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Abstract
Due to the complex structure of most frame structure, a large amount of sensor data needs to be processed for damage 
diagnosis, which increases the computational cost of diagnosis models and poses a serious challenge to their fast, accurate, 
and efficient damage diagnosis. In order to address this issue, this paper proposes a novel lightweight damage diagnosis 
method of frame structure for mobile devices based on convolutional neural networks. This method first uses mean filtering 
to process the vibration data collected by sensors, and then innovatively combines two convolutional neural network models, 
ShuffleNet and GhostNet, to form a new lightweight convolutional neural network model called SGNet, thereby reducing the 
computational cost of the model while ensuring diagnosis accuracy. In order to test the performance of the method proposed 
in this article, experimental research on damage degree diagnosis and damage type diagnosis is conducted by taking the frame 
structure provided by Columbia University as the research object, and comparative experiments of performance are conducted 
with MobileNet, GhostNet, and ShuffleNet. The experimental results show that the lightweight damage diagnosis method 
for frame structure proposed in this article not only has high damage diagnosis accuracy, but also has fewer computational 
parameters, when the highest accuracy is 99.8%, the computational parameters are only 1 million. At the same time, it is 
superior to MobileNet, GhostNet, ShuffleNet in terms of diagnosis accuracy and computational cost, so it is an effective 
high-precision lightweight damage diagnosis method for frame structure.
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Introduction

With the advancement of science and technology, modern 
productivity has significantly improved, and the application 
of frame structure has become widespread in various fields, 
including mining machinery, civil engineering, aerospace, 
and bridge construction [1, 2]. Frame structure consists of 
interconnected members held together by bolts or welding, 
it often experiences failures due to factors such as bolt 
loosening, uneven force distribution and oxidation [3]. These 
failures may lead to machinery malfunction and catastrophic 
collapse of the frame structure, which can pose significant 
risks to human life, property, and safety. Therefore, it is 

of great engineering practical significance to propose 
effective damage diagnosis methods for state detection and 
damage identification of frame structure, and to make early 
predictions of their healthy operating states.

The composition of the frame structure is increasingly 
moving towards gigantism, complexity and modularity. 
However, the rising computational costs of data pose 
challenges in achieving effective damage diagnosis for 
these structures. Traditional damage diagnosis methods 
include short time Fourier transform (STFT) [4], K − nearest 
neighbor algorithm (KNNA) [5, 6], fuzzy cluster analysis 
(FCA) [7, 8] and peak to peak comparison (PTPC) [9]. Li 
et al. conducted numerical research on planar truss structures 
by using autocorrelation functions of structural acceleration 
responses under white noise excitation to form a covariance 
matrix; they identified damage conditions under different 
noise levels [10]. Malekjafarian et al. proposed an improved 
transition mode identification method by using Hankel 
matrix averaging to detect closely spaced modes [11]. Yang 
et al. employed empirical mode decomposition (EMD) and 
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Hilbert transform to extract damage peaks caused by sudden 
changes in structural stiffness, thereby achieving detection 
of the moment and location of damage occurrence [12]. Li 
et al. investigated a combined method by using EMD and 
wavelet analysis to detect changes in structural response 
data; they decomposed the structural vibration response 
signal into multiple single−component signals by using 
EMD, and then transformed them into analytical signals 
through the Hilbert transform; subsequently, they performed 
a wavelet transform on each single−component signal to 
accurately identify damage location and severity [13]. Zhu 
et al. proposed a bearing fault diagnosis method based on 
wavelet packet decomposition and KNNA; this method first 
decomposed the original bearing vibration signal by using 
wavelet packet decomposition, then calculated the sample 
entropy value for each decomposed signal to construct a 
feature vector, and finally employed KNNA for bearing 
fault diagnosis [14]. Despite the widespread application 
of traditional damage diagnosis methods in various fields, 
the changing complexity of frame structure with scientific 
progress poses challenges. When using traditional damage 
diagnosis methods to deal with damage diagnosis problems 
with complex damage mechanisms, numerous classification 
categories and massive data, it may lead to a decrease in 
diagnostic performance. This problem poses a challenge 
to achieving efficient and accurate damage diagnosis, 
which contradicts the requirements for rapid and intelligent 
development of structural damage diagnosis.

In recent years, with technological advancements and 
continuous algorithms improvements, deep learning has 
achieved significant success in various fields. For instance, 
in computer vision [15–17], natural language processing [18, 
19], speech recognition [20, 21], and autonomous driving 
[22, 23]. Kostic et al. combined sensor clustering−based 
time series analysis with artificial neural networks for 
bridge damage detection under temperature variations; they 
performed 2000 simulations with temperature effects and 
damage conditions by using a pedestrian bridge finite 
element model [24]. Khodabandehlou et al. utilized vibration 
signals and a two−dimensional deep convolutional neural 
network to extract features from historical acceleration 
responses and reduce the dimensionality of the response 
history; this enabled damage state classification through 
a limited number of acceleration measurements [25]. 
Avci et  al. proposed a one−dimensional convolutional 
neural network−based wireless sensor network (WSN) for 
real−time and wireless structural health monitoring; in this 
method, each CNN was assigned to its local sensor data, 
and the respective models were trained for each sensor unit 
without any synchronization or data transmission [26]. Tang 
et al. segmented the original time series data and applied 
visual processing in both time and frequency domains; 
then they overlaid these segmented images into single or 

double−channel images and labeled them based on visual 
features; subsequently, they designed and trained a CNN for 
data anomaly classification [27]. Cuşkun et al. employed 
a novel 3D deep learning architecture to classify MR 
images of patients with brain tumors, thereby determining 
the primary site of brain metastasis. [28]. Al-Areqi and 
colleagues proposed a machine learning approach for the 
rapid diagnosis of the Covid-19 disease, with a focus on 
the impact of different features on classification accuracy 
[29]. Yue et al. proposed a fault diagnosis method by using 
deep adversarial transfer learning; they used a single−layer 
CNN and transferred learning to employ the ResNet residual 
network as both the generator and discriminator in a GAN 
and obtained higher accuracy in both GAN recognition and 
generation capabilities [30]. GAN has shown high accuracy 
in dealing with problems with limited training samples 
and can effectively extract feature information even from 
one−dimensional vibration data. However, GAN generates 
many simulated models, making training time − consuming 
and computationally expensive. It exhibits unique accuracy 
advantages when handling problems with diverse vibration 
data but limited sensor numbers. However, in the context of 
fault diagnosis for frame structure with a large amount of data 
and numerous sensors, it often faces drawbacks such as low 
efficiency, limited diagnostic accuracy and poor intuitiveness.

In order to solve the problem of accuracy degradation 
caused by multi-sensor data in frame structure damage 
diagnosis and reduce the computational cost of the 
model, and achieve accurate damage diagnosis on mobile 
devices, this paper proposed a new structural damage 
diagnosis method. Firstly, the sensor data was subjected 
to mean filtering to achieve smoother data. Subsequently, 
the processed data was input into the SGNet model for 
training. The foundation of the SGNet model is based 
on the ShuffleNet [31] and GhostNet [32], they are 
lightweight models. By making appropriate improvements 
to these models, the new SGNet model became more 
suitable for structural damage diagnosis in building 
frame structures, thereby enhancing the efficiency 
and accuracy of frame structure diagnosis. This article 
has two important contributions. One is to propose an 
accurate damage diagnosis method for frame structure 
in a multi-sensor data environment, and the other is to 
propose a lightweight structural damage diagnosis model 
suitable for mobile devices while ensuring the accuracy 
of damage diagnosis, greatly reducing the computational 
cost of the model.

This paper consists of 6 parts, “Signal Filtering Method” 
section introduces the signal filtering method, “Neural Net-
work Model” section presents the neural network model, 
and “Damage Diagnosis Process” section introduces the 
damage diagnosis process. “Experimental Study” section is 
the main content of the experiment, including experimental 
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objects, experimental data, damage degree diagnosis experi-
ment, damage type diagnosis experiment, model comparison 
experiment and discussion. “Conclusion” section summa-
rizes this paper and draws relevant conclusions.

Signal Filtering Method

Filtering is a commonly used method in signal processing; it 
is used to remove noise or unwanted components from sig-
nals while preserving helpful information. Noise arises from 
random fluctuations caused by measurement errors, sensor 
interference, or other environmental factors. Filtering aims 
to extract useful information from signals while suppress or 
eliminate redundancies. Mean filtering and median filtering 
are two standard methods used for this purpose.

Mean filtering is a linear filtering method that can achieve 
signal smoothing by replacing each sample point with the 
average value of samples in its surrounding neighborhood. 
The mathematical formula for mean filtering can be repre-
sented as:

where y[n] is the filtered signal sample, x[i] is the original 
signal sample, and N determines the size of the neighbor-
hood used for calculating the average value. A larger neigh-
borhood size can provide stronger smoothing effects but may 
result in the loss of signal details.

Median filtering, on the other hand, is a non − linear filter-
ing method that can remove noise by replacing each sample 
point with the median value of samples in its surrounding 
neighborhood. The mathematical formula for median filter-
ing can be represented as:

where y[n] is the filtered signal sample, x[i] is the original 
signal sample, and N determines the size of the neighbor-
hood used for calculating the median value. Median filtering 

(1)y[n] =
1

N

∑n+N∕2

i=n−N∕2
x[i]

(2)
y[n] = median

(
x
[
n − N∕2

]
, x
[
n − N∕2 + 1

]
,… , x

[
n + N∕2

])
x[i]

is suitable for cases where noise statistics do not follow the 
Gaussian distribution and isolated outlier values are present. 
A larger neighborhood size can remove larger−size noise, 
but it may lead to blurring of signal.

Using mean and median filtering as signal processing 
methods can improve signal quality. However, their appli-
cability depends on specific application cases and the sta-
tistical characteristics of the noise. In some cases, these 
methods can improve accuracy, but in others, they may 
impact signal details. Therefore, adjustments and evalua-
tions should be made based on the specific problem when 
using these methods. Generally, sampling mean filtering 
is often used when the signal follows the Gaussian distri-
bution. On the other hand, if the signal does not follow 
the Gaussian distribution and the preservation of signal 
edges and detail features is a concern, median filtering is 
more suitable.

Neural Network Model

ShuffleNet Model

ShuffleNet is a lightweight convolutional neural network 
model proposed by Megvii in 2018. Its main features are 
group convolution, channel shuffle and depthwise separable 
convolution. Group convolution divides the input tensor into 
multiple subgroups and performs independent convolution 
operations on each subgroup, which can reduce computa-
tional complexity and model parameters. Channel shuffle 
rearranges the output tensor of group convolution to achieve 
cross−group information fusion and reduce information bot-
tlenecks; it is shown in Fig. 1. Depthwise separable convolu-
tion is a lightweight convolutional operation that splits the 
standard convolution into depth and point−wise convolution, 
it can further reduce computational complexity and model 
parameters. Compared to the MobileNet [33] architecture, 
ShuffleNet demonstrates significant advantages in terms of 
performance; it has smaller parameters and computational 

Fig. 1  Channel Shuffle structure
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sizes, and higher accuracy. ShuffleNet is mainly composed 
of multi-layer ShuffleNet unit structures, and ShuffleNet unit 
mainly utilizes the advantages of channel rearrangement and 
combines the residual principle of ResNet [34] model, it is 
illustrated in Fig. 2.

GhostNet Model

The GhostNet model is a lightweight convolutional neu-
ral network model proposed by Huawei Noah’s Ark Lab 
in 2019. Deep convolutional neural networks [35, 36] 
typically consist of many convolutions, resulting in a sig-
nificant increase in computational costs. In contrast, the 
GhostNet model has a relatively simple network structure, 
enabling faster training and inference speeds with smaller 
computational and parameter sizes while achieving higher 
accuracy. Its distinguishing feature is the introduction of 
the Ghost Module structure.

The Ghost Module is a lightweight convolutional mod-
ule proposed to extend ordinary convolutions. It achieves 
this by splitting the input channels into two parts: the main 
branch and the ghost branch. The convolution kernels of 
the main and ghost branches are independent. The output 
of the main branch serves as the output of the entire mod-
ule. In contrast, the production of the ghost branch can be 
discarded or used for subsequent operations, thus reducing 
computational costs; it is shown in Fig. 3.

GhostNet comprises multiple Ghost Bottlenecks; each 
Ghost Bottleneck is formed by stacking multiple Ghost 
Modules. When the stride is 1, a Ghost Bottleneck consists 
of two stacked Ghost Modules, which are connected by 
using residual connections. The first Ghost Module acts 
as an expansion layer to increase the number of channels, 

while the second Ghost Module reduces the number of 
channels to match the residual connection; it is shown in 
Fig. 4(a). When the stride is 2, in addition to Fig. 4(a) 
configurations, a 3 × 3 depthwise separable convolution 
is inserted between the two Ghost Modules, as illustrated 
in Fig. 4(b).

SGNet Model

Since both ShuffleNet and GhostNet are designed for light-
weight and efficient models while maintaining accuracy 
and precision, combining the advantages of two models can 
result in a superior model ensemble effect. The different 
characteristics and advantages of ShuffleNet and GhostNet 
complement each other, providing more comprehensive 

Fig. 2  ShuffleNet unit structure

Fig. 3  Ghost Module structure
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feature extraction and representation capabilities. Shuf-
fleNet’s channel shuffle and group convolution operations 
can help capture spatial information and feature correlations, 
while GhostNet’s ghost channels can help improve param-
eter efficiency and feature utilization. Combining the advan-
tages of the above two models not only ensures powerful and 
efficient feature extraction and model representation capa-
bilities, but also enables a more lightweight model. The new 

model is named SGNet (ShuffleNet and GhostNet−based 
Network), and its structure is shown in Fig. 5.

Using large convolution kernels and strides can increase 
the receptive field and capture a larger range of features in the 
input signal, which helps extract vibration features relevant to 
damage. In addition, it can also reduce the size of the output 
feature maps, achieve signal downsampling and reduce com-
putational costs and data dimensions. Therefore, the SGNet 

Fig. 4  Ghost Bottleneck 
structure

Fig. 5  SGNet model
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model’s initial layers utilize large convolution kernels and 
strides. The first convolutional layer has a kernel size of 64 
and a stride of 8, followed by a Dropout layer. The second 
convolutional layer has a kernel size of 32 and a stride of 4. 
After each convolutional layer, Batch Normalization (BN) 
and max−pooling layers are applied. Following the second 
max−pooling layer, a structure with 3 Ghost Bottlenecks and 3 
ShuffleNet units alternately distributed. In the latter part of the 
model, three fully connected layers are employed to obtain the 
output results. The number of outputs can be modified based 
on the classification categories, denoted as n. Dropout is added 
between each fully connected layer to prevent overfitting.

Damage Diagnosis Process

The damage diagnosis process mainly consists of three parts: 
data processing, model building and training, and model test-
ing, as illustrated in Fig. 6.

(1) Data processing

Data processing consists of several steps, including data 
acquisition, mean filtering, data augmentation, data normaliza-
tion and data partition. Firstly, vibration signals obtained from 
acceleration sensors under different conditions were denoted 
as Sij (i represents the condition, j represents the sensor posi-
tion), it shown in formula (3). Then, the acquired vibration 
signals underwent mean filtering, and the filtered data was 
organized and stored according to the sensor ID in data stor-
age files.

Since a large amount of data is required for model train-
ing, but the acquired data samples are limited, data aug-
mentation needs to perform to increase the number of data 
samples. Data augmentation helps avoid overfitting due 
to a small dataset and allows the model to learn the data 
distribution better, thereby enhancing the model’s gener-
alization ability. Sliding window overlapping sampling is a 
commonly used data augmentation method. The data after 
data augmentation was denoted as SAij, as shown in for-
mula (4). The sliding window overlapping sampling can be 
depicted in formula (5), in which L represents the length 
of the vibration signal, W is the sliding window size, and 
S is the step size for sliding the window. N represents the 
final number of samples obtained.

Data normalization scales all feature information 
within a specified range, which is beneficial for the 
convolutional neural network to extract features from 

(3)Sij =

⎡
⎢⎢⎢⎣

S11 S12 ⋯ S1j
S21 S22 ⋯ S2j
⋮ ⋮ ⋮ ⋮

Si1 Si2 ⋯ Sij

⎤
⎥⎥⎥⎦

(4)SAij =

⎡
⎢⎢⎢⎣

SA11 SA12 ⋯ SA1j

SA21 SA22 ⋯ SA2j

⋮ ⋮ ⋮ ⋮

SAi1 SAi2 ⋯ SAij

⎤⎥⎥⎥⎦

(5)N =
L −W

S
+ 1

Fig. 6  Damage diagnosis 
process
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signals, thus improving the algorithm’s stability, con-
vergence speed and accuracy. The normalized data was 
represented as SANij, as shown in formula (6). After nor-
malization, the data was divided into training dataset, 
validation dataset and testing dataset based on the cor-
responding proportions.

(2) Model building and training

For model training, the model structure needs to be 
constructed first. The number of required models was 
determined based on the number of sensors for detec-
tion. Then, the model underwent forward propagation 
during training to obtain the output results and calculate 
the loss function. After getting the loss function, the 
model performed backward propagation for updating, 
computing gradients and optimizing parameters. As 
training epochs increased, the accuracy of the model 
can be continuously improved while the loss function 
will continue to decrease until the model reaches the set 
number of training epochs.

(3) Model testing

After SGNet j reached the designated number of train-
ing epochs, the testing dataset of sensor j was input into 
the model. The model parameters must be modified and 
retrained if the output accuracy does not meet the require-
ments. If the output accuracy meets the requirements, the 
model can be saved.

(6)SANij =

⎡
⎢⎢⎢⎣

SAN11 SAN12 ⋯ SAN1j

SAN21 SAN22 ⋯ SAN2j

⋮ ⋮ ⋮ ⋮

SANi1 SANi2 ⋯ SANij

⎤
⎥⎥⎥⎦

Experimental Study

This section includes the experimental object, experimen-
tal data, damage degree diagnosis experiment, damage type 
diagnosis experiment, model comparison experiment and 
discussion. The deep learning framework used in the experi-
ments is Tensorflow version 2.6.1, and the computer CPU 
used in the experiments is Intel Core i7 − 10750H with an 
NVIDIA GTX 1660Ti GPU.

Experimental Object

The experimental object used in this study is a four−story 
frame structure constructed by Columbia University [37]. 
Its 3D model is shown in Fig. 7(a). The size of the frame 
structure base is 2.5 m × 2.5 m, and the height of the frame 
structure is 3.6 m. The structure consists of four faces: east, 
south, west, and north, each face is composed of beams and 
columns with the same structural size. Different components 
of various orientations were represented by the same codes 
(e.g., east 1, north 1) in the fig. A total of 15 acceleration 
sensors were placed on the frame structure. Each floor junc-
tion had 3 acceleration sensors (1 on the west, 1 on the east, 
and 1 near the central column). Acceleration sensors num-
bered 1–3 were placed at the ground level, while the rest 
were positioned at the relevant locations on each floor’s top. 
The positions of the sensors are shown in Fig. 7(b).

By removing or loosening the diagonal bracing and bolt 
connections numbered 1–12 in Fig. 7(a), nine different dam-
age cases were simulated in the experiment, and the specific 
operations for each case are shown in Table 1. Since the over-
all damage degree of the frame structure varies in these nine 
cases, there are significant differences between the collected 
vibration signal data. Therefore, the differences in the data can 
be used to distinguish the damage cases of the frame structure.

Fig. 7  Frame structure and sen-
sor position [37]
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Experimental Data

In experiments, the frame structure was sequentially dam-
aged according to the Table 1, and a 200 Hz impact was 
applied to the frame structure to acquire vibration signals. 
Then, the vibration signals were processed by using the 
data processing procedures in “Damage Diagnosis Process” 
section.

From the publicly available data provided by Columbia 
University, 135 data were obtained from the 15 sensors 
under the nine damage cases. In experiments, both mean 
filtering and median filtering were used to process the data. 
The processed results of the data obtained from the sensor 
numbered 13 in case 1 are shown in Fig. 8. From the figure, 
it can be observed that after using mean filtering, the data 
edges become smoother, and after using median filtering, the 
data density becomes smaller with prominent edges.

To select an appropriate filtering method, it is neces-
sary to further determine whether the data conforms to 
the Gaussian distribution. Taking the data of the sensor 
numbered 5 under case 1 as an example; the histogram, 
Quantile−Quantile (Q − Q) plot, skewness, and kurtosis 
of the data were plotted in Fig. 9. From the figure, it can 

Table 1  Specific damage cases Cases Operation

1 Undamaged (intact)
2 Removal of east face component 1
3 Removal of east face components 1 and 4
4 Removal of east face components 1–4
5 Removal of east face components 1–8
6 Removal of east face components 1–8 and north face components 2 and 6
7 Removal of components 1–8 from all four faces
8 Removal of components 1–8 from all four faces and loosening of compo-

nents 9 and 10 on the east face
9 Removal of components 1–8 from all four faces and loosening of compo-

nents 9–12 on the east face

Fig. 8  Signal filtering results

Fig. 9  Signal histogram and Q-Q plot
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be observed that the histogram shape is approximately 
bell−shaped, the data points in the Q − Q plot are dis-
tributed close to the straight line, and the skewness of the 
signal is 0.007, with a kurtosis close to 3.49, this indi-
cates that the signal approximately follows the Gaussian 
distribution. As mentioned in “Signal Filtering Method” 
section, when the data follows the Gaussian distribu-
tion, the mean filtering method is more suitable. There-
fore, based on the analysis results from Figs. 8 and 9, the 
mean filtering method was selected to process the data in 
experiments.

The length of the data collected in the experiment varies 
under different cases, with the lengths of 24,000, 60,000, 
and 72,000 for cases 1–5, case 6 and cases 7–9, respec-
tively. Different sizes of sliding step were used for differ-
ent cases to ensure the number of samples was similar for 
each case during data augmentation. The sliding window 

size W was set to 1024 for all cases, and the sliding step 
sizes S for cases 1–5, case 6, and cases 7–9 were set to 4, 
10, and 12, respectively. After enhanced processing of the 
data, the number of samples N for cases 1–5, case 6, and 
cases 7–9 were 5744, 5898, and 5915, respectively.

Damage Degree Diagnosis Experiment

Since case 1 and case 9 represented the undamaged and 
damaged conditions of the frame structure, respectively, 
the data (SAN1j and SAN9j) of the sensor numbered j under 
case 1 and case 9 were used for binary classification train-
ing in the SGNet j model (j = 1–15). The SGNet j model 
with the required accuracy were saved. Then, the data of 
each sensor under different cases was input into each model. 
In other words, for each case i and the sensor numbered j, 
the data was input to model j to obtain the diagnosis result. 
Based on the obtained results, the Pod (Probability of dam-
age) was calculated according to Fig. 10. Finally, the average 
probability Podavg of all sensors under case i represented 
the damage degree of the frame structure under case i. The 
larger the Podavg is, the more severe the overall damage to 
the frame structure.

Training Results Analysis

Due to the extensive number of sensors used in experiments, 
this section primarily focused on training results with data 
collected from the sensor numbered 13. In order to study the 
impact of different parameters on the model, this paper used 
convolution kernels of different sizes and strides for training. 
During training, the Adam optimizer and cross-entropy loss 
function were employed. The experimental results were pre-
sented in Fig. 11, in which the notation “First 32-8 Second 
16-4” signifies that the first convolutional layer used kernel Fig. 10  The calculation process of Pod 

Fig. 11  The influence of different convolution kernels and strides on the model
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sizes of 32 and strides of 8, while the second convolutional 
layer used kernel sizes of 16 and strides of 4.

It can be seen from Fig. 11 that, under the “First 64-8 Sec-
ond 32-4” configuration, the validation accuracy exhibits the 
most significant improvement, the loss function decreases 
rapidly, and the training process remains stable. Conversely, 
under the “First 128-16 Second 64-8” configuration, there 
is substantial fluctuation in the training process. Excessive 
kernel sizes and strides can lead to a rapid reduction of fea-
ture maps, leading to the model ignoring important infor-
mation in the data. Consequently, the model’s parameters 
were determined to be “First 64–8 Second 32–4” based on 
comprehensive evaluation of the model’s performance on 
the validation dataset.

Under the above selected parameters, the training pro-
cess of model SGNet 13 for 30 epochs is shown in Fig. 12. 
From the figure, it can be observed that the model starts to 
converge when the training epoch reaches 5. The training 
and validation datasets’ accuracy exceeds 99%, and the loss 
is below 1 ×  10−4. When the training epoch reaches 25, the 
loss of the training dataset stabilizes around 5 ×  10−4, and 
the validation dataset’s loss remains close to 0.

Confusion Matrix Analysis

The confusion matrix, also known as the error matrix, is 
a method used to evaluate the performance of a model. It 
shows the relationship between the model’s predicted and 
true labels. By analyzing the confusion matrix, classification 
indicators such as accuracy, recall, precision, and F1 score 
can be calculated, which can comprehensively evaluate the 
performance and error types of the classification model, help 
understand the classification performance of the model, and 
further adjust and optimize the model as needed.

The confusion matrices of the training, validation, and 
testing datasets for model SGNet 13 during different training 
epochs are shown in Fig. 13. By calculating the data in the 
figure, it can be seen that when the training epoch reaches 
4, the training, validation, and testing dataset’s accuracy is 
approximately 86%. The recall is 0.787, the precision is 1, 

and the F1 score is 0.881. When the training epoch reaches 
30, the accuracy, recall, precision and F1 score for all three 
datasets reach a perfect score of 1. The model can accurately 
distinguish between undamaged and damaged data.

Damage Degree Diagnosis Results

Based on the damage probability calculation process shown 
in Fig. 10, the Podij and Podavg for 15 sensors under 9 differ-
ent damage cases were recorded in the experiment. The data 
was presented in Table 2 and visualized in Fig. 14.

In Case 1, the Pod for all 15 sensors is below 1%. In Case 
2, the Pod of each sensor is below 10%. In Case 3, the Pod 
of the sensor numbered 2 is the highest, it is 99.48%. In 
Case 4, the Pod of sensors numbered 2 and 4 are above 80%, 
while the rest are below 65%. In Cases 5–6, the highest Pod 
of sensors numbered 4, 6, 9, 12, and 15 can reach 94%. In 
Cases 7–9, the highest Pod of sensors numbered 4–15 can 
reach 100%. When using data from sensors numbered 5, 8, 
11, and 14 at the center column for damage diagnosis, the 
Pod of cases 1–5 does not change much. As the degree of 
damage to the frame structure increases, Podavg also gradu-
ally increases, and there is a certain difference between each 
Podavg. Therefore, the overall damage degree of the frame 
structure can be judged based on the size of Podavg. The pro-
posed SGNet model performs excellently in damage degree 
diagnosis of frame structure and can be used to determine 
the damage degree of frame structure and further identify 
the damaged locations.

Damage Type Diagnosis Experiment

The purpose of the damage type diagnosis experiment is to 
conduct multi classification training on the model, detect 
whether the model can distinguish the damage case where 
the sensor’s data belongs, and test the classification ability of 
the model. In this experiment, a new SGNet model was con-
structed, and data from each sensor under 9 different cases 
were used for training to obtain a 9 − class classification 

Fig. 12  Training results of dam-
age degree
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result. On this basis, the performance of the model was 
tested through training results, and the damage types of the 
frame structure were obtained.

Training Results Analysis

Taking the training results of the data collected by sen-
sor numbered 13 as an example; the results are shown in 
Fig. 15. The figure shows that when the training epoch 
reaches 3, the accuracy of the training dataset is above 

Fig. 13  Confusion matrix of damage degree experiment

Table 2  Podij and Podavg for 
different sensors and cases

Case1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case9

1 0.10% 0% 0% 5.74% 13.78% 0.10% 99.39% 99.90% 100%
2 0% 0% 99.48% 81.42% 79.02% 0.51% 9.74% 100% 100%
3 0% 4.38% 0% 0% 6.26% 0.51% 4.16% 77.18% 100%
4 0% 4.80% 25.78% 80.69% 87.03% 94.25% 99.49% 100% 100%
5 0% 0% 0% 0% 0% 1.53% 100.00% 100% 100%
6 0% 0% 0.31% 0% 70.52% 88.12% 94.08% 99.90% 100%
7 0% 0.21% 14.09% 36.10% 52.82% 65.21% 65.21% 100% 100%
8 0% 0% 0% 0% 0.84% 0.10% 100.00% 100% 100%
9 0% 7.93% 72.32% 62.08% 80.51% 89.16% 93.31% 98.28% 100%
10 0% 0% 4.38% 1.98% 8.66% 22.18% 99.80% 100% 100%
11 0% 0% 0% 0% 0% 78.08% 62.14% 84.38% 100%
12 0% 10.13% 15.97% 41.96% 92.90% 76.20% 100% 100% 100%
13 0% 1.46% 10.65% 61.69% 8.14% 22.08% 90.47% 100% 100%
14 0% 0% 0.31% 0% 0% 0.10% 100% 100% 100%
15 0% 0% 43.11% 34.86% 86.53% 91.27% 95.74% 100% 100%
Avg1–15 0.01% 1.93% 19.09% 27.10% 39.13% 41.96% 80.90% 97.30% 100%
Avg4–15 0% 2.04% 15.58% 26.61% 40.66% 52.36% 91.69% 98.54% 100%
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Fig. 14  Podij for different sensors and cases

Fig. 15  Training results of dam-
age type experiment
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70%, while the accuracy of the validation dataset is 84%; 
the loss of the training dataset is around 0.7, and the 
loss of the validation dataset is 0.3. After the training 
epoch reaches 5, the training curves begin to converge; 
the accuracy reaches over 90%, and the loss decreases to 
below 0.1. When the training epoch reaches 26, the train-
ing and validation dataset’s accuracy is higher than 99%, 
and the loss is around 0.02. From the above results, it can 
be seen that the SGNet model has a faster convergence 
speed, higher accuracy, and lower loss during the train-
ing process.

In the initial stages of training, the model’s parameters 
typically start in a randomly initialized state. This leads to 
some degree of variability in training results at the outset, 
where the loss function and accuracy may exhibit instabil-
ity. This is because the model needs to adapt to the data and 
gradually adjust its parameters for better fitting.

As the number of training epoch increases, the model 
gradually converges towards a state closer to the optimal 
solution. This is manifested in an incremental improvement 
in accuracy and a gradual decrease in the loss function. The 
model fine-tunes its parameters over time through the opti-
mization algorithm to fit the training data more effectively.

When a certain stage is reached with an adequate num-
ber of training epochs, the model’s parameters have essen-
tially found the optimal solution. Consequently, the accu-
racy becomes very high, and the loss function is extremely 
low. This indicates that the model has become highly stable 
at this point and can perform tasks with a high degree of 
accuracy.

Confusion Matrix Analysis

Taking the training results of the data collected by sensor 
numbered 13 as an example; the confusion matrices are 
shown in Fig. 16. In the matrices, labels 1 to 9 represent the 
9 damage cases. When the training epoch reaches 10, the 
accuracy of training, validation and testing is 99%, 98.9%, 
and 99%, respectively; when the training epoch reaches 30, 
the accuracies for all three datasets reach 100%. The above 
results indicate that the model has strong classification abil-
ity and achieved satisfactory classification results.

T − SNE Visualization

T − SNE (T − Distributed Stochastic Neighbor Embedding) 
is a machine learning algorithm for dimensionality reduc-
tion and data visualization in high−dimensional spaces. It 
can map high−dimensional data to two−dimensional or 
three−dimensional space, and effectively display the struc-
ture and relationships of high-dimensional data and reveal 
patterns and clusters in the data. T-SNE is of great value in 

exploratory data analysis and visualization, as it can capture 
nonlinear relationships while preserving local structures, 
making the results easy to observe and understand.

Taking the visualization result of the data collected by 
sensor numbered 13 as an example, the data during the 
training process was reduced to lower dimensions by using 
T − SNE, and the visualization results of the original data, 
the data of the 10 training epoch, and the data of the 30 train-
ing epoch were obtained, it is shown in Fig. 17.

It can be seen from Fig. 17 that the original data shows 
a relatively scattered distribution of the 9 damage cases. 
When the training epoch reaches 10, the different cases can 
be somewhat distinguished and case 7 and case 9 have some 
dispersion at their edges. When the training epoch reaches 
30, the model can completely distinguish different data 
labels.

Model Comparison Experiment

Model Parameter Quantity

The number of parameters in a model determines the diag-
nosis equipment and computational cost. MobileNet V1 
has approximately 4.2 million parameters, GhostNet has 
about 5.2 million parameters, ShuffleNet 0.5x has about 1.8 
million parameters, ShuffleNet 1.0x has about 2.3 million 
parameters, while SGNet has only about 1 million param-
eters, as shown in Table 3. SGNet has high flexibility and 
adjustability, and can be adjusted and optimized according to 
specific situations. From the experimental results, it can be 
seen that SGNet has smaller parameter quantities and lower 
computational costs compared to other classical models in 
terms of the total parameter quantity of the model.

Testing Dataset Accuracy

To verify the superiority of the SGNet model, this section 
compared the testing dataset accuracy of SGNet, MobileNet, 
GhostNet, and ShuffleNet under the same experimental con-
ditions. The experiment data was taken from the damage 
type diagnosis experiment. The number of training epochs 
was set to a fixed value, and the accuracy and average accu-
racy of the test dataset for four models with training epochs 
of 1, 3, 5, 10, 15, 20, 25, and 30 were recorded. The results 
are shown in Table 4, and the data in Table 4 is visualized 
in Figs. 18 and 19.

The experimental results in Table 4 can demonstrate the 
following performance.

• When the training epoch reaches 1, the accuracy of 
SGNet is 15.1%, the accuracy of MobileNet and Ghost-
Net is 10.9%, and the accuracy of ShuffleNet is 10.1%.
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Fig. 16  Confusion matrix of damage type experiment
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• When the training epoch reaches 3, the accuracy of 
SGNet accuracy improves to 61.7%, whereas the accu-
racy of MobileNet reaches 18.8%, and the accuracy of 
the other two models is lower than 11%.

• When the training epoch reaches 20, the accuracy of 
SGNet is 97.9%, while the accuracy of the other three 
models is lower than 90%.

• Finally, with the training epoch reaches 30, the accuracy 
of SGNet achieves 99.8%.

In terms of average accuracy, SGNet’s performance 
stands out, reaches 78.61%. This is notably higher than the 
average accuracies of MobileNet and ShuffleNet by 11.38% 
and 16.2%, respectively. The average accuracy of GhostNet 
is lower than 55%. Overall, SGNet consistently outperforms 
the other three models in terms of accuracy and exhibits 
faster convergence.

Comparison of the Accuracy of Other Methods

Ren et al. conducted experimental research by using the 
proposed BICCN [38] model to analyze data from 12 accel-
eration sensors under nine different damage cases. They 
obtained a set of samples suitable for structural damage 
localization and diagnosis for the frame structure. In order 
to ensure the reliability of the selected samples, experiments 
were conducted by using various models including 1DCNN, 
WDCNN [39], TICNN [40], ITICNN [41], and BICNN. The 
results are shown in Table 5; define results with an accu-
racy exceeding 95% as “excellent.” Among these models, 

Fig. 17  T − SNE visualization

Table 3  Comparison results of model parameter quantity

Model Parameter quantity

SGNet 1.0 million
MobileNet V1 4.2 million
ShuffleNet 0.5x 1.8 million
ShuffleNet 1.0x 2.3 million
GhostNet 5.2 million

Table 4  Comparison results of 
testing dataset accuracy / (%)

Model Epoch

1 3 5 10 15 20 25 30 Average Value

SGNet 15.1 61.7 71.8 83.2 99.8 97.9 99.6 99.8 78.61
MobileNet 10.9 18.8 68.1 78.5 81.7 83.9 98.6 97.3 67.23
GhostNet 10.9 10.9 28.7 62.7 75.2 80.9 90.9 76.3 54.61
ShuffleNet 10.1 10.9 51.1 80.4 78.0 89.4 84.8 94.4 62.41
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1DCNN had zero instances of excellence, while WDCNN, 
TICNN, ITICNN, and BICNN each had five instances of 
excellence. On the other hand, the SGNet model had 10 

instances of excellence, demonstrating superior accuracy 
compared to the other models.

Based on the data from Table 5, it can be observed that the 
model’s accuracy is relatively low at specific locations in the 
frame structure, specifically at locations numbered 5, 8, 11, 
and 14 in Fig. 7. This indicates that the model faces certain 
challenges or difficulties in damage diagnosis at the central pil-
lars of the frame structure. This may be attributed to the fact 
that central pillars typically bear greater structural loads and 
stresses, making the detection and classification of damage 
more complex. Some types of damage may be harder for sen-
sors to detect, leading to potentially higher levels of noise in the 
data from these locations, which affect the model’s accuracy.

To improve the model’s accuracy at these locations, it 
may be necessary to obtain more training data, especially 
focusing on damage cases related to central pillars. In addi-
tion, it is possible to consider improving the sensors layout 
to provide more reliable data. Overcoming these challenges 
will help improve the accuracy of damage diagnosis for the 
central pillars of frame structure.

Discussion

The SGNet model is an improved version based on ShuffleNet 
and GhostNe. It aims to reduce the computational cost of the 
model through a series of lightweight adjustments. These 
improvements include reducing the number of model param-
eters, decreasing network depth, and adopting more efficient 
network architecture. SGNet has achieves a better balance 
between performance and computational cost through care-
fully designed convolution kernels and step sizes, as well as 
parameter optimization, while maintaining high accuracy. 
Experimental results show that the highest accuracy of the 
model proposed in this article is 99.8%, with only 1 million 
parameters, and its performance is superior to other models.

Fig. 18  Testing dataset accuracy (Bar chart)

Fig. 19  Testing dataset accuracy (Stack bar chart)

Table 5  Comparison results of 
the accuracy of other methods

sensor 1DCNN WDCNN TICNN ITICNN BICNN SGNet

4 40.36% 99.46% 99.88% 99.96% 99.99% 100%
5 55.38% 99.77% 99.73% 100% 100% 98.43%
6 49.21% 100% 100% 99.77% 99.99% 99.85%
7 50.11% 90.08% 90.34% 91.33% 93.98% 98.77%
8 21.22% 84% 76.92% 85.31% 90.01% 94.65%
9 42.75% 99.65% 99.96% 100% 100% 99.38%
10 26.21% 84.38% 77.70% 83.46% 89.63% 99.33%
11 29.15% 84.77% 78.35% 85.23% 88.74% 93.31%
12 32.35% 84.07% 78.04% 84.85% 90.23% 99.67%
13 35.75% 85.23% 79.05% 85.31% 90.38% 100.00%
14 47.43% 99.61% 99.81% 99.73% 100% 96.83%
15 59.03% 83.42% 78.16% 85.04% 87.56% 99.87%
Excellent 0 5 5 5 5 10
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However, there are certain limitations to be noted. 1. This 
method may be sensitive to the quality and placement of 
sensors, thereby affecting the accuracy of diagnosis results. 
2. It is limited to data from frame structures and may not be 
applicable to other structural types. 3. The model proposed 
in this article requires a large number of data samples for 
training, which may not be suitable for situations with fewer 
data samples. 4. Evaluation of the model was performed 
by using dataset of frame structures provided by Columbia 
University, but it may not cover all real-world application 
scenarios.

In future work, the authors plan to collect other publicly 
available structural datasets and apply transformations to the 
Columbia University datasets, including the introduction of 
noise with different signal-to-noise ratios to conduct research 
on damage diagnosis in noisy environments. In addition, 
the authors will explore alternative methods for structural 
damage diagnosis in cases with limited data samples, 
addressing the issue of lower accuracy when data is scarce.

Conclusion

In order to propose a more efficient damage diagnosis of 
frame structure while reducing computational costs, this 
paper introduced a lightweight model suitable for mobile 
devices, named SGNet. This model is an improvement 
on the ShuffleNet and GhostNet models. This model has 
stacked the ShuffleNet and GhostNet modules, and carefully 
designed the convolution kernel and step size for the first 
layer of the model. In addition, a data preprocessing method 
employing mean filtering had been successfully applied to 
the damage diagnosis of frame structure.

To evaluate the performance of the proposed method, a 
frame structure at Columbia University was selected as the 
experimental subject. Multiple damage diagnosis experi-
ments were conducted by using the SGNet model, and the 
proposed model was compared with MobileNet, GhostNet, 
and ShuffleNet under the same conditions. The following 
conclusions were drawn from the experimental research.

(1) The experimental results of damage degree diagnosis 
indicated that the proposed SGNet model has the char-
acteristics of fast convergence and high accuracy. In 
addition, the proposed SGNet model performed well in 
different damage cases and could determine the overall 
damage degree of the frame structure based on Podavg.

(2) The SGNet model exhibited strong multi-classification 
capabilities in the damage type diagnosis experiment. 
The accuracy of the testing dataset reached 99% when 
the training epoch reached 10. The proposed model 
could quickly diagnose damage types in damage cases 
of frame structures.

(3) In model comparison experiments, the SGNet model 
had the fewest parameters and the lowest computa-
tional cost compared to other models. Its accuracy on 
the testing dataset outperformed other models at differ-
ent training epochs, and its average accuracy was the 
highest. The SGNet model also demonstrated the fastest 
convergence speed.

In summary, the experimental results of this paper une-
quivocally demonstrated the superiority of the SGNet model 
in the context of structural damage diagnosis for frame struc-
ture. It also highlighted the potential applicability of this 
model for mobile applications. Furthermore, the proposed 
preprocessing method provided valuable reference for simi-
lar tasks in research.
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