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Abstract
Measuring the Frequency Response Functions (FRF) at the tool-tip is essential for the identification of chatter-free machining 
conditions. The tool-tip FRF in CNC machines are usually measured by impulse hammer tests in idle conditions, and the 
measured FRF remain relatively unchanged under operational conditions. This method is not effective in robotic machining, 
because the robot’s vibration response in idle and operational conditions are significantly different. The robot’s vibration 
response is pose-dependent and nonlinear and therefore strongly dependent on the operational conditions. This paper presents 
new methods for measuring the TCP (tool-tip) FRF of machining robots under operational conditions. In-process FRF are 
measured by leveraging the milling forces as the excitation source, and two approaches are proposed to achieve broadband, 
uncorrelated, and sufficiently exciting forces: i) milling of porous materials to generate randomized cutting forces, and ii) 
milling of a homogeneous material with spindle speed sweep. In the latter approach, the periodic content of cutting forces 
is used for excitation while in the former approach excitation by the random content is considered. A table dynamometer 
is used to measure the excitation (milling) forces and accelerometers are used to measure the resulting vibrations. The 
measured in-process FRF are then used to develop the chatter stability lobes diagram of the process, which determine the 
chatter-free combinations of the cutting depth and spindle speed for milling. Chatter experiments are conducted to confirm 
that the stability diagrams are more accurate when the presented in-process FRF measurements are used instead of the FRF 
measured in idle conditions.
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Introduction

Articulated robotic arms are advantageous to traditional 
machine tools for machining large workpieces with com-
plex features [1, 2]. For example, the application of robotic 
machining has been rapidly growing in aircraft fuselage 
assembly and wind turbine manufacturing processes. 
Avoiding unstable vibrations, known as chatter, is among 
the most critical challenges in designing high-performance 
machining processes, and this problem is more critical in 
robotic machining due to their much higher compliance 
compared to machine tools [3, 4]. Highly effective chatter 
modeling and avoidance methods that have been developed 
in the past decades are now being used by the industry to 

design high-performance chatter-free machining operations 
in machine tools [5]. The available methods however face 
major difficulties when applied to robotic machining, mainly 
due to the nonlinearity and pose-dependency of the vibration 
response in robots, which is negligible in machine tools.

Dynamics of the milling process includes a natural 
delayed feedback loop which may destabilize the process 
vibrations and lead to chatter and consequently damages to 
the tool or workpiece [6]. Modeling chatter dynamics by 
Delay Differential Equations (DDE) and solving them to 
identify chatter-free machining parameters has been studied 
extensively [5]. Frequency-domain method of Budak and 
Altintas [7] and discrete time-domain methods of Insperger 
and Stepan [8] and Ding et al. [9] are the two approaches 
that are widely used for chatter modeling in machine tools. 
In both of these approaches, accurate estimations of the 
Frequency Response Function (FRF) or the modal param-
eters extracted from the FRF at the tool-tip are required. 
The results of stability analysis by these methods are usually 
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presented in the form of Stability Lobes Diagram (SLD) 
which shows the combinations of axial cutting depth and 
spindle speed that lead to stable vibrations, and the accu-
racy of the resulting SLD are directly correlated with the 
accuracy of the FRF used to compute them. Both of the 
frequency and discrete-time domain approaches, which 
were initially developed for machine tools, have also been 
adopted for robotic milling processes. Pan et al. [10] and 
Wang et al. [11] used the frequency-domain approach to 
predict chatter in robotic milling, focusing on the stability 
of the low-frequency modes of the robots’ structure. The 
flexible components that cause chatter in machine tools are 
usually the tool, holder, and the spindle, but the flexibility 
of revolute joints is the main source of chatter in robotic 
machining. Therefore, robotic machining is more prone to 
chatter in low-frequency modes (typically lower than 50 Hz), 
especially when lower spindle speeds are used. While the 
high-frequency modes associated with the flexibility in the 
tool, holder, and spindle remain relatively unchanged in the 
workspace of the machine tool or the robot, the parameters 
of low-frequency modes associated with the robot’s joints 
vary by the robot’s pose and the forces applied to it [12]. 
Multi-Body Dynamics (MBD) models with elastic joints 
can be applied to model the robot’s tool-tip FRF in arbi-
trary postures [13, 14], although the identification of the 
inertial and joint elastic parameters for the MBD models 
requires extensive experiments. Besides, the large number 
of unknown parameters may make the model parameters 
globally unidentifiable. Data-driven methods are also used 
to model the pose-dependency of the FRF, but the trained 
model shows a large variance outside the range of postures 
that are used for training [15–17]. Mousavi et al. [18, 19] 
developed a Multi-Body Dynamics (MBD) model with elas-
tic joints and links to predict the posture-dependent FRF of 
the robot and employed the predicted FRF in the frequency-
domain method to develop the stability lobes diagram. The 
FRF at the tool-tip (robot’s TCP) can also be measured by 
impulse hammer test instead of MBD modeling. The meas-
ured FRF is more accurate than MBD modeling but it is 
only applicable to the measurement posture. For instance, 
Li et al. [20] used impulse hammer to measure the FRF and 
used them in the frequency-domain method to obtain the 
SLD of the machining robot; they showed that cross-FRF 
contribute to the system dynamics much more significantly 
in robots than in machine tools. Cordes et al. [21] also used 
the FRF measured by hammer test in both the frequency-
domain approach and Semi Discretization method. They 
showed that the low-frequency posture-dependent modes 
of the robot can be neglected in high-speed robotic milling; 
yet, the stability in low-speed milling is governed by the 
low-frequency modes.

Experimentally measured FRF are usually obtained by 
impulse hammer tests conducted in idle conditions. In this 

paper, idle condition represents the situation in which the 
robot is at rest and operational condition is referred to the 
conditions in which milling operation is performed and the 
tool-tip is subjected to cutting forces. Different methods can 
be applied to measure the FRF under operational conditions 
in CNC milling and turning. Minis et al. [22] designed a 
specialized workpiece with randomly distributed channels to 
provide random cutting forces during turning process. Ozsa-
hin et al. [23] employed a similar idea to measure in-process 
FRF in milling. Inverse stability analysis can also be used 
to determine the FRF under operational conditions. In this 
approach, experimentally identified chatter stability limits 
are substituted in the theoretical model of chatter to inversely 
determine the modal parameters. Ozsahin et al. [24] pre-
sented a method based on this inverse approach and showed 
that the parameters of the flexible mode can be identified 
based on the limiting cutting depths at two relatively close 
spindle speeds. Grossi et al. [25] augmented the inverse 
method by combining it with speed ramp-up technique to 
improve the accuracy of the identified FRF in a wide range 
of spindle speeds. Both of these two works confirmed the 
substantial variation of the FRF under operational conditions 
from those measured in idle conditions. However, compared 
to robots, the change in machine tools’ vibration response 
due to operational conditions is relatively low because of 
their high rigidity. Therefore, idle FRF are reasonably accu-
rate for predicting stability diagrams in machine tools. For 
robots, nonlinear mechanisms such as strain hardening/sof-
tening, friction and hysteresis effects in the robot’s revolute 
joints are minimally active in idle conditions but become 
prevalent under operational loads [12, 26–28]. We stud-
ied the effect of such nonlinearities on chatter stability in 
robotic machining and showed that the vibration response 
at the TCP depends not only on the robot’s posture but also 
the level and type of the applied forces in operation [29, 
30]. Idle and in-process FRF can be different even without 
the operational loads. This was shown in Tunc and Gonul’s 
study where they observed a significant variation in the FRF 
measured by impulse hammer test conducted on the idle 
robot and when it moves at a constant speed [31]. The FRF 
measured in idle condition are therefore not representative 
of the vibration response under operational conditions and 
new FRF measurement methods need to be developed for 
chatter analysis in robotic machining.

In this paper, we present new methods for the experi-
mental estimation of the robot’s FRF during the milling 
process.The FRF that are measured in-process represent 
the dynamics of the system linearized about the operational 
condition and account for the structural nonlinearities, feed 
motion, and any other unknown sources that may affect 
the system dynamics during machining. Operational Modal 
Analysis (OMA), which estimates the modal parameters 
from vibration response to ambient noise excitation, can 

798 Experimental Techniques (2023) 47:797–816



potentially be applied to estimate in-process FRF [32]; 
however, because the mode shapes resulting from OMA are 
not mass-normalized due to the lack of input measurement, 
the resulting FRF are not applicable for chatter stability 
analysis. Besides, the modal parameters resulting from 
OMA represent the dynamics of the closed-loop (regen-
erative) system and not the robot’s (or machine tool’s) 
structural dynamics [33, 34]. Alternatively, milling forces 
that are measured by dynamometers during the process 
can be used as the excitation source for in-process FRF 
estimation [23, 35]. The FRF estimated by this method are 
not affected by the feedback loop in the process and are 
scaled to the physical unit; therefore, they are applicable 
for stability analysis. However, because the milling forces 
are periodic at the spindle rotation frequency, the resolu-
tion of the resulting FRF is limited to the spindle rotation 
frequency, which is not sufficient for the accurate iden-
tification of vibration modes. Besides, the milling forces 
simultaneously excite the system in multiple directions 
with correlated forces. The correlation of milling forces is 
not important when this method is applied to machine tools 
but becomes important in robots. Because the vibration 
response of the machine tool in each Cartesian direction 
is uncoupled from others, FRF in each direction can be 
estimated as a single-Input-Single-Output [23, 35]. How-
ever, the robot’s TCP vibration response is strongly cou-
pled between all three Cartesian directions and therefore 
the FRF matrix must be estimated as Multi-Input Multi-
Output (MIMO), which requires uncorrelated simultaneous 
excitation. To overcome these problems, we present two 
in-process FRF measurement methods that are effective in 
robotic machining. The first method uses the forces meas-
ured during milling porous materials. Because of the ran-
dom distribution of the material in this method, the meas-
ured forces include a strong random component, which 
improves the resolution and bandwidth of the measured 
FRF and removes the correlation between milling forces 
in various directions. In the second method, forces meas-
ured during milling homogeneous materials are used, but 
the spindle speed is swept in the frequency range of inter-
est to arbitrarily increase the resolution of the measured 
FRF. Forces measured in multiple (at least three) milling 
operations with various cutter-workpiece engagements are 
used to obtain a set of uncorrelated excitation forces. The 
presented methods are applied to measure the in-process 
FRF of a 6-axis machining robot and construct the cor-
responding SLD. Experimental validations confirm that 
the resulting SLD are more accurate than those obtained 
based on idle FRF. The first approach only requires one test 
under constant spindle speed and provides a quick method 
to identify the FRF in a wide range of frequencies with 
all the nonlinear effects included. The second approach 

requires more effort and multiple tests with varying spindle 
speeds, but the measured FRF have a better resolution and 
a higher coherence than the first method. Moreover, since 
the level of cutting forces can be controlled in the second 
approach, it is more suitable for studying nonlinearities in 
system dynamics.

A brief description of chatter modeling and the impor-
tance of FRF measurement for chatter analysis is presented 
in the next section. In “In-Process FRF Measurement” the 
two in-process FRF measurement methods are presented 
and applied to a 6-axis robotic machining setup. In “Stabil-
ity Lobe Diagrams with In-Process FRF”, the resulting in-
process measured FRF and their idle counterpart are used 
to plot the SLD of the robot and chatter tests are performed 
to confirm the enhanced chatter prediction accuracy when 
in-process FRF are used.

Dynamics of Regenerative Chatter in Milling

Consider the 6-DOF articulated robotic arm performing 
milling operation shown in Fig. 1. The robot is subjected 
to milling forces generated at its TCP (tool-tip) in the feed 
(X), normal (Y ), and axial (Z) directions. Milling forces 
are commonly modeled by linear models which describe 
them as a combination of periodic forces proportional to 
feedrate and transient forces proportional to the TCP’s pre-
sent and past elastic oscillations [36]:

where F(t) is the total forces applied at the TCP, and Fp(t) 
= Fp(t + τ) represents periodic forces with tooth-passing 
period, τ, as the principal period. Tooth-passing period, τ 
= 2π/NΩ, is inversely proportional to spindle speed (Ω) and 
the number of the cutting edges of the tool (N). The second 
term in Eq. 1 represents the transient regenerative forces, 
which are generated by the inherent feedback from the TCP 
vibrations into the machining forces that cause them. Since 
the detailed discussion of modeling the regenerative forces 
is available in chatter literature such as [36, 37] and [7], only 
a high-level summary of the model is provided here.

Regenerative forces are proportional to the elas-
tic displacement of the TCP in Cartesian frame, 
� =

[
x(t)y(t)z(t)

]T , and its value one tooth-passing period 
prior, �� =

[
x(t − �)y(t − �)z(t − �)

]T  . This delayed term 
represents the modulation of the milling forces due to the 
surface undulations left by the previous tooth. The con-
stant Ktc is the force coefficient in the tangential direction 
[37] and a is the axial cutting depth, as shown in Fig. 1d. 
The matrix [α(t)] = [α(t + τ)] represents the periodic vari-
ation of the regenerative forces and their directions as the 

(1)�(t) = �p(t) + aKtc[�(t)]{� − �
�}

799Experimental Techniques (2023) 47:797–816



spindle rotates; therefore, its entries are periodic at the 
tooth-passing period, τ:

where

(2)[�(t)] =

⎡⎢⎢⎣

�xx �xy �xz
�yx �yy �yz
�zx �zy �zz

⎤⎥⎥⎦

�xx =

N∑
j=1

g(�j) sin�j sin �
(
− cos�j − krc sin�j sin � − kac sin�j cos �

)
,

�xy =

N∑
j=1

g(�j) cos�j sin �
(
− cos�j − krc sin�j sin � − kac sin�j cos �

)
,

�xz =

N∑
j=1

−g(�j) cos �
(
− cos�j − krc sin�j sin � − kac sin�j cos �

)
,

�yx =

N∑
j=1

g(�j) sin�j sin �
(
sin�j − krc cos�j sin � − kac cos�j cos �

)
,

 The parameters krc and kac are force coefficients in the radial 
and axial directions, respectively, γ is the cutting edge angle, 
and �j = Ωt + (j − 1)

2�

N
 is the immersion angle of tooth j, 

�yy =

N∑
j=1

g(�j) cos�j sin �
(
sin�j − krc cos�j sin � − kac cos�j cos �

)
,

�yz =

N∑
j=1

−g(�j) cos �
(
sin�j − krc cos�j sin � − kac cos�j cos �

)
,

�zx =

N∑
j=1

g(�j) sin�j sin �
(
−krc cos � − kac sin �

)
,

�zy =

N∑
j=1

g(�j) cos�j sin �
(
−krc cos � − kac sin �

)
,

�zz =

N∑
j=1

−g(�j) cos �
(
−krc cos � − kac sin �

)
.

Fig. 1   (a) Configuration of the 
KUKA KR90 R3100 robotic 
milling system. (b) the experi-
mental setup used to measure 
in-process FRF. (c) and (d) 
3DoF model of milling system

cx

kx

ky

a

ky

cy

cy

czkz

)d()c(

(a) (b)

Workpiece

Workpiece

Cutting tool

Cutting

tool

Z

XY

Y

X Y

Z

800 Experimental Techniques (2023) 47:797–816



as shown in Fig. 1c. The Heaviside function g(φj) deter-
mines whether this angle is within the cutting immersion 
angle range bounded by the start and exit angles, φst and 
φex, respectively:

with u(⋅) being unit step function. Depending on the axial 
depth of cut (a) and spindle speed (Ω = 2π/Nτ), the transient 
component of the forces may decay or grow, leading to sta-
ble or unstable vibrations. In stable cuts, the transient vibra-
tions decay and settle at an equilibrium state; thus, steady-
state TCP oscillations only include the periodic response 
induced by Fp(t). In unstable cuts, the transient vibrations 
cannot be suppressed by the system’s damping and they are 
superimposed on the aforementioned periodic response; this 
situation in which bifurcation occurs to the equilibrium state 
is usually referred to as chatter.

Budak and Altintas [7] showed that the average of the 
periodic [α(t)] is sufficient for accurate chatter stability 
analysis in common machining applications, because its 
harmonic components are filtered by structural dynamics. 
They presented Zero-Order Approximation (ZOA) chatter 
analysis method where the periodic [α(t)] is approximated 
by 

[
�0

]
 , its average over one principal period [7]. In most 

of common machining applications, the dynamics of vibra-
tion response at the TCP can be assumed Linear-Time-
Invariant [38]; therefore the milling forces and the result-
ing oscillations in the Laplace domain can be mapped to 
one another via the system transfer function, as follows:

where H(s) is the transfer function between Cartesian forces 
and oscillations at the TCP, assuming the system is line-
arized about its periodic response. Transforming Eq. 1 to 
Laplace domain and substituting X(s) from Eq. 4 leads to 
the following characteristic equation:

For any given axial depth of cut, a, and spindle speed Ω 
= 2π/Nτ, stability of regenerative vibrations is determined 
according to the Nyquist criterion applied to the character-
istic equation.

Discretization methods such as Semi-Discretization 
Method (SDM) or Full-Discretization Method (FDM) are 
also used to study the stability of vibrations in machining. 
With these methods, the time-periodic characteristics of 
the directional coefficients [α(t)] can be maintained in the 
solution. By discretizing the continuous-time equation, we 
are able to approximate the distributed-parameter system in 
Eq. 1 by a lumped-parameter system described by its state 
transition matrix, Φ as follows:

(3)g(�j) = u(�j − �st) − u(�j − �ex)

(4)�(s) = �(s)�(s)

(5)det
[
� − aKtc[�0](1 − e−s�)�(s)

]
= 0

where uk is the state vector of the approximate lumped-
parameter system. This lumped-parameter system is asymp-
totically stable if and only if all of the eigenvalues of the 
state-transition matrix Φ are inside the unit circle on the 
complex plane. The dimension and composition of the state 
vector and its corresponding transition matrix vary by the 
applied discretization method (e.g. SDM, FDM). Nonethe-
less, state transition matrix depends on cutting parameters 
(e.g. depth of cut and spindle speed) as well as the modal 
parameters at the TCP.

Because the directional coefficients [α(t)] are approxi-
mated by their average in ZOA, Hopf-bifurcation is the only 
type of stability loss that is predicted by this method. Using 
discretization methods however, both Hopf and period-dou-
bling bifurcations of the system dynamics can be predicted.

Both of the discussed frequency domain (ZOA) and 
discrete-time domain (SDM, FDM) approaches for pre-
dicting chatter stability require the TCP FRF or the modal 
parameters extracted from them. The transfer function 
H(s), or equivalently the Frequency Response Function 
H(iω), is usually determined by impulse hammer tests at 
the TCP while the machine tool or the robot is idle. While 
the TCP FRF measured in idle conditions remain relatively 
unchanged under operational (machining) loads in machine 
tools, it varies significantly in robotic machining, leading to 
inaccurate predictions of chatter stability. New in-process 
FRF measurement methods are presented in the next section 
to enhance the accuracy of chatter predictions by incorpo-
rating the true in-process dynamics of the robot in stability 
analysis.

In‑Process FRF Measurement

The robotic milling setup used in this work, shown in 
Fig. 1, is a KUKA KR90 R3100 robotic arm equipped by 
a Powertech 400 Hiteco milling spindle with HSK 63F 
holder interface. Figure 2 shows the FRF measured by 
impulse hammer tests in Cartesian coordinates at the robot’s 
TCP (tool-tip) in the posture shown in Fig. 1. Excitation 
force was applied by a Kistler instrumented hammer and 
the resulting accelerations were measured using PCB 
piezoelectric accelerometers. This method of measuring 
TCP FRF has been adopted from machine tools where the 
FRF measured by hammer tests remain relatively unchanged 
under operational loads. However, these FRF could lead 
to incorrect stability prediction since, unlike in machine 
tools, FRF of the robot vary significantly by operational 
conditions [29, 30]. Figure 3 shows an example of FRF 
variations by operational conditions (i.e. excitation force). 

(6)�k+1 = ��k;k = 1, 2, ..
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The TCP FRF in this figure are measured using sinusoidal 
excitation forces with different force amplitudes applied by 
a shaker, which are then compared to the FRF measured by 
transient forces applied by an instrumented hammer [29]. 
Because the sinusoidal excitation forces excite the structural 

nonlinearities in the robot joints, the FRF peaks are 
systematically distorted by increasing the force amplitude. 
Considering such nonlinearities, it is expected that the robot 
FRF also change during the milling process where high 
amplitude periodic cutting forces replace the shaker forces.

Fig. 3   Variation of FRF meas-
ured using impulse hammer test 
and sinusoidal excitation force 
with different amplitudes [29]
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Fig. 2   Measured FRF of the KUKA robotic milling system using impulse hammer tests in idle condition
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Considering the FRF variation due to structural nonlin-
earities, feed motion or other unknown factors, we aim to 
predict the stability diagrams using the FRF that are meas-
ured during the milling operation, rather than in idle condi-
tions. The milling forces are used as excitation forces and 
the corresponding vibrations are measured to determine the 
in-process FRF. Because chatter-free milling forces are peri-
odic at the tooth-passing frequency (Fp(t) in Eq. 1), they 
only excite the tooth-passing frequency and a few of its 
harmonics. Therefore, the resolution of the FRF estimated 
by those forces would be limited to the first few harmonics 
of tooth-passing frequency. Two approaches are considered 
to increase the bandwidth and resolution of the estimated 
FRF: i) milling porous material, and ii) milling homoge-
neous materials with varying spindle speed. In milling of 
porous materials, the random distribution of the pores adds 
a strong random component to the periodic milling forces, 
extending the bandwidth and resolution of excitation. In the 
second approach, the periodic content of the milling force 
at the tooth passing frequency is used for excitation, but 
the spindle rotation frequency is gradually swept across the 
frequency range where the flexible modes are located. The 
implementation of these two approaches are presented in 
the following sections. In the conducted experiments, cut-
ting forces and the resulting vibrations in feed, normal and 

axial directions were measured using a table dynamometer 
beneath the workpiece and accelerometers located at the 
non-rotating part of the spindle, respectively, as shown in 
Fig. 1. The data acquisition was carried out using Compact-
DAQ NI-9234 modules and the sampling rate was set to 
10240 Hz.

Milling of Porous Material

The porous material used in this work is an Aluminum 
foam workpiece shown in Fig. 4. The random distribution 
of pores with random sizes enriches the frequency spectra 
of the periodic machining forces by superimposing a strong 
random content on them. The frequency spectra of cutting 
forces in milling of Aluminum foam and a homogeneous 
material (Acetal Copolymer) in similar conditions are shown 
in Fig. 4. Although the periodic content of the two signals 
have similar amplitudes, the average level of cutting forces 
at non-harmonic frequencies is considerably increased in the 
case of Aluminum foam.

Full immersion (φst = 0, φex = π) milling was performed 
on the Aluminum foam with an endmill that had a diameter 
of 12.7 mm and two cutting teeth (with γ = π/2). Axial cut-
ting depth was a = 2 mm and the feed motion was at the rate 
of 0.1 mm/tooth in X direction. The spindle speed was kept 
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Fig. 4   Left: Aluminum foam sample with density 0.36 g/cm3. The middle channel shows the surface after machining. Right: PSD of cutting 
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constant at 820 rev/min. This spindle speed was selected to 
prevent aligning the spindle rotation frequency (13.7 Hz) and 
its harmonics with the flexible modes of the robot. Note, since 
the flexible modes are below 30 Hz, a higher spindle speed 
could also be used to bypass all the flexible modes. However, 
820 rev/min was selected to measure data for a longer time 
(considering the feedrate) while the change in robot’s posture 
throughout the cut is minimum. The measured cutting forces 
are shown in Fig. 5-a to -c. The Power Spectral Density (PSD) 
of the forces are shown in Fig. 4.

The FRF matrix between the inputs � =
[
FxFyFz

]T and 
outputs � =

[
xyz

]T of the MIMO system is calculated as fol-
lows [39]:

where

Hp,q(ω) is the frequency response function between the out-
put p and the input q, and Sp,q(ω) is the cross PSD between 

(7)�(�) = �
��
(�)�−1

��
(�)

(8)

�(�) =

⎡⎢⎢⎢⎢⎣

Hxx(�) Hxy(�) Hxz(�)

Hyx(�) Hyy(�) Hyz(�)

Hzx(�) Hzy(�) Hzz(�)

⎤⎥⎥⎥⎥⎦
, ���(�) =

⎡⎢⎢⎢⎢⎣

Sx,Fx
(�) Sx,Fy

(�) Sx,Fz
(�)

Sy,Fx
(�) Sy,Fy

(�) Sy,Fz
(�)

Sz,Fx
(�) Sz,Fy

(�) Sz,Fz
(�)

⎤⎥⎥⎥⎥⎦

���(�) =

⎡⎢⎢⎢⎢⎣

SFx ,Fx
(�) SFx ,Fy

(�) SFx ,Fz
(�)

SFy ,Fx
(�) SFy ,Fy

(�) SFy ,Fz
(�)

SFz ,Fx
(�) SFz ,Fy

(�) SFz ,Fz
(�)

⎤⎥⎥⎥⎥⎦

signals p and q. The PSD, Sp,q(ω), was estimated by Welch’s 
method and Hamming window with 50% overlap for averag-
ing. In order to estimate the FRF matrix from Eq.7, the input 
signals (excitation forces) must be linearly independent to 
avoid singularity of the inputs matrix SFF. This condition is 
confirmed by calculating the coherence between the cutting 
forces. The coherence function between two forces Fm and 
Fn is calculated as follows [39]:

The coherence between foam milling forces are shown in 
Fig. 5-d, which indicate that the forces are largely uncor-
related and therefore suitable for identification in Eq. 7. In 
Fig. 5, for comparison, the coherence between milling forces 
in homogeneous material (Acetal) are also shown in part (e). 
Homogeneous material milling forces are linearly dependent 
at tooth passing frequency and its harmonics. Even at other 
frequencies, the lateral forces have higher correlation com-
pared to the forces in foam milling. According to the coher-
ence plots in Figs. 5-e and 4, foam milling provides less 
correlated forces with higher amplitude random content. The 
force and acceleration signals measured during milling Alu-
minum foam were used in Eq. 7 to estimate the in-process 
FRF shown in Fig. 6. The dashed lines show the identified 

(9)CFm,Fn
(�) =

|||SFm,Fn
(�)

|||
2

SFm,Fm
(�)SFn,Fn

(�)
,m, n = x, y, z
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Fig. 5   (a)-(c): Measured cutting forces in full-immersion milling of Aluminum foam, in feed, normal and axial directions, respectively. (d)-(e) 
The correlation between cutting forces in foam and Acetal milling tests, respectively
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FRF and the solid lines are the FRF fitted by modal analysis. 
The zoom window shows the most flexible modes in feed 
(X) and normal (Y ) directions. It will be shown in “Stabil-
ity Lobe Diagrams with In-Process FRF” that these modes 
become unstable during machining and cause chatter; there-
fore, we are mainly interested in the accurate estimation of 
the FRF in the vicinity of these modes.

As shown in Fig. 6, the frequencies of the most flex-
ible modes of the robot are below 30 Hz. Variance of the 
estimated FRF in this range is studied using the multiple 
coherence function between the output p and the inputs F 
defined as follows [40]:

where

The superscript H stands for Hermitian transpose. The cal-
culated multiple coherence function, between the x, y and 
z vibrations and the input forces, are shown in Fig. 7. The 
coherence function is close to unity in the vicinity of the 

(10)Cp,�(�) =
�
H
p,�

(�)�−1
��
(�)�p,�(�)

Spp(�)
, p = x, y, z

(11)�p,�(�) =

[
Sp,Fx

Sp,Fy
Sp,Fz

]T

flexible modes, confirming the acceptable variance of the 
estimated FRF in this range. Because the axial machin-
ing forces are usually significantly smaller than the lateral 
forces, the measured signals in z direction have a lower Sig-
nal to Noise Ratio and consequently the coherence in that 
direction is lower than in lateral directions.

Speed‑Sweep Milling of Homogeneous Materials

In the previous section, the in-process FRF were estimated 
during milling porous materials. Using this approach, all 
of the flexible modes of the system can be identified with 
a single test. However, since the excitation energy is dis-
tributed over a wide range of frequencies, variance of the 
estimated FRF close to the less flexible modes may be poor. 
Spindle speed sweep tests proposed in this section enable 
concentrating the excitation energy in the frequency range 
of interest to improve the estimation variance in the vicinity 
of the specific mode(s) that are more prone to chatter. In this 
approach, the periodic component of the cutting forces (Fp(t) 
in Eq. 1) is used for excitation by sweeping the tooth-passing 
frequency across the frequency range of interest, i.e. where 
the flexible mode(s) of the system are located. To remove the 
correlation between the periodic milling forces in various 
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Fig. 6   Calculated FRF in Cartesian coordinates using the signals obtained from milling of Aluminum foam
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directions, multiple (minimum three) cutting tests with dif-
ferent radial engagement conditions are conducted to form 
a full-rank matrix of inputs in Eq. 7. In this approach, the 
MIMO FRF are estimated using the same equation as Eq. 7, 
except that the SFX and SFF are defined as follows:

where the digits in the subscript denote the index of the 
conducted test. We used three different milling modes (i.e. 
radial engagements) that generate cutting forces with a dif-
ferent phase and/or amplitude in each test. The three mill-
ing tests were 1) central-milling (φst = 0.38π, φex = 0.61π), 
2) down-milling (φst = 0.77π, φex = π) and 3) up-milling 
(φst = 0, φex = 0.23π). The axial cutting depth was 2 mm in 
all of the tests. The workpiece was Acetal Copolymer. The 
spindle speed in each test swept from 450 rev/min to 690 
rev/min over nearly 60 seconds, which corresponds to the 
tooth passing frequency increasing from 15 to 23 Hz. This 
is the range in which the flexible chatter-prone modes of 
the system are located, as will be shown in “Stability Lobe 
Diagrams with In-Process FRF”. Figure 8 shows the spec-
trogram (using short-time Fourier transform) of the cutting 
forces in test 2, i.e. the down-milling test. As expected, most 
of the excitation energy is concentrated between 15 and 23 
Hz and its harmonics. The high energy at the spindle rotation 
frequencies is due to runout. The measured cutting forces in 
the three milling modes are shown in Fig. 9. The PSD of the 
cutting forces are also shown in the same figure. It can be 
seen that excitation power is uniformly distributed across the 
frequency range of interest.

The coherence functions between the cutting forces are 
shown in Fig. 10, which indicates that the forces in each test 
are totally correlated, as expected for milling of a homo-
geneous material. However, since three different milling 
modes are used, the matrix of inputs SFF in Eq. 12 has three 

(12)
S
XF

=
[
S
XF,1 S

XF,2 S
XF,3

]
,

S
FF

=
[
S
FF,1 S

FF,2 S
FF,3

]

significant (non-zero) singular values, therefore it is full-
rank and the FRF of the MIMO system can be estimated. 
The in-process FRF estimated in speed-sweep tests are pre-
sented in Fig. 11. As shown in this figure, the modes in the 
target range are well-identified. The results of two series of 
speed sweep tests with the same cutting parameters are pre-
sented in Fig. 11 to confirm the repeatability of FRF estima-
tions. Note that the multiple coherence function as defined 
in Eq. 10 cannot be used for the speed sweep tests, because 
signals from different tests are being used.

Calibration of TCP FRF

The FRF estimated in the previous sections were based 
on input forces at the tool-tip (TCP) and the vibrations 
response at the spindle housing. However, the transfer 
function H(s) in Eq. 5 maps the forces at the tool-tip to 
the vibration response at the tool-tip as well. Considering 
that the flexible modes of the robot are mainly associated 
with the flexibility of the robot’s joints, it can be assumed 
that the vibration of the spindle-holder-tool assembly at 
these modes is a rigid-body motion. With this assumption, 
we can multiply the resulting in-process FRF by a constant 
coefficient to calibrate them to represent the TCP FRF. 
Figure 12-a illustrates the rigid body motion of the assem-
bly. It is assumed that the joints of the robot have small 
rotational displacements. Due to the joints’ displacement, 
the rigid body motion of the assembly includes transla-
tional and rotational displacements. As a result, the abso-
lute displacements at the tool-tip and sensor locations are 
different. With reference to Fig. 12, the calibration coef-
ficient for the FRF in the vicinity of each mode is deter-
mined as follows:

1.	 The two FRF HST and HTT are measured by applying 
hammer impulse at the tool-tip (point T) and measuring 

Fig. 7   Multiple coherence func-
tions corresponding to the FRF 
measured in foam milling test
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the response at the sensor’s location (point S) and tool-
tip, respectively (Fig. 12-a).

2.	 Modal fitting is applied to the measured FRF, HST and 
HTT, to find the corresponding mode shape between 
points S and T (Fig. 12-c):

3.	 The FRF HST is calibrated by the mode shape ratio such 
that the calibrated HST matches HTT, and as a result, the 
total displacement of the two points is equal (Fig. 12-d):

(13)Hpq(�) =
�p�q

�2
n
− �2 + i2���n

for p, q = S, T

Fig. 8   Spectrogram of the cut-
ting forces in down-milling (test 
2) speed-sweep test
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The same coefficient, �T

�S

 , is used to calibrate the in-
process FRF obtained in the previous sections. The cali-
brated in-process FRF are used in frequency and discrete-
time chatter analysis methods to develop the robot’s 
stability lobe diagrams in the next section.

Stability Lobe Diagrams with In‑Process FRF

Acetal Copolymer workpiece was milled with an end mill 
that has a diameter of 12.7 mm and two cutting teeth with 
γ = π/2. The cutting force coefficients were determined 
experimentally as Ktc = 119 MPa and krc = 0.17 and kac 
= 0.33 [37]. Stability of vibrations during machining is 
determined by monitoring the cutting forces and the spin-
dle vibrations. Both types of Hopf and period-doubling 
bifurcations are checked in each test. Hopf bifurcation 
was identified according to the Fast Fourier Transforma-
tion (FFT) of the cutting forces and spindle vibrations, 

(14)HTT (�) ≃ Hcalibrated
ST

(�) =
�T

�S

HST (�)
and period-doubling was identified according to the time-
history of the measured signals.

At each tested spindle speed, the cutting depth was 
increased incrementally until a dominating peak that is not 
a harmonic of spindle rotation frequency was observed in the 
signals’ FFT. This cutting depth was then determined as the 
border of Hopf bifurcation at the tested spindle speed. An 
example of Hopf bifurcation detection is shown in Fig. 13. 
The measured force and vibration signals in feed direction 
and their frequency spectra at axial cutting depths of 1.5 and 
2 mm are shown in Fig. 13. The displacement was obtained 
by numerically integrating the measured accelerations. At 
1.5 mm depth, the FFT plots show peaks at the harmon-
ics of spindle and tooth passing frequencies, i.e. ft/2 and ft, 
respectively. However, at 2 mm depth, the amplitude of force 
and vibration signals grow and the FFT plots (especially 
the FFT of vibrations) show a dominant peak at the chat-
ter frequency fc ≈ 18 Hz. This point is identified as chatter 
emanating from Hopf bifurcation. Stable and unstable cuts 
were primarily distinguished by their corresponding vibra-
tion and force signals measured by accelerometers and the 
dynamometer, respectively. Nonetheless, the machined sur-
face was also inspected visually for further confirmation of 
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Fig. 10   Coherence of measured cutting forces in speed sweep tests, and the singular values of the the matrix of input forces SFF
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vibration stability/instability. Figure 14 shows examples of 
the surfaces machined under stable and unstable conditions. 
Cases (a) and (b) correspond to stable conditions as only 
feed marks are observed on the surface. When the system is 
unstable, the feed marks are distorted by unstable vibrations 
as shown in cases (c) and (d).

For period doubling bifurcations, the time history of dis-
placement is observed. Figure 15 shows samples of chatter 
as a result of period doubling bifurcation compared to Hopf 
bifurcation. The orange dots are the same signal sampled 
at tooth passing frequency. At 1100 rev/min spindle speed, 
the system is stable at 0.5 mm depth, but at 2.5 mm depth, 
the sampled signals forms two parallel branches indicat-
ing period doubling [41]. Note that the two branches are 
expected to be straight in the time history of the signals. 
However, the branches are not straight during the cut. This 
could be due to i) small variations in spindle speed during 
operation, and ii) small variations in natural frequency as the 
robot’s posture changes during the cut. Periodic oscillations 
emanating from period-doubling bifurcation were observed 
until 4 mm depth of cut, at which point they loose stability. 
On the contrary, at 1200 rev/min the system goes through 
Hopf bifurcation without observing any period doubling 
bifurcations.

Similar chatter tests are conducted at several speeds 
and axial depth of cut values and the summary of results 
is shown in Fig. 16. The circles and crosses stand for sta-
ble and chatter due to Hopf bifurcation, respectively. The 
square signs show chatter due to period doubling bifurca-
tion. In Fig. 16, the stability diagrams calculated based 
on Nyquist criteria using idle (hammer test) FRF and 
in-process FRF are also shown. The experimental results 
agree with SLD obtained from in-process FRF but there 
are considerable discrepancies between them and the SLD 
developed by hammer test FRF. The rightmost lobe in the 
SLD associated with hammer FRF show the Hopf bifurca-
tion limit of the mode at 20 Hz, which is lightly damped 
in the hammer test FRF but heavily damped in the in-
process FRF. The experimental results clearly show that 
this mode is indeed stable during the process and it does 
not cause chatter. The force and acceleration signals (in 
normal direction) measured under 1600 and 2000 rev/min 
are presented in Figs. 17 and 18, respectively. The SLD 
with idle FRF suggests that, at these spindle speeds, the 
system is unstable at cutting depth of 3 mm. However, the 
measured signals indicate that chatter occurs at a higher 
cutting depth. The FFTs of vibration signals at 1600 and 
2000 rev/min are also presented in Fig. 19. Chatter and 
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Fig. 12   Calibration of identified in-process FRF. (a) illustration of the rigid body motion of the spindle-holder-tool assembly due to rota-
tional displacements at the joints, (b) measured and calibrated FRF, (c) mode-shape before calibration and (d) after calibration
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tooth passing frequencies are shown as fc and ft, respec-
tively. In both cases, it can be seen that the chatter frequen-
cies are between 17.5-18 Hz which correspond to the mode 
in normal direction (Y ). There is no peak in the vicinity 
of 20 Hz, confirming that this mode is mostly damped and 
does not cause chatter.

As shown in Fig. 16, period doubling bifurcations are not pre-
dicted by the ZOA method and Nyquist criterion, because the 
average values of directional coefficients are used. Semi-discre-
tization Method (SDM) considers the periodicity of the directional 
coefficients and therefore is able to predict period-doubling bifur-
cation, however SDM requires modal fitting of the measured FRF. 

Considering non-proportional damping in the system, the modal 
decomposition of the FRF is expressed as follows [42]:

where ωn is the natural frequency, ζr is the damping ratio, ΨR 
is the normalized right eigenvector, and ΨL is the normalized 
left eigenvector and n is the number of modes. The proce-
dure in [21] was followed to identify these modal parameters 
from in-process FRF. The fitting procedure was applied to 
the FRF measured in speed sweep tests. Two flexible modes 

(15)

Hpq(𝜔) =

n∑
r=1

(
ΨR

pr
ΨL

qr

i𝜔 − 𝜆r
+

Ψ̄R
pr
Ψ̄L

qr

i𝜔 − 𝜆̄r

)
, 𝜆r = −𝜔n,r𝜁r ± i𝜔n,r
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Fig. 13   Detection of Hopf bifurcations using measured force and vibrations signals (in feed direction). Half-immersion down-milling at spindle 
speed of 900 rev/min and feedrate of 0.15 mm/tooth

Fig. 14   Cutting surfaces of Acetal Copolymer workpiece. (a) stable, 800 rev/min, 1.5 mm. (b) stable, 1200 rev/min, 2 mm. (c) unstable, 800 rev/
min, 2 mm. (d) unstable, 900 rev/min, 2.5 mm
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Fig. 16   Stability diagram of 
half-immersion down-milling 
of Acetal workpiece using a 
tool with 12.7 mm diameter and 
two teeth. The abbreviation SS 
stands for speed sweep tests
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were assumed to be present in the frequency range of inter-
est. The identified parameters of these mode are presented 
in Table 1. Figure 20 shows the fitted FRF, calculated using 
the identified modal parameters in Table 1, and compares 
them against the measured FRF.

The modal parameters shown in Table 1 are used in SDM 
method [8, 21] to predict the SLD shown by the dotted line 
in Fig. 16. Except for around 1100 rev/min, the SLD agrees 
with the ones obtained from ZOA and Nyquist method with 
in-process FRF. The notch close to 1100 rev/min in the SLD 
from SDM is the period-doubling bifurcations limit, which is 
not predicted by the ZOA method. Consistent with the SLD 
from SDM, period doubling was observed around 1100 rev/
min in the experiments, although the experimental results 
suggest a wider region of period doubling bifurcation.

Overall, compared to idle FRF, the stability diagrams associ-
ated with the in-process FRF agree better with the experimental 
results. The discrepancies between the experimental results and 
the SLD are mainly because of the different cutting speed and 
depth values that were used in FRF estimation and chatter tests. 
The FRF were measured under fixed spindle speed and cutting 
depth, but those values are different at each one of the tested 
points shown in Fig. 16.

Table 1   Identified modal parameters of the system flexible modes

Mode fn (Hz) ζn(%) ΨL(×104) ΨR(×104)

1 16.99 2.85 -18.34-5.34i
-51.47 + 48.61i
-17.10 + 16.37i

-20.57-7.18i
-39.21 + 55.05i
-13.93 + 14.31i

2 18.48 9.96 32.31-76.26i
-28.53 + 3.08i
-5.08 + 6.72i

50.46-17.77i
-23.99-13.26i
-2.78 + 6.96i
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Conclusions

Two new methods were presented for in-process measure-
ment of TCP FRF in machining robots. The presented meth-
ods leverage the machining forces as the input to the system 
and estimate the FRF from the forces and vibrations meas-
ured during the process. The application of porous materials 
to randomize the machining forces and spindle speed sweep 
technique are shown to be effective in achieving broadband 
and uncorrelated excitation. The measured in-process FRF 
yield more accurate predictions of chatter-free machining 
parameters than the FRF measured by impulse hammer test 
when the robot is idle.

When a table dynamometer was used to measure the input 
(machining) forces, this method can only measure the FRF 
in the posture that positions the TCP at the dynamometer. 
Nonetheless, if the machining robot is equipped with a wrist 
force sensors or a rotary dynamometer, the presented method 
can be applied in arbitrary postures as well.
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