
Experimental Techniques (2023) 47:767–786

Vol.:(0123456789)

https://doi.org/10.1007/s40799-022-00589-y

RESEARCH PAPER

Experimental Performance of RC Beams Strengthened with Aluminum 
Honeycomb Sandwich Composites and CFRP U‑Jackets

M. Kantarci1 · M.M. Maras1 · Y. Ayaz1

Received: 7 October 2021 / Accepted: 6 June 2022 
© The Society for Experimental Mechanics, Inc 2022

Abstract
This study aims to investigate the flexural behavior of reinforced concrete (RC) beams strengthened using aluminum hon-
eycomb sandwich panels (AHSPs) with three different thicknesses (6, 10, and 15 mm) and CFRP U-Jackets with different 
cross-section configurations (i.e. support and middle sections). The experimental performance of RC beams was evaluated 
utilizing AHSPs and CFRP composites under four-point bending tests. The strengthened RC beams (HCRC-2-HCRC-10) 
were compared with the control beam (HCRC-1) in terms of flexural load carrying capacity, ductility, failure modes, and 
cracks patterns. The results revealed that the HCRC-9 beam specimen strengthened using 15 mm thickness AHSP displayed 
higher flexural performance than its counterparts. The HCRC-9 beam exhibited more ductile behavior, which depends on 
the failure mode. Strengthening with AHSP decreased visible width shear cracks compared to the un-strengthened beam. It 
was also detected that increase in the thickness of AHSP improved the flexural behavior of RC beams.
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Introduction

Fiber-reinforced polymer (FRP) composites have been used 
in retrofitting strengthened masonry and reinforced concrete 
(RC) structures [1–3], marine and coastal structures [4], 
highway bridge [5], repair and strengthening of piping and 
infrastructure facilities [6, 7] and protection of structures 
against explosion and impacts [8]. Recent applications have 
indicated that FRP composites may be economically and 
effectively [9] applied for both traditional [10, 11] and new 
construction [12] repairing and strengthening of existing 
structures. FRPs are the most widely used structural com-
posite materials [13]. In recent years, composite materials 
have played a significant role in repairing and retrofitting 
damaged masonry [14, 15] and RC buildings [16, 17] due 
to their performing properties, such as high strength, corro-
sion resistance, low permeability and ease of application. 
For this reason, RC elements using fibers with innovative 
polymeric materials can be obtained both high ductility and 
strength at strengthening studies under the external effects 

[17]. It has been stated that these innovative geosynthetic 
polymeric materials, which have been used in recent years, 
improve the RC structure elements under different loads in 
proper bonding to concrete [18, 19]. Moreover, new innova-
tive materials on the structural retrofitting combined with the 
energy performance improvement of buildings have been 
proposed [20, 21].

Honeycomb composite materials were formed by placing 
a honeycomb core between two thin layers of high strength 
and bonding the components to each other with strong adhe-
sives [22] that can transfer load transfer from one surface 
to another, and high rigidity is obtained with low weights 
[23]. The analyses of the aluminum honeycomb structure 
and components included [24] constituent materials and ply 
properties [25], face laminates, and core wall engineering 
properties [26]. The adhesive used between aluminum hon-
eycomb core geometry and surface layers ensures that both 
elements act as a whole by strongly binding them [27].

As a result, a structure with high torsional rigidity 
[28] and bending stiffness [29] is obtained. The cell 
(core) part of the honeycomb composite plates was the 
hexagonal honeycomb [30] or the light density part, 
called the honeycomb. Sandwich composite boards were 
obtained as a result of covering the honeycomb cells with 
the upper and lower surface cover [31]. Honeycomb 
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composite panels require lightness [32] and are used 
where weight is a critical problem and at the same time 
high strength is required. The aim is to increase the 
stiffness by increasing the thickness [33] of the mate-
rial with light structures. These materials are bonded to 
high-strength [34] lower and upper surfaces with strong 
adhesives [35] that can transfer load from one surface 
to another.

In the paper, the effect of three different coated honey-
comb sandwich panels with core height on the mechani-
cal properties of the RC beams was investigated under 
laboratory conditions. The novelty of this research aims 
to investigate the strength of RC beams with aluminum 
honeycomb sandwich panels (AHSPs) with three differ-
ent thicknesses and different cross-section configura-
tions (i.e. support and middle sections). In the study, 
the effect of three different coated honeycomb sandwich 
panels with core height on the mechanical properties of 
the RC beams was investigated under laboratory condi-
tions. The paper presents the flexural behavior of RC 
beams strengthened using aluminum honeycomb sand-
wich panels with three different thicknesses and CFRP 
U-jackets with these configurations. CFRP material is 
used in different structural carrier systems and is a high-
cost material in building reinforcements. However, in 
our studies, it is aimed to reduce the cross-sections by 
applying these elements in different parts. In addition, 
low-cost aluminum honeycomb sandwich composites 
have been used as an alternative to CFRP plates. Honey-
comb composite materials exhibited rigidity in RC beams 
by transferring the load properly thanks to their high 
strength and core structure.

The structural behavior of strengthened RC beam 
specimens was tested using honeycomb sandwich panels 
and CFRP in four-point bending tests. The panels have 
displayed many advantages over conventional materi-
als owing to their high ductility and low permeability, 
greater corrosion resistance, light material, and high ten-
sile and compression strength. Many researchers have 
investigated the experimental behavior of RC elements 
strengthening with the FRPs. Nevertheless, it is very 

scarce to use AHSPs in structural repair and strengthen-
ing works. The panels have distinct advantages, such as 
resistance to fatigue and high bending strength. There-
fore, AHSPs and CFRP composite are considered to be a 
significant application area for retrofitting methods for 
masonry and RC structures.

Materials and Methods

Materials

Concrete

All specimens were cast cured in laboratory condition. The 
compressive strength test was performed by respectively 
using 150 mm × 150 mm × 150 mm cube samples. The aver-
age test results of the three samples were found as 23.2 MPa. 
Then, the slump funnel was filled in three equal stages; it 
was skewered with a standard bottle stick at each grade. The 
detailed properties of concrete using an RC beam are dem-
onstrated in Fig. 1.

Steel bars

Three types of steel reinforcing bars were used to prepare 
the beam cage. The top and bottom steel bars of 10 mm 
/12 mm with an ultimate strength of 516 MPa and 510 MPa 
were utilized as longitudinal reinforcement. The steel bars 
of 8 mm / were also utilized as a stirrup. The steel bars used 
in RC beams are shown in Fig. 2.

Details of Specimens

The tension and compression bars were two 12 mm and 
two 10 mm diameter bars, respectively (Fig. 3). The trans-
versal steel bars also formed 8 mm-diameter steel stirrups 
at a distance of 100 mm along the two shear spans of the 

Fig. 1   Concrete samples (a) 
Cube samples (b) Slump test
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RC beam specimens. RC beams were in rectangular cross-
Sects. 100 mm wide, 150 mm high and 2000 mm in length. 

The detailed reinforcement size of the beam is demonstrated 
in Fig. 3.

Fig. 2   Steel bars used in RC 
beams

Fig. 3   Details of test beams
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Strengthening Materials

Adhesive

Teknobond 300 TIX adhesive was used as a bonding com-
posite material between the concrete substrate and the alu-
minum honeycomb sandwich panels. The adhesive compo-
nents were produced at a mix ratio of 3:1 to accomplish a 
uniform grey color. The values of tensile, flexural, bond and 

Table 1   Mechanical properties of FRP composites

FRP type Mechanical Properties

Thickness 
(mm)

Specific 
Gravity 
(g/m2)

Tensile 
Strength 
(MPa)

Young’s 
Modulus 
(GPa)

Elongation 
(%)

CFRP 0.70 600 4137 242 1.5

Fig. 4   Textile used in this study: 
(a) CFRP textile; (b) Epoxy 
application

a) b)

Fig. 5   Aluminum honeycomb 
sandwich panels (AHSPs). (a) 
Honeycomb composite panel 
dimensions. (b) General view of 
composite panel. (c) Three dif-
ferent GRP-coated honeycomb 
sandwich panels

(a) (b)

(c)
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compressive strength of the epoxy adhesive as provided by 
the manufacturer are 30 MPa, 40 MPa, 4 MPa, and 80 MPa, 
respectively.

CFRP types

CFRP was preferred due to its high strength and rigidity. The 
fiber composite displays unique performance with excellent 
mechanical and bonding properties. CFRP composite with 
a thickness of 0.70 mm, a width of 500 mm, and 2500 mm 
in length was used for repair and retrofitting the RC beam 
samples. The values of the tensile strength, elastic modulus, 
and elongation of the CFRP as given by the manufacturer are 
4137 MPa, 242 GPa, and 1.5%, respectively. The mechanical 
characterization of fiber textile was provided by Art Con-
struction project engineering company in Turkey (Table 1 
and Fig. 4).

Honeycomb sandwich panels

Honeycomb Sandwich Panels (GRP coated honeycomb 
sandwich panel) made of aluminum core and glass rein-
forced polyester surface coating were investigated as rein-
forcement material. In this study, three different GRP-coated 
honeycomb sandwich panels with 6 mm, 10 mm, and 15 mm 
core height were used. The honeycomb sandwich panels 
were also used on the lower surface of the RC beams in a 
rectangular cross-section with 100 mm × 1800 mm (width 
x length) dimensions. Dimensions and general views of the 
honeycomb composite panels are given in Fig. 5.

Aluminum honeycomb sandwich panels have high ten-
sile strength and ductility. Also, the presence of a honey-
comb structure between the plates is predicted to increase 
the bending strength of the structure. The properties of the 
AHSPs are demonstrated in Table 2.

Table 2   Properties of 
honeycomb sandwich panels

Panel type

Height (h) Width (w) Length (l) CTP Thickness

Top Bottom

Group A 6 100 1800 1 1
Group B 10 100 1800 1 1
Group C 15 100 1800 1 1
(all dimensions in mm)

Fig. 6   Strengthening process 
of RC beams; (a) AHSPs (b) 
Epoxy application c) Strength-
ened RC beams
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a)

b)

Fig. 7   AHSPs and CFRP strengthening schemes. (a) Control RC beam (b) Group A (6 mm thickness AHSP) c) Group B (10 mm thickness 
AHSP) d) Group C (15 mm thickness AHSP)
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Strengthening Procedure

In this study, the strengthening of RC beams, which was one 
of the carrier elements, with different composite materials was 
investigated honeycomb composite panels, one of the leading 
materials in recent years, have been used for reinforcement 
work. To strengthen the beams against bending force, alu-
minum was chosen as the surface core material. Control RC 
beam and strengthened RC beams in nine different configura-
tions were used as test elements. Honeycomb composite panels 
of 6 mm, 10 mm, and 15 mm thickness were also used as the 

reinforcement material of three of the RC beams (Fig. 6(a)). In 
addition, strengthening CFRP material was externally bonded 
to the surface of the RC beam specimens with U-wrapped shape 
at the configuration of the different cross-sections (i.e. support 
and middle sections) in Fig. 6(b) and (c).

The strengthening material (AHSPs) was externally 
bonded to the bottom of the beams over a length of 1800 mm 
(see Fig. 7(a), (b), and (c)) and CFRP U-shaped wraps were 
applied immediately before the application of the honey-
comb composite panels. Nine out of ten RC beams were 
strengthened with FRPs U-shaped wraps. Out of nine 

c)

Fig. 7   (continued)
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strengthened RC members, three RC beam specimens were 
strengthened with 6 mm thickness honeycomb composite 
panels, the other three beam specimens were strengthened 
with 10 mm thickness honeycomb composite panels, and the 
remaining three RC beam specimens were also strengthened 
with 15 mm thickness honeycomb composite panel.

Test setup and Testing Procedures

All RC beam specimens were subjected to f lexural 
bending tests demonstrated in Fig. 8(a)–(b). The net 

span was 1800 mm, and the strengthening configuration 
resulted in a 650 mm-long shear span and a 500 mm-
long constant moment zone. The uniaxial load was 
applied using a servo control hydraulic actuator (60-
ton capacity) which was vertically fixed on a stiff reac-
tion frame (Fig. 8(a)). The load was applied monotoni-
cally under the flexural test at a rate of 1 mm/min. For 
all beams strengthened with AHSPs plates and CFRP 
strips, the vertical loads were recorded with a data log-
ger using a load cell.

d)

Fig. 7   (continued)
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Fig. 8   (a) Front view (frame system), (b) Testing procedures (four-point bending)
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Results and Discussions

Load–Displacement Curves

Figure 9 demonstrates the load–displacement curves 
for the group of tested RC beam specimens having dif-
ferent AHSPs (6, 10, and 15 mm thickness) and CFRP 
cross-section configurations (i.e. support and middle 
sections). The f lexural response of the control RC 
beam specimen and strengthened RC beam specimens 
are also demonstrated for comparison. From Fig. 9, for 
RC beam specimens, it was concluded that AHSPs and 
CFRP composites retrofitting with different configu-
rations resulted in higher load capacity and displace-
ments at ultimate load values compared to control RC 
beam samples. The application of these composites 
was increased rapidly in the strengthening works due 
to their fast and easy application [36], energy absorp-
tion [37], and their high tensile strength [38–40] com-
pared to traditional techniques. The amounts of gain 
in ultimate load values were 34.3%, 32.1%, and 40.5% 
over the reference beam specimen for the strengthen-
ing of HCRC-2, HCRC-3, and HCRC-4 beam samples 
using 6 mm thickness honeycomb sandwich panel and 
CFRP U-wraps strengthened, respectively. The surface 
material of the honeycomb sandwich panels carried 
the bending load [41, 42] and protected the structure 
against abrasion [43] while providing the lightweight 
intermediate layer material of the panels carried the 
flexural strength [37, 44, 45] caused by external loads. 
Also, CFRP U-wraps or U-jackets [46–48] on the 
behavior of RC beams provided high load capacities 
and ductility, while the amounts of gain in displace-
ments values at ultimate loads were 45.6%, 32.3%, 
and 50% over the control beam specimen for HCRC-
5, HCRC-6, and HCRC-7, respectively. It was evident 
that honeycomb sandwich panels strengthening delayed 
diagonal cracks [19, 37, 49] and so helped in increas-
ing load capacities [18, 44, 50, 51] and this was pro-
portional with thickness [52, 53] of honeycomb sand-
wich panels. The maximum load recorded for RC beam 
specimens using 15 mm thickness honeycomb sand-
wich panels HCRC-8, HCRC-9 and HCRC-10 were 42 
1, 47.3, and 40.2 kN, respectively, which yields 31.2%, 
46.7%, and 25.5% increase in the load capacity. Many 
researchers have stated that, as the cell density of hon-
eycomb sandwich composite panels increased, the cell 
shear rigidity and flexural strength of the panels also 

increased [20, 41, 54, 55]. It was confirmed that the 
moment of inertia increased [56, 57] with increasing 
core thickness in these composites, which is the main 
reason for the increase in the slope [37, 58, 59] in the 
linear part of the graph. Consequently, all specimens 
strengthened with AHSPs and CFRP-retrofitted RC 
beam samples displayed flexural strength significantly 
higher compared to the reference RC beam sample. As 
the thickness increased in these honeycomb compos-
ites, good adhesion between the concrete and the plate 
was achieved, and, thus, the RC beams exhibited duc-
tile behavior.

Flexural Load Carrying Capacity

The effects of different thickness honeycomb sandwich pan-
els and CFRP U-wraps strengthened are presented in this 
study. The variation between the initial and final cracking 
load of the RC beam specimens is given in detail in Fig. 10. 
The first cracking load was determined to specify the loca-
tion of the first crack point and then the loading process con-
tinued until the ultimate failure of the RC sample in Fig. 10. 
The reference beam HCRC-1 specimen failed at a load of 
32.1 kN by concrete surface crushing after yielding steel 
reinforcement. The initial flexural cracks were observed at 
the mid-span at a total load of roughly 10.2 kN. The crack's 
width increased with increasing the load up along the com-
plete length of the RC beam specimen failure. The compari-
son of the first cracking between HCRC-2, HCRC-3, and 
HCRC-4 using 6 mm thickness honeycomb sandwich panel 
strengthened samples demonstrates higher enhancement 
from 31.4%, 38.2%, 34.3% according to the control sam-
ple (HCRC-1), respectively, as shown in Fig. 10(a). Many 
researchers have reported that sandwich panels were highly 
efficient composite elements by supporting the bending 
strength [18, 41, 60, 61] of surface materials under bending 
load, tolerating lateral forces, and stabilizing the structure 
against buckling [20, 62–64]. In addition, the strengthening 
of the HCRC-8, HCRC-9, HCRC-10 beam samples using 
15 mm thickness honeycomb sandwich panel increased the 
first cracking loads up to 42.2%, 26.5%, and 48.1%, respec-
tively, compared to the un-strengthened RC beam sample 
(Fig. 10(a)). It was observed that sandwich composite with 
lower thickness posed more stress under the same load. For 
this reason, the 6 mm thick sandwich plates had a lower 
buckling load than the thicker plates. Similarly, it was stated 
that, as the core thickness increased [52, 56, 65, 66], the 
maximum load amount the RC beams could carry [67–69] 
compared to the control RC beam specimen also increased.

The performance of RC beam specimens in increasing 
the ultimate load capacity of the beams is compared to the 
control RC beam specimenin Fig. 10(b). The strengthen-
ing of HCRC-2, HCRC-3 and HCRC-4 beam samples using 

Fig. 9   Load–displacement curves of the RC beams. (a) 6 mm thick-
ness AHSPs strengthened and control beams (b) 10  mm thickness 
AHSPs-strengthened and control beams c) 15 mm thickness AHSPs-
strengthened and control beams

◂
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ple (b) Ultimate load capacity and increase in ultimate load capacity compared to reference sample
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6 mm thickness honeycomb sandwich panel strengthened 
increased the ultimate loads up to 34.3%, 32.1%, and 40.5%, 
respectively, compared to beam sample in Fig. 10(b). Also, 
the strengthening of the HCRC-5, HCRC-6, HCRC-7 beam 
samples using 10 mm thickness honeycomb sandwich com-
posite panel as a strengthening reinforcement increased its 
load capacity up to 35.5%, 33.3%, and 41.1%, respectively, 
compared with the un-strengthened RC beam sample. The 
cells in the composite used in the honeycomb structure 
assumed the function of the body of the RC beam [70]. Hon-
eycomb cells resisted shear force [41, 71, 72] and increased 
the strength [73, 74] of the structure. At the same time, the 
cells provided regular and reinforced support on the surface 
[75, 76]. Finally, the strengthening of the HCRC-8, HCRC-
9, HCRC-10 beam samples using a 15 mm thickness hon-
eycomb sandwich composite panel as a strengthening rein-
forcement increased its load capacity up to 31.2%, 46.7%, 
and 25.5%, respectively, compared with the un-strengthened 
RC beam sample. The RC beams strengthened at the mid-
dle section displayed more ductile and energy absorption 
capacity, which depends on the failure mode. As a result, the 
load–displacement curves, strengthened RC beams exhibited 
higher load capacity than control RC beams.

The ultimate load of HCRC-3 is smaller than that of 
HCRC-2 and HCRC-4, and the ultimate load of HCRC-6 
is smaller than that of HCRC-5 and HCRC-7. In this study, 
the reinforcements made in the middle regions of the speci-
mens reinforced with CFRP and low-thickness composites 
(6 mm, 10 mm) showed better results in increasing the load. 
However, the ultimate load of HCRC-9 is larger than that of 
HCRC-8 and HCRC-10. AHSP composites with high thick-
ness exhibited a more rigid behavior than CFRP composite 

materials. Therefore, RC beam specimens with high plate 
thickness (15 mm) exhibited more load increase than CFRP 
materials.

Displacement Ductility

Figure 11 demonstrates the relation of the ductility indexes 
for all tested RC beams. All the AHSPs and CFRP-strength-
ened RC beam samples display a ductility index higher than 
control samples.

The ductility index of the RC beam specimens is defined 
as the ratio of the mid-span deflection at yield load with the 
mid-span deflection at ultimate load. It is explained in detail 
in the equation below.

where ( Δ
u
 ) is the displacement of a structural element and 

(Δy) is the displacement at yield limit.
Compared with the control sample (HCRC-1), the duc-

tility index of sample HCRC-2, HCRC-3, and HCRC-4 
increased 22.6%, 12.9%, and 25.8%, respectively. The 
ductility index HCRC-6 and HCRC-7 beam sample also 
increased 19.4% and 29.1%, respectively, compared to that 
of the control RC beam sample. The honeycomb of specific 
energy absorption rate was highly influenced by the struc-
tural parameters of the structure [77, 78]. Reinforcements 
made with the core material increased the specific energy 
absorption rate [79]. Moreover, the ductility index HCRC-8 
and HCRC-10 beam strengthened with 15 mm thickness 
honeycomb sandwich panel increased by 24.3% and 28.3% 

(1)�
Δ
=

Δ
u

Δ
y

Fig. 11   Ductility indices based 
on deformability
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in comparison to un-strengthened HCRC1 beam specimen, 
respectively. Honeycomb cores were used especially in areas 
with a high need to absorb the energy [60, 80, 81] generated 
by the impact. Among all the RC beam samples, HCRC-9 
showed the largest ductility, while the un-strengthened beam 
specimen UHRC-1 displayed the smallest ductility. High 
ductility index showed that the structural element could 
cause high deformation [41, 82, 83] under loads without 

a significant reduction in its flexural strength. As a result, 
all strengthened beams demonstrated higher ductility index 
than the corresponding reference beam specimen. Especially 
in the samples reinforced with 6 mm thick plates, crushing 
occurred in areas close to the support. In the specimens rein-
forced with AHSPs composites, the deflection, especially 
in the beams, was reduced. In addition, thanks to these 
composites, a slight increase in strength has been achieved. 

Fig. 12   The crack pattern for 
RC beam specimens: (a) Close 
up of RC beams; (b) Complete 
look of RC beams

a) b)
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Fig. 13   Crack patterns of refer-
ence and externally reinforced 
beams. (a) Group A (Control 
HCRC-1 beams) (b) Group B 
(6 mm thickness honeycomb 
sandwich panel strengthened 
RC beams) (c) Group C (10 mm 
thickness honeycomb sandwich 
panel strengthened RC beams) 
(d) Group D (15 mm thickness 
honeycomb sandwich panel 
strengthened RC beams)

b)

c)

d)

a)
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In the samples reinforced with CFRP, on the other hand, it 
showed high energy absorption by showing high deforma-
tion feature rather than strength effect.

Failure modes of the Specimens

The formation of the crack patterns of RC beams is dem-
onstrated in Fig. 12. All strengthened RC beam specimens 
demonstrated similar behavior as observed for the reference 
beam specimen up to cracking. After the cracking, the load-
displacements relationship of the HCRC-4 beam specimen 
was strengthened using a 6 mm thickness honeycomb sand-
wich panel and CFRP strips were nearly similar to that for 
the HCRC-10 beam specimen strengthened using 10 mm 
thickness honeycomb sandwich panel and CFRP U-jackets. 
For the beam, the HCRC-2 specimen was strengthened with 
6 mm thickness AHSPs and CFRP strips, initially; flexural 
cracks were formed at the mid-span. Strengthening beam 
HCRC-4 with CFRP strips controlled the crack width in 
comparison with the HCRC-1 beam specimen. The failure 
of HCRC-3 was observed at a total applied load of 42.4 
kN by debonding of the honeycomb sandwich panel at the 
strip–epoxy interface. The failure modes of HCRC-8 also 
formed thin diagonal shear cracks at the middle section. 
Similarly, the type of failure, could also be described as 
shear cracks [84–87]. Thanks to the aluminum plates in the 
HCRC 9 and HCRC 10 samples, the carrying capacity has 
increased. However, in the HCRC 10 sample, poor adher-
ence was observed between the concrete and the CFRP used 
in the middle region. In HCRC 10 sample, with the accu-
mulation of the load in the region between the middle and 
the support, the shear cracks intensified and thus exhibited 
less ductile behavior.

The novelty of this research aims to investigate the 
strength of RC beams with aluminum honeycomb sandwich 
panels (AHSPs) with three different thicknesses and cross-
section configurations (i.e. support and middle sections). In 
previous studies, reinforcement studies were carried out by 
using high-cost CFRP materials in all beam regions. In the 
study, the most suitable strengthening method was deter-
mined by both reducing the CFRP material and using more 
cost-effective aluminum plates. It is not known how CFRP 
and AHPS composites behave under load in RC beams. 
Therefore, the effect of this strengthening combination was 
determined by the experimental study. As a result, the most 
suitable strengthening method was obtained by reducing the 
shear cracks in the RC beam sample reinforced with CFRP 
by using a 15 mm thick plate in the middle region.

The representative failure modes for all RC beam sam-
ples tested are demonstrated in Fig. 13. The failure pattern of 
the reference beam specimen (HCRC-1) is a typical flexural 
failure mode in Fig. 13(a). For the beam HCRC-1 control 
sample, firstly flexural cracks were started from mid-span, Ta
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and then the failure of the reference beam sample was 
occurred through concrete spalling at the top of the compres-
sion region, as shown in Fig. 13(a). In the case of the beam, 
HCRC-2 strengthened using a 6 mm thickness honeycomb 
sandwich panel, the propagation, and formation of diagonal 
cracks was similar to those of beam HCRC-3 in Fig. 13(b). 
Eventually, the honeycomb sandwich panel debonded from 
the RC beam specimen’s (Group B) soffit with parts of 
the concrete surface attached. This type of failure mode is 
quite common and brittle for the composite plates RC beam 
specimens [34, 88, 89]. It may be observed that the failure 
modes of HCRC-5 and HCRC-6 were occurred with wide 
shear cracks at the interface between the concrete surface and 
epoxy adhesive, as demonstrated in Fig. 13(c). The beams 
strengthened using a 10 mm thickness honeycomb sandwich 
panel failed due to CFRP rupture at the constant moment 
region of the RC beam specimens (Group C). All samples 
strengthened with honeycomb sandwich panels failed in 
bending tests after exhibiting ultimate load higher compared 
to the reference sample. In the case of beam HCRC-8 and 
HCRC-9 strengthened with 15 mm thick aluminum honey-
comb sandwich panel (AHSP), the ultimate total applied load 
at failure was 42.1 kN and 47.1, which is 31.2% and 46.7% 
higher than that of the reference beam specimen (HCRC-1), 
respectively. For the RC beam samples strengthened with 
the honeycomb sandwich panel, the apparent width of shear 
cracks were reduced [90, 91]. As a result of using 15 mm, 
thickness AHSP and CFRP, an important increase in the flex-
ural load carrying capacity was observed owing to the high 
ductility of the bond strength of the composites. Therefore, 
HCRC-8 and HCRC-9 beam specimens using high thickness 
plates and CFRP strips are more effective than the control 
beam specimen under the bending tests. The results demon-
strated that the first crack load could be increased greatly by 
increasing the thickness of the honeycomb sandwich pan-
els. The highest ultimate load increase was obtained in the 
HCRC-9 sample. As the thickness increased in these honey-
comb composites, good adhesion between the concrete and 
the plate was achieved, and, thus, the RC beams exhibited 
ductile behavior. The experimental results are compared with 
recent studies in Table 3.

Conclusion

In this study, the effect of using three different thickness 
honeycomb sandwich panels on the RC beam strengthen-
ing techniques was investigated. The strengthened RC beam 
using AHSPs and CFRP was evaluated.

i-	 All specimens strengthened with AHSPs and CFRP-
retrofitted RC beam samples displayed flexural strength 

significantly higher compared to the reference RC beam 
sample.

ii-	 The RC beams strengthened at the middle section dis-
played greater ductility and energy absorbing behavior, 
which depends on the failure mode.

iii-	 Among all the RC beam samples, HCRC-9 showed the 
largest ductility, while the un-strengthened beam speci-
men UHRC-1 displayed the smallest ductility.

iv-	 Strengthening beam HCRC-4 with CFRP strips con-
trolled the crack's width in comparison with the HCRC-1 
beam specimen.

v-	 As the core thickness increased, the maximum load that 
the RC beams could carry increased compared to the 
reference RC beam sample.

vi-	 CFRP material is used in different structural carrier sys-
tems and is a high-cost material in building reinforce-
ments. However, in our studies, it is aimed to reduce 
the cross-sections by applying these elements in differ-
ent parts. In addition, low-cost aluminum honeycomb 
sandwich composites have been used as an alternative to 
CFRP plates. Honeycomb composite materials exhibited 
rigidity in RC beams by transferring the load properly 
thanks to its high strength and core structure.
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