authorization safety studies (PASS), 
especially under Good Post-Marketing Study Practice regu-
lation. The Clinical Innovation Network (CIN) is another 
initiative that was launched to develop a registry-based infra-
structure for improving clinical drug development. Some 
of the registry databases have been leveraged for multiple 
applications, including patient enrollment into clinical trials 
and PASS, though the initiative has not yet been completed. 
Therefore, both MID-NET and CIN may provide data of 
high quality and reliability [9].

Although local guidelines refer to data-related issues, 
including quality, completeness, suitability, and transpar-
ency, further guidance is needed to expand the framework 
of RWD use [10, 11]. Furthermore, inappropriate analyti-
cal methodologies may lead to biased evidence generation, 
undermining the credibility of RWE. Although PMDA 
offers expertise to pharmaceutical companies, there is no 

formal process in place to systematically utilize this sup-
port, and the choice of inappropriate study design and ana-
lytical methods may negatively influence study results [12, 
13]. Other challenges that could limit the interpretation of 
results include sensitivity analysis, analytical models, meas-
urement of validity, and confounding. These elements are 
generally considered to be study limitations but are often 
not addressed analytically. Additionally, time-related bias 
is generally under-considered with respect to confounding 
bias. Time-related bias is potentially more important than 
randomization itself in the context of target trial emulation 
[14]; it is harder to address due to the needs of data at multi-
ple time points, and is highly dependent on the study design 
[15].

This review aims to provide strategies to overcome some 
of these challenges, and to fill gaps in the current practices in 
RWE generation in Japan related to pharmacoepidemiology 
for regulatory purposes, by focusing mainly on data- and 
methodology-related issues.

2  Challenges and Solutions Relating to Data

This section discusses challenges relating to RWD and how 
these may be addressed (Table 1). PMDA was the primary 
source of evidence to assess the most recent initiatives on 
RWD-related considerations in Japan, and a targeted litera-
ture review was conducted to collect information on the most 
prominent methodological issues associated with RWE gen-
eration in Japan.

2.1  Lack of Data Transparency of RWD Sources

Sufficient transparency of RWE provides information on 
how findings were derived, allowing for assessment of 
validity and study reproducibility, but the reliability and 
transparency of the RWD used to generate RWE in Japan 
have not been adequately assessed. Several research groups 
have attempted to develop guidelines and best practices for 
the assessment of different types of data. For example, an 
evidence-based guideline (3X3 Data Quality Assessment) 
has been proposed for the assessment of electronic health 
record (EHR) data, focusing on three dimensions of the 
EHR data: patients, variables, and time [16]. A different 
study explored good practices and challenges, and proposed 
solutions for the effective use of administrative data, includ-
ing aspects of data acquisition, approval processes, access 
and disclosure, data and metadata, research support, and 
data reuse [17].

Assessment of RWD should cover both non-regulatory 
and regulatory purposes, but generally the requirement for 
the latter is more stringent. Considering the future needs of 
RWE, RWD that meets a minimum standard accepted by 
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regulators, a “regulatory grade,” would be needed to fur-
ther expand its applications, though no consensus has been 
reached on the definition of the minimum accepted stand-
ard. To assess the appropriateness for “regulatory grade,” 
a proposed checklist includes the following elements: high 
quality (provenance of each datapoint must be clear, trace-
able, and auditable), completeness (predefined rules for 
data abstraction), and timing of data update [18]. A differ-
ent checklist for investigators in database research focuses 
on following items: population covered, capture of study 
variable, continuous and consistent data capture, record 
duration and data latency, and database expertise [19]. In 
this regard, a flow diagram was developed allowing users to 
match a study objective and the data quality and quantity in 
the Japanese context. The process sequentially clarifies the 
following elements: construction process (reliability of the 
data collection), data related to endpoints, anonymization, 
data volume (sample size), and sufficiency of the follow-up 
period to address the research question [20].

2.2  Lack of Linkage Across Different Care Settings

In Japan, there are hospital-based (e.g., MDV) and insur-
ance-based (e.g., JMDC) administrative claims databases, 

which can cover different healthcare settings. Japan has a 
universal medical insurance system consisting of five pub-
lic insurance programs (based on occupational status), and 
every resident of Japan must be enrolled in one of these 
programs. Patients can access clinics and hospitals without 
a primary care physician gatekeeper system or insurance 
restrictions [4]. However, the presence of different health 
insurance plans based on patient occupational status repre-
sents a barrier to patient follow-up when individuals change 
their health insurance plan. In addition, different healthcare 
settings, such as hospitals and clinics, are not usually linked.

Data linkage of de-identified databases, using either 
deterministic or probabilistic methods, has been a recent 
focus. These methods are considered promising, though 
they generally require a certain degree of personal health 
information [21, 22]. The deterministic approach considers 
linkage as binary (i.e., linked or not linked), while proba-
bilistic data linkage is useful when linkage variables are 
inaccurate or not unique [23]. For instance, an algorithm 
was developed to perform probabilistic data linkage based 
solely on diagnosis codes [International Classification of 
Diseases, 10th Revision (ICD-10)] available in two differ-
ent de-identified datasets. This method presents three main 
advantages: (i) it only uses diagnosis code information, (ii) 

Table 1  Summary of potential solutions to overcome current challenges in real-world research

Category Challenge Solutions

Challenges relating to data Lack of transparency on RWD-generation process Use “checklist” with specific criteria to evaluate the 
appropriateness for regulatory-grade data quality (e.g., 
completeness, transparency, generalizability)

Lack of linkage across different care settings Data linkage using deterministic or probabilistic approach
Lack of clinical outcome data in traditional RWD Chart review studies; claims data sources linked to elec-

tronic health records
Challenges relating to 

study methodology
Lack of design transparency Enhance design transparency, for example, clear outcome 

definition, causal diagrams, identification of con-
founders, and fit-for-purpose design by reporting key 
parameters into a study design diagram and tables 
reporting key parameters to define the study population 
and analysis

Lack of clarification on “time zero” definition Use a new user active comparator design
Graphical representation of key study design variables
Emulate the target trial and map key study parameters 

and time zero definition. Alternatively, either randomly 
assign the individual to one of the treatment arms or 
create exact copies of the individual (clones)

Issue of handling time-varying confounding Marginal Structural Model with inverse probability 
weighting or G-computation

Robust definitions Sensitivity analysis on the definitions of time windows, 
outcomes, and exposures

Assumption of no unmeasured confounding in tradi-
tional methods

Report E-value
When the E-value is too low, implement further sensitiv-

ity analysis
Misclassification and lack of validation of code-based 

algorithms
Conduct quantitative bias analysis of misclassification
Conduct validation studies using chart review, electronic 

medical data, or registry databases
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it accounts for discrepancies between the datasets, and (iii) 
it does not require subsample for tuning [24].

A different study performed in the USA demonstrated that 
a comparative effectiveness study could be reproduced when 
conducting imputation on missing outcome values based on 
probabilistic data linkage of two claim databases, using pre-
index characteristics, including demographic data, comor-
bidities, and utilization of healthcare services [25]. Although 
this method has not yet been applied, it could prove to be 
successful in Japanese databases, for instance, linking claims 
data to electronic medical records (EMRs). However, trans-
parent reporting of the data linkage method, including the 
quality of the data sources, linkage variables, methods, and 
evaluation, is crucial to inform potential linkage bias [26].

Of note, there are important concerns in terms of regula-
tions of patient privacy. Under the Next-Generation Medi-
cal Infrastructure Act, enacted in 2018, Japanese regulation 
authorities have certified some business operators to conduct 
data linkage across different data sources. Some stakehold-
ers have suggested using MyNumber, the Japanese national 
identification number, to link different databases [12].

2.3  Lack of Clinical Outcome Data in RWD

Different types of RWD, such as EHRs, administrative 
claims data, or disease-specific patient registries, are struc-
tured and collect data elements for specific purposes, and 
may vary in population coverage, variables included, and 
longitudinality. Previously, we highlighted the limited 
amount of clinical information available in widely used 
Japanese RWD sources, namely MDV and JDMC [4]. To 
address this limitation, chart review studies at single or mul-
tiple sites could be conducted. The emergence of the RWD 
Database (Real World Data Co. Ltd. database, containing 
both EMR and claims data [12], may help to fill this gap. 
For instance, a validation study was conducted leveraging 
this database to use EMR data as a gold standard for the 
validation of algorithms to identify cardiovascular outcomes 
[27]. This study developed claims-based algorithms to iden-
tify clinical outcomes and validated them through the use of 
EMRs. Furthermore, another study validated a claims-based 
(JMDC) algorithm identifying patients with Crohn’s disease 
by using patients’ medical record data from a single site. 
Patient identifiers from the claims database were restored to 
collect data from medical records [28].

The creation of databases rich in clinical outcomes may 
help address the gaps encountered in traditional claims 
data sources. As mentioned above, the MID-NET database, 
which is rich in clinical characteristics, has been developed 
to respond to the needs of conducting PASS. Multiple case 
studies, focusing on blood coagulability, thrombocytopenia, 
and renal dysfunction, identified clinical outcomes based 
on laboratory data that are collected in this database [2]. 

CIN encompasses multiple registry databases aiming to col-
lect clinically relevant data that reflect real-world clinical 
practice, and studies using the Registry of Muscular Dys-
trophy (REMUDY) and Japanese Registry for Mechanically 
Assisted Circulatory Support (J-MACS) have been con-
ducted for patient enrollment and PASS, respectively. The 
J-MACS database also includes quality of life data that are 
not available in traditional Japanese claims RWD sources. 
However, the validation of the data quality for each registry 
remains to be addressed and approved by PMDA [9].

3  Challenges and Solutions Relating 
to the Methodology

3.1  Lack of Design Transparency in RWE Generation

The growing importance of RWE for regulatory purposes 
has led to the need to build stakeholders’ trust in the RWE 
generation process. Transparency is a necessary but not suf-
ficient condition to ensure high-quality RWE. In real-world 
research the study design precedes the study implementa-
tion, but transparency is often lacking for the methodological 
decisions applied during study conduct and potential deriva-
tions from the planned analysis, which may result in cherry 
picking of the results [29]. There are several publications 
that provide guidance on a structured process to support 
the validity, transparency, and reproducibility of real-world 
research [30–32]. A published study proposes a sequential 
process from early design addressing the adequacy and feasi-
bility of the data, analysis considerations, and reporting [31]. 
During design phase and prior to analysis, it is advisable to 
identify the critical temporal anchors (e.g., study entry date, 
follow-up window) and provide a design diagram [29, 32, 
33]. The structured template and reporting tool for real world 
evidence (STaRT-RWE) has been developed as a result of 
a collaboration between the International Society for Phar-
macoeconomics and Outcomes Research (ISPOR) and the 
International Society for Pharmacoepidemiology to provide 
guidance on planning and reporting of RWE studies, includ-
ing aspects of key study parameters, study design, validity 
assessment, sensitivity analysis [34, 35], study registration, 
replicability, and stakeholder involvement to increase deci-
sion-makers’ confidence in RWE [30].

Study design is constrained by and strongly related to the 
structure of the data sources used; therefore, as a first step, 
we believe that transparent, detailed, structured descriptions 
of the data sources used, as well as reports of the limita-
tions and advantages of the study design, would help build 
consistent knowledge about the appropriateness of the exist-
ing data sources in studies in Japan (Table 1). In the design 
phase, this information can be acquired from data dictionar-
ies and pre-analysis investigation of data samples to assess 
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data completeness. In the context of evaluating treatment 
effectiveness, the following process has been proposed: (i) 
choose the estimand by specifying the hypothesis, (ii) opt 
for a trial emulation framework and define the variables for 
meeting the “exchangeability” assumption, and (iii) specify 
the analytical method at the design stage [36]. In this regard, 
examples of trial emulation using observational data were 
reported in the literature [37, 38]. In Japan, only one trial 
emulation study has been published, aiming to evaluate the 
effect of several antidiabetics among Japanese patients using 
the NDB [39]. Further pilot studies are needed to evaluate 
challenges and opportunities of conducting emulation trials 
using Japanese RWD.

3.2  Lack of Clarification on “Time Zero” Definition 
and Related Bias

We have previously discussed the lack of reliability and 
reproducibility due to the absence of guidance on the defini-
tion of “time zero” of follow-up [4]. Inappropriate definition 
of “time zero” due to misalignment with study eligibility 
and treatment assignment may result in introducing bias in 
real-world studies, especially selection bias and immortal 
time bias [14]. On one hand, setting “time zero” either after 
both eligibility and treatment assignment or at eligibility 
but after treatment assignment, introduces a selection bias 
in favor of prevalent users. On the other hand, setting “time 
zero” either before eligibility and treatment assignment or 
at eligibility and before treatment assignment introduces 
immortal time bias [14]. A recently published study using a 
Japanese database showed that, in the new user versus non-
user design, different settings of “time zero” for non-users 
(i.e., at eligibility assignment, by propensity score matching, 
by random selection, and the cloning method) would gener-
ate substantially different results in the parameters evalu-
ated [15]. In RWD studies comparing a treatment with an 
active comparator, the new user active comparator design 
can accommodate for this misalignment by anchoring “time 
zero” of follow-up to treatment initiation and eligibility [40]. 
Moreover, this design allows preservation of the temporality 
of covariates and evaluation of time-varying hazards [41]. 
Even though “time zero” is properly defined, it remains nec-
essary to adjust for potential post-“time zero” selection due 
to censoring [14].

Determining the consistency of a treatment strategy 
may not always be straightforward, and in that case, two 
approaches have been proposed: (i) random assignment 
of each individual to one of the treatments, and (ii) creat-
ing exact copies of the individual clones [14]. This latter 
approach has recently gained attention due to the possibility 
of considering the time lag, for example, between diagnosis 
and treatment assignment as part of an intervention [42]. The 

cloning method by design introduces an artificial censoring, 
associated with the incompatibility of a clone to be allocated 
to one arm. The method uses weights that account for the 
selection bias, and are estimated using inverse probability 
of censoring weighting. However, this method inflates sam-
ple size, and observations are not independently and identi-
cally distributed; hence variance estimation requires a robust 
method, for example, non-parametric bootstrap, which can 
be computationally intensive when using large databases 
[42]. One possibility would be to work on a subsample to 
address this issue when the sample is large enough.

3.3  Hurdle in Handling Time‑Varying Confounding

In longitudinal studies, properly accounting for the relation-
ship between patient characteristics, patients’ medical his-
tory, and the treatment is required to avoid bias. However, 
when time-varying exposure can be influenced by prior 
time-varying patients’ clinical characteristics and mediate 
the effect on the outcome, common methods for control-
ling confounding may not be valid [43]. A marginal struc-
tural model using inverse propensity score weighting can 
address the issue of mediator, and is based on estimating 
inverse probability of treatment weighted estimators [44]. 
Marginal structural model method was applied to account 
for the time-dependent nature of anemia to assess its effect 
on renal function using the JMDC database, implementing 
the inverse propensity score weighting method to balance for 
time-dependent confounding [45]. Importantly, the above-
mentioned methods do not address the issue of long-term 
dependency, and in this regard, advanced methods such as 
counterfactual recurrent network were developed to handle 
time-dependent confounders by using balancing representa-
tions [46]. Counterfactual recurrent network implements a 
model that uses adversarial training and recurrent network to 
build a balancing representation without assuming the form 
of treatment assignment, resulting in removal of the asso-
ciation between patient history and assignment treatment. 
Other methods and algorithms may help address these chal-
lenges. For instance, Medical Deconfounder, which relies on 
a probabilistic factor model, was developed to account for 
common unobserved characteristics among multiple medica-
tions [47]. G-method is another method that can account for 
time-varying confounders affected by previous treatment, 
though it requires modeling both covariates and outcome, 
and may be sensitive to the violation of the assumption of 
unmeasured confounding and model misspecification [48]. 
Further, targeted maximum likelihood estimation would 
allow for implementation of a variety of machine learn-
ing algorithms [49]. However, a significant challenge is the 
lack of a data-driven procedure to find the most appropriate 
causal inference method when using RWD.
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3.4  Sensitivity Analysis and Validation Study 
to Tackle Uncertainty of Key Parameter 
Definitions

Another issue is the presence of uncertainty in the operation 
definitions, which may have a negative impact on decision-
makers. Sensitivity analyses on time windows, outcomes, 
and exposures may help assess the impact of those defini-
tions on the results. Using MDV database, for instance, sen-
sitivity analysis was conducted by setting a more stringent 
definition of the treatment/exposure in a study that investi-
gated treatment effectiveness in patients with inflammatory 
bowel disease [50]. Further, a comparative effectiveness 
study among patients with non-valvular atrial fibrillation 
employed varying time horizons in a sensitivity analysis on 
the same database. We believe that conducting sensitivity 
analysis on study parameter definitions would be useful for 
stakeholders to evaluate result robustness in the presence of 
uncertainty on parameter definitions.

Generally, RWD are collected for purposes other than 
research (e.g., audit, reimbursement), and accurate diagnosis 
of medical conditions may be incorrectly captured in the 
data, resulting in potential misclassification of outcomes and 
exposures. Misclassification occurs in most studies, and in 
general, methods for sensitivity analysis consist of testing 
different assumptions with regards to sensitivity and speci-
ficity [51]. There are several methods to evaluate the impact 
of misclassification. For example, probabilistic sensitivity 
analysis allows a record-level correction that can handle 
the correction for multiple sources of bias [51]. Another 
study focused on outcome misclassification and proposed an 
adjustment method when misclassification probabilities are 
known beforehand [52]. One of the important issues when 
focusing on misclassification is setting the proper range of 
sensitivity and specificity parameters to conclude on the 
measurement validity [53].

Code-based algorithm validation studies are also scarce 
in Japan [12]. There are multiple considerations when con-
ducting validation studies, such as the selection of the gold 
standard against which the algorithm validity is assessed. 
In Japan, positive predictive value (PPV) is considered as 
the main performance indicator when considering outcome 
validation [54]. There are multiple Japanese data sources 
that can be leveraged to conduct a validation study, and 
guidelines recommend using clinical measurement, regis-
try databases, or chart review as a gold standard [54]. As 
mentioned above, data sources such as the Real-World Data 
Co. Ltd. have the potential to be used for validation, since 
EMR data could be used as a gold standard.

There are only a few examples of code-based validation 
studies using RWD in Japan. One study using JMDC claims 
data evaluated the sensitivity, specificity, negative predictive 
value, and PPV of an algorithm identifying patients with 

Crohn’s disease using data extracted from a medical chart 
review [28]. The authors concluded that using ICD-10 codes 
alone were not sufficient to achieve a suitable PPV, and add-
ing prescription codes was necessary [28]. Another study 
aimed to validate cardiovascular outcomes among diabetic 
patients in claims using EMR data from the Real World Data 
Co. Ltd. database for validation [27]. For the three main out-
comes—that is, congestive heart failure, hemorrhagic stroke, 
and mild or moderate chronic kidney disease—the PPV was 
estimated to be over 90%, despite the fact that definitions in 
the EMR data were based solely on ICD-10 codes, and only 
one of the outcomes was defined based on laboratory data 
[27]. As an alternative example, a validation study was car-
ried out utilizing JMDC to evaluate distinct algorithms for 
identifying treated diabetic patients [55]. Hemoglobin A1c 
measurements from health checkup data were used as refer-
ence. PPVs above 80% were found for several algorithms 
[55]. The study focused on both PPV and sensitivity.

3.5  Assumption of No Unmeasured Confounding 
in Traditional Methods

Methods widely implemented in RWD studies, such as 
propensity score matching, are based on the assumption 
of absence of unmeasured confounding, also known as the 
“no unobserved confounder assumption” (NUCA). Failure 
to evaluate the degree of the impact of the deviation from 
this assumption may reduce the quality of the evidence and 
lower its credibility among stakeholders. To enhance the 
quality of evidence, the importance of investigating residual 
confounding was noted to better clarify the measured effect 
[56]. Best practices for addressing potential deviation from 
NUCA when estimating causal treatment effect using RWD 
have been suggested [57]. As the first step, an initial sensi-
tivity analysis is conducted using E-value, which expresses 
the minimum strength of unmeasured confounding to nullify 
the observed treatment effect. E-value does not require any 
assumptions, nor prior information on unmeasured confound-
ing, and the robustness of the evidence increases with larger 
E-values [58]. When small E-values are obtained, that is, 
the presence of unmeasured confounding is not implausible, 
further analyses can be performed to examine the deviation 
from NUCA. However, many of these methods are not imple-
mentable in a straightforward manner and lack guidance [57].

In Japan, RWD studies evaluating the impact of unmeas-
ured confounding are limited. For instance, a quantitative 
bias analysis was conducted using E-value to assess the 
minimum strength of unmeasured confounding to nullify 
the hazard ratio of sodium-glucose cotransporter-2 inhibitors 
compared with other glucose-lowering drugs in Japanese 
patients with diabetes. Because the E-value was above two, 
the authors concluded that the impact of the unmeasured 
confounding would be limited [59].
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E-value interpretation depends on the adjustment for 
confounders performed, and there is no clear threshold to 
decide whether to carry out further sensitivity analyses 
[60]. Depending on the level of information on confound-
ers available in the data and the study design, methods such 
as instrumental variable (IV) methods [61], difference-in-
difference [62], missing cause [63], trend-in-trend [64], 
and perturbation variable [65] may be appropriate. Stud-
ies using Japanese databases with such quasi-experimental 
designs accounted for 22.1% (142/643) of all the studies 
using RWD reported from 2015 to 2020 [7]. Few Japanese 
studies used quasi-experimental designs other than pro-
pensity score methods. For instance, one study examined 
the effectiveness of tranexamic acid in post-tonsillectomy 
hemorrhage by defining the use of tranexamic acid in 
the preceding patient as IV, using the Diagnosis Proce-
dure Combination (DPC) database. Results between this 
method and the propensity-score-based method were con-
sistent [66]. Another study had a similar approach, using 
IVs to evaluate the effect of dexmedetomidine on patients 
admitted to the intensive care unit using the DPC database. 
The selected IV was a proxy for hospital preference to pre-
scribe dexmedetomidine [67]. Another quasi-experimental 
design, the difference-in-difference, has been implemented 
in Japan RWD. A COVID-19 study assessed the difference-
in-difference for the change in admissions for ambulatory 
care sensitive conditions before and during the pandemic 
by comparing prefectures enforcing a state of emergency 
with those that did not [68].

More recently, a novel method was developed for address-
ing unobserved confounding when the assumption of the 
presence of two correlated confounders with a nonlinear 
condition on the exposure holds [69]. When external data 
is available, methods leveraging this information can be 
implemented, such as Bayesian twin regression [70], multi-
ple imputation [71], and propensity score calibration [72]. 
However, identifying the most suitable model is challenging, 
especially in a causal inference framework; use of synthetic 
datasets generated using the “plasmode” simulation based 
on healthcare claims, or Wasserstein generative adversarial 
networks, may help assess biases among different methods 
[73, 74]. Overall, we would recommend testing the robust-
ness to NUCA using E-value as the initial step (Table 1).

4  Conclusion

Coordinated efforts are being made in Japan toward optimi-
zation of RWD as the number of patient-level data sources is 
constantly increasing, and new databases, such as MID-NET, 

strive to mitigate the lack of clinical data in the commonly 
used commercial RWDs. Probabilistic or deterministic link-
age and the use of “checklists” for RWD assessment are 
acknowledged as potential solutions for data-related issues. 
Transparent reporting of study design is recognized as an 
important element to increase reproducibility and credibility 
with respect to stakeholders. Emphasis should be placed on 
carefully defining different sources of bias, especially time-
related bias; addressing it analytically; and comparing dif-
ferent methods when no best methods have been previously 
defined. Robustness assessment covering the uncertainty of 
the definitions, misclassification, and hypothesis on unmeas-
ured confounders would be valuable for decision-makers. 
Future pilot studies would provide more insight into the 
strengths and limitations of the databases and methodologi-
cal issues. The knowledge gained can support the develop-
ment of methodological guidelines for pharmacoepidemio-
logical real-world studies in Japan.
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