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Abstract
Nanofluids containing alumina nanoparticles have been used in different thermal devices due to their favorable characteristics 
including ease of synthesis, relatively high stability and proper thermal features. Nanofluids thermal conductivity could be 
modeled with high exactness by employing intelligent techniques. In the current paper, thermal conductivity of EG-Water-
based nanofluids with alumina particles is modeled by utilizing Multi-Layer Perceptron (MLP) and Group Method of Data 
Handling (GMDH) as two efficient intelligent approaches. In case of utilizing MLP two transfer functions, tangent sigmoid 
and radial basis functions, are applied. Results showed that utilizing MLP with radial basis provides the highest precision 
of the prediction in its optimal architecture.  R2 of the models by applying MLP with tansig and radial basis functions and 
GMDH are 0.9998, 0.9998 and 0.9996, respectively. Furthermore, sensitivity analysis reveals that base fluid thermal con-
ductivity has the most significant role in the thermal conductivity of the considered nanofluids.
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Introduction

Nanofluids, the fluids containing particles in nanometer 
dimensions, outperform common heat transfer liquids in 
thermal devices due to improved characteristics which is 
due to the dispersion of solid particles with higher Thermal 
Conductivity (TC) compared with the liquids. TC of the 
nanofluids is influenced by the features of fluid and nano-
material, temperature, volume fraction etc. Improvement in 
the properties of the nanofluids, compared with pure liquids, 
makes them attractive for several applications [1, 2]. Heat 
transfer of nanofluid-filled cavity has been analyzed in dif-
ferent works by considering different factors [3–5]. As an 
example [6], nanofluid-filled cavity mixed convection in case 
of two-sided elastic walled and internal heat generation was 
investigated in a wok. It was concluded that mean Nusselt 
number increases with increment in the Volume Fraction 
(VF) solid phase. In another research [7], nanofluid mixed 
convection in shallow cavity was analyzed by utilizing two-
phase mixture model. It was found that increment in the VF 
of solid phase causes enhancement in the convective heat 
transfer coefficient. Ebrahimi et al. [8] found enhancement in 
mixed convection heat transfer in a cavity with elbow shape 
by making use of Cu/water nanofluid.
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Metal oxide particles such as aluminum oxide (alumina), 
copper oxide, titanium dioxide (titania) are widely utilized 
in nanofluids regarding the simplicity of their synthesis and 
relatively high stability in different base fluids. The nano-
fluids containing metal oxide particles are usable in various 
thermal mediums and are able to remarkably improve the 
performance [9] which is mostly due to the modification of 
the TC. Aside the single liquid, the base fluids of the nano-
fluids could be composed of two or more liquids. Nanofluids 
with binary base fluids, consisting two liquids, have attracted 
attentions in recent years due to some of advantages such as 
wider applicability range. Nanofluids with mixture of Ethyl-
ene Glycol (EG) and water as the base fluid are convenient 
for various applications like car radiator [10], solar systems 
[11, 12] and thermal management units of energy technolo-
gies [13].

Nanofluids containing alumina are attractive for differ-
ent thermal applications and able to drastically enhance 
heat transfer. For instance, Ghanbapour et al. [14] made use 
of  Al2O3/water nanofluid in a screen mesh heat pipe and 
noted improvement in thermal performance for condition 
of dispersion of the nanomaterials in the operating fluid. Qu 
et al., [15] examined  Al2O3/water nanofluid in an oscillation 
heat pipe and noticed around 32% reduction in the highest 
thermal resistance compared with water-filled one. Yousefi 
et al. [16] used  Al2O3/water nanofluid in a solar collector and 
reached around 28% enhancement in the efficiency in case of 
0.2% wt concentration. Tong et al. [17] used the nanofluid 
in a solar collector and compared the exergy efficiency with 
water as operating fluid. They noticed that exergy efficiency 
could be enhanced by approximately 57%. Bondarenko et al. 
[18] analyzed natural convection cavity with heat generating 
unit and observed that cooling process could be intensified 
by utilization of  Al2O3/water nanofluid. Chamkha et al. [19] 
investigated single and double-lid cavities mixed convection 
with square shape and found that presence of  Al2O3 nano-
particles causes significant augmentation in heat transfer. 
Hashim et al. [20] investigated heat transfer in a wavy cavity 
and found that it increases compared with water by introduc-
ing  Al2O3/water nanofluid.

Regarding the significance of TC in heat transfer char-
acteristics of fluids, huge number of works have focused 
on this feature of nanofluid [21, 22]. Studies have shown 
that temperature, VF, specifications of fluid and nanoma-
terials mostly affect the TC [23]. Different models have 
been proposed for modeling of TC based on the obtained 
data from experimental works. According to the litera-
ture review, intelligence approaches have shown signifi-
cant performance in exact prediction of TC. For instance, 
Maleki et al. [24] applied Multi-Layer Perceptron (MLP) 
and Group Method of Data Handling (GMDH) to model 
TC of nanofluids with ZnO as solid phase and found the 
 R2 of the models was around 0.99. Ghazvini et al. [25] 

applied ANN to model TC of nanofluids with magnetic 
copper nanoparticles and water as the base fluid.  R2 of 
their model was 0.99 that demonstrated the high preci-
sion of the predicted data. Pare et al. [21] used ANN to 
model TC of metal oxide/water nanofluids and noted good 
consistency of the predicted values with the experimental 
data. Esfe et al. [26] compared performance of Response 
Surface Methodology (RSM) and ANN in predicting TC 
of  TiO2/water and found that the correlation based on 
ANN outperform the one based on RSM.

Regarding the outstanding performance of ANNs in 
predicting the TC of nanofluids, this paper focuses on the 
utilizing of these methods for TC modeling of nanofluids 
containing alumina nanoparticles with EG-water base flu-
ids in different mixture ratios. Till now, some studies have 
concentrated on the modeling of nanofluids with alumina 
particles; however, in these studies just a single base fluid 
such as water or EG are considered [27, 28], while the pre-
sent works considers the nanofluids consisting of water-EG 
base fluid with different mixture ratios. Furthermore, sensi-
tivity analysis is another factor that makes the current work 
more comprehensive compared with the similar works. In 
addition, in the previous studies, the methods are compared 
while the present study compares the performance of the 
models with two functions, in MLP with different architec-
tures, and GMDH as another approach. The findings of the 
current work would provide the most appropriate approach 
and structure for modeling the nanofluids. Moreover, by 
applying the sensitivity analysis, degree of importance of 
each input variable will be clear and deeper insight into the 
influential factors would be obtained. Details of the study 
are presented in the upcoming sections.

Methodology

ANNs are applicable for proposing regression model for 
various systems. Methods based on ANNs are used in large 
extent for predicting the properties of nanofluids. In cur-
rent paper, two algorithms including MLP and GMDH are 
employed. MLP network is composed of three main layers. 
The input layer refers to the input variables used for propos-
ing regression model; subsequently, Hidden Layer (HL) is 
applied for processing the data and providing the output and 
finally the output layer provides the predicted values. For 
cases of modeling complex problems, more than one HL can 
be used. The main processors of the networks are neurons. 
Schematic of a simple MLP is shown in Fig. 1. In this figure, 
vector of X is the network’s inputs. By considering j as the 
numbers of neurons used in the network,  wji is the weight 
of each neuron and  yj and  uj are network output and output 
linear combination which are defined as follows [29]:
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In the above equations, bj is the tendency of the func-
tion and φ(0) denotes the activation function [29]. For 
assessing the effect of activation function, two conven-
tional types including tangent sigmoid (tansig) and Radial 
Basis Function (RBF) are used here.

Another approach that is used here is GMDH. The pro-
cessors of this network work on the basis of polynomials. 
The number of HLs in this network relies on the needed 
exactness. In the process of modeling with this network 
in case of single output with n inputs, Kolmogorov-Gabor 
polynomial is applied in the following form [30]:

where w refers to the vector of weights and P is the predicted 
value. To determine the coefficients of the abovementioned 
equation, regression techniques are applied. These coeffi-
cients are calculated by considering the least value of Mean 
Squared Error (MSE) (Figs. 2 and 3).

In order to compare the models and evaluate their exact-
ness, different criteria are used including MSE,  R2 and 
Average Absolute Relative Deviation (AARD) that are 
determined as follows [31]:
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where n refers to the number of samples.

Results and Discussion

To propose a model, two references are used that were 
experimental works on the measurement of TC of nano-
fluids with different mixture ratios of EG and water as 
base fluids that are extracted from Refs [32, 33]. All of 
the nanofluids contained alumina particles in different 
VFs. The inputs employed for regression are base fluid 
TC at 20°C (W/m.K), VF (%), temperature (°C) and 
average size of particles (nm), which are represented in 
Table 1. It should be mentioned that the mixture ratios 
of the base fluid for water/EG were 40%/60%, 60%/40%, 
80%/20% and 50%/50%. In case of MLP, the datasets 
were randomly split into training (70%), test (15%) and 
validation (15%) sets while for GMDH just training (70%) 
and test (30%) are applied. As mentioned, two types of 
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Fig. 1  Schematic of MLP
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activation functions are used for MLP. In Table 1, MSE 
of the networks with various numbers of neurons and 
tansig function are represented. On the basis of overall 
data MSE, utilization of 13 neurons in the HL causes the 
highest exactness with MSE of 3.43×10−6. In this case, 
 R2 is 0.9998 which demonstrates significant exactness 
of the applied model in prediction. Closer values of  R2 
to 1 means higher exactness of the regression and this 
obtained value for the present model indicates acceptable 
accuracy of the prediction. In Table 2, obtained values by 
the model are evaluated based on their consistency with 

Fig. 2  Modeled data vs meas-
ured values for MLP with tansig
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Fig. 3  Modeled data vs meas-
ured values for MLP with RBF
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Table 1  Ranges of input variables

Variables Ranges

TC of base fluids at 20°C (W/m.K) 0.253–0.492
VF (%) 0.2–1.5
Temperature (°C) 10–60
Average size of particles (nm) 13–36
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the corresponding measured data. Lower values of MSE, 
which means closer to 0, demonstrate closer predicted data 
to the actual ones and higher exactness. On the basis of 
these values, for all of the numbers of neurons applied in 
the networks, the MSE values are acceptable; however, the 
network with 13 neurons led to lower MSE compared with 
other architectures.

Similar to the network with tansig function, different 
neurons are applied for the case of RBF. In Table 3, MSE 
of the model for different neuron numbers are shown. 
According to the values, applying 13 neurons in the HL 
leads to the lowest MSE which is around 3.32×10−6 and 
lower than the corresponding value for the case of employ-
ing tansig function in the network. In this case, MSE is 
very low and close to 0 which denotes the significant 
exactness of the proposed models. In this condition,  R2 is 

0.9998, very close to 1, which shows the closeness of the 
predicted and measured values.

In the next stage, TC was predicted by making use of 
GMDH by applying GMDH Shell Software. In Fig. 4, mod-
eled and measured data by use of this method are depicted. 
In this case, MSE of train, test and overall data are 5.102 
×  10−6, 9.33 ×  10−6 and 6.370 ×  10−6, respectively. Com-
pared with optimal MLP networks, MSE is higher in this 
case that means lower precision of this model. In this con-
dition,  R2 is equal to 0.9996, which is lower in comparison 
with the previous models; however, its accuracy is accept-
able and the predicted data are close to the corresponding 
actual ones. Finally, in this section of paper, the models are 
compared on the basis of AARD. For the MLP with tansig 
and RBF, and GMDH, AARD are around 0.323%, 0.289% 
and 0.442%, respectively. Based on the determined values 
of these criteria, it can be concluded that MLP with RBF 
outperforms other two methods for modeling the TC of con-
sidered nanofluids.

Sensitivity Analysis

According to the experimental data, it can be concluded that 
increment in both temperature and VF of the considered 
nanofluids causes improvement in the TC. In addition, due 
to the high dependency of the TC of nanofluids on the base 
fluid characteristics, it is anticipated to have higher TC in 
cases of nanofluids with higher TC of base fluid. Data on 
the dependency of the TC on the particle size are in contra-
diction with each other in some studies [34]. To assess the 
output dependency on the variables applied as the inputs 
sensitivity analysis is applied. It is performed by considering 
relevancy factor that is between −1 and 1. Higher absolute 
relevancy factor means higher effect of the corresponding 
variable. Positive and negative signs of this factor refer to the 
fact that increment in the output is as a consequence of the 
input variable increase or reduction, respectively. Relevancy 
factor can be calculated by using Eq. (8) as follows [35]:

In Eq. (5), yi and y are the ith output and mean value of 
output, respectively. Xk, i and Xk are the ith value of the kth 
input and mean value of the kth input, respectively. On the 
basis of the abovementioned equation, the relevancy of the 
base fluid TC is the most significant input that is followed 
by particle size, temperature and VF, respectively. In order 
to get deeper insight into the dependency of the TC on the 
mentioned factors, it is suggested to consider more data from 
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Table 2  MSE of different architectures in case of using tansig

Number of 
Neurons

MSE Values

Training Validation Test Overall

4 1.147×10−5 1.229×10−5 1.329×10−5 1.187×10−5

5 8.39×10−6 4.97×10−6 1.18×10−5 8.38×10−6

6 4.41×10−6 6.82×10−6 4.16×10−6 4.73×10−6

7 7.4×10−6 7.17×10−6 6.61×10−6 7.25×10−6

8 3.8×10−6 2.43×10−6 5.88×10−6 3.91×10−6

9 4.55×10−6 2.42×10−6 6.92×10−6 4.58×10−6

10 7.48×10−6 5.06×10−6 1.25×10−5 7.88×10−6

11 3.23×10−6 4.09×10−6 1.86×10−5 5.66×10−6

12 5.51×10−6 6.33×10−6 5.09×10−6 5.57×10−6

13 3.58×10−6 2.34×10−6 3.82×10−6 3.43×10−6

14 3.78×10−6 3.76×10−6 4.99×10−6 3.96×10−6

15 4.59×10−6 3.79×10−6 4.81×10−6 4.50×10−6

Table 3  MSE of different architectures in case of using RBF

Number of 
Neurons

MSE Values

Training Validation Test Overall

4 1.421×10−5 1.263×10−5 1.342×10−5 1.385×10−5

5 6.48×10−6 1.08×10−5 8.4×10−6 7.41×10−6

6 9.38×10−6 5.69×10−6 1.06×10−5 9.01×10−6

7 6.93×10−6 1.08×10−5 6.69×10−6 7.48×10−6

8 7.37×10−6 1.22×10−5 7.81×10−6 8.16×10−6

9 3.87×10−6 3.8×10−6 4.62×10−6 3.97×10−6

10 5.12×10−6 4.59×10−6 3.71×10−6 4.83×10−6

11 7.76×10−6 1.37×10−5 7.1×10−6 8.54×10−6

12 4.41×10−6 5.8×10−6 4.24×10−5 4.59×10−6

13 3.8×10−6 1.48×10−6 2.89×10−6 3.32×10−6

14 4.02×10−6 2.35×10−6 2.05×10−6 3.48×10−6

15 3.51×10−6 3.46×10−6 8.66×10−6 4.28×10−6
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different references in the future works. It should be men-
tioned that the results of this research can be helpful for 
nanofluid simulations [36, 37].

Conclusion

The present article focused on the proposing of model for 
TC of nanofluids with water-EG base fluids in different mix-
ture ratios that contain alumina nanoparticles by making use 
of MLP with tansig and RBF and GMDH. Results revealed 
that all of the proposed models are significantly accurate in 
modeling the TC; however, MLP with RBF was a little bet-
ter.  R2 of the models using the MLP with tansig and RBF 
and GMDH were 0.9998, 0.9998 and 0.9996, respectively. 
AARD of these models were around 0.323%, 0.289% and 
0.442%, respectively. In addition, sensitivity analysis was 
conducted on the applied variables and it was observed that 
base fluid TC is the most influential among the considered 
variables on the value of nanofluid TC.
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