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Abstract
Modern wind turbines employ a multistage planetary gearbox to convert the low rotation speed of the turbine blades to the 
speed required by the generator. Studies have shown that gearbox failures rank the highest among the contributors to an 
unplanned downtime. Real-time condition monitoring systems can provide useful insights to a turbine’s operation there by 
reducing the chance of an unplanned downtime. This study focused on developing an automated real-time fault detection 
methodology for a miniature wind turbine planetary gearbox subjected to non-stationary loading. The data-driven multi-
component fault detection methodology implements multiple scales of continuous wavelet transform to extract information 
from a non-stationary signal. This multi-scale approach ensures that all possible component signatures are captured and 
organized into a feature rich data-set. The wavelet coefficients were then abstracted using descriptive statistics to reduce size 
of data-set. This was done so as to minimize the computation requirements. The proposed methodology was tested using a 
pattern recognition algorithm based on Artificial Neural Networks and two Decision Tree algorithms. The results indicated 
that the proposed methodology worked well with the Decision Tree algorithm thereby ensuring that such a method could be 
deployed for a compact signal analyzer, where processing capability and memory capacity is premium. Further, a stand-alone 
application was deployed to automate the process with the trained machine learning model. The proposed method proved its 
capability in classifying multi-component faults under non-stationary operating conditions.

Keywords  Planetary gearbox · Continuous Wavelet Transforms · Decision tree · Machine learning · Non-stationary · Multi-
component fault

Introduction

Wind turbines are often located in remote locations to 
extract the kinetic energy from the wind. As a result, they 
are exposed to very harsh environmental conditions. A wind 
turbine is designed to last for 20 years. However, reports 
have shown that they tend to break down within the design 
lifetime [1]. Studies have revealed that the most common 
wind turbine failures reported are that of gearbox failures. 
The high speed shaft gear and planet gear tends to fail before 
the gears in the low speed stage. A scheduled maintenance 
usually covers minor problems such as misalignment and 

lubrication contamination. Preventive maintenance may 
not always be a viable option as it tends to be expensive 
and, in most cases, prevents utilizing the full design life of 
the component. Hence, a condition-based maintenance plan 
would contribute greatly towards utilizing the design life of 
the component and minimizing the chance of an unplanned 
downtime.

Presently, vibration monitoring systems adopted for 
machines with gearboxes can detect abnormal vibration 
patterns and report it to the user. Multiple researchers have 
reported promising techniques to analyze vibration signa-
tures of different machine components under stationary and 
non-stationary conditions. Moosavian et al. used the contin-
uous wavelet transform and Short Time Fourier Transform 
to extract features which were used to identify the piston 
health of an IC engine [2]. Sugumaran et al. used multiclass 
support vectors to identify bearing faults under stationary 
speeds [3]. While many researchers have put forward various 
techniques to deal with stationary signals, most vibration 
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signals extracted from a machine are highly non-stationary. 
Moreover, multiple components can fail which could make 
the analysis very complicated. Unlike a stationary signal 
where a simple frequency spectrum (FFT) would provide 
valuable information, an FFT plot of a non-stationary sig-
nal would not provide much information as the frequency 
spectrum could be affected by both the equipment’s speed 
and load. Short Time Fourier Transform (STFT) can provide 
valuable insights into a signal as both the time and frequency 
information are made available for correlation. This method 
also helps in identifying the sequence of events or the fault 
characteristics order (FCO) [4, 5]. However, STFT suffers 
from one major drawback. The window length used for 
extracting the coefficients has to be constant which means 
there is always a trade-off between time resolution and fre-
quency resolution.

Many past literatures have highlighted methods for deal-
ing with non-stationary speeds. Barszcz et al. proposed 
using spectral kurtosis to detect tooth cracks within a plan-
etary gearbox [6]. Vamsi et al. proposed using an integrated 
condition monitoring scheme to detect bearing failures in a 
gearbox [7]. Hizarci et al. proposed using image processing 
to estimate the health of two distinct gearboxes by analyzing 
the vibration region [8]. Gunerkar et al. implemented sensor 
fusion techniques for both vibration and acoustics data and 
used K-Nearest Neighbor to classify ball bearing faults [9]. 
Xie et al. demonstrated a speech recognition process using 
a variance-based approach and multiple machine learning 
techniques by extracting spectrogram features from the 
signal [10]. Praveen et al. implemented STFT and decision 
trees to detect and classify the faults in a planetary gearbox 
[11]. Cocconcelli et al. reported an STFT based approach 
for ball bearing fault detection for direct drive motors oper-
ating at varying speeds [12]. Huang et al. proposed using 
Resonance-Based Sparse Signal Decomposition to extract 
features for rolling elements bearing fault diagnosis [13]. 
Radhika et al. extracted motor current signatures to predict 
the fault in a 3 phase AC induction motor using wavelets 
[14]. Zhang et al. proposed implementing Principal Compo-
nent Analysis (PCA) and Support Vector Data Description to 
predict health of a slew bearing [15]. Gómez et al. proposed 
using wavelet packet transform energy for health detection 
of wind turbine gearbox and generators [16]. Han et al. pro-
posed using multi-level wavelet packets and neural networks 
to predict component faults within a planetary gearbox under 
varying speed [17].

Wavelets are presently one of the common tools to pro-
cess non-stationary signals. As it can be observed, mul-
tiple studies have used STFT, wavelets or other means to 
extract features from the raw data. From previous studies, it 
could be observed that most methods for stationary analysis 
depended on decision trees. Whereas non-stationary meth-
ods depended on neural networks. While Discrete Wavelet 

Transforms (DWT) can be deployed for a condition monitor-
ing problem [7, 18], the present study focused on deploy-
ing a Continuous Wavelet Transform (CWT) as it features 
a scale factor which allows the wavelet to accommodate a 
wide range of frequencies. The scale factor allows the wave-
let to stretch to accommodate very low frequencies and also 
compress in order to capture sudden transient changes in 
the signal. This is in contrast to DWT, where a signal is 
decomposed into its low-pass approximation and high-pass 
detailed signals and further decomposition only applies to 
the detailed components. Hence, it suffers from insufficient 
treatment of the high frequency components where the bear-
ing fault impulses exist [19].

Feature extraction plays an important role in the overall 
result. When a machine learning algorithm is involved, pre-
paring the extracted features to train the algorithm is crucial. 
As highlighted before, a CWT deployed to extract features 
from a signal, requires a particular scale. This scale can 
be used to generate a feature vector which consist of a set 
of wavelet coefficients computed from the raw signal. The 
scales can be used to target specified frequency ranges which 
would allow monitoring of multiple frequency bands within 
the same data set. The scale function also allows the signal 
to be sampled at different frequencies. While this method 
would excel in diagnosing faults in a stationary signal, using 
just one feature vector would be insufficient to draw a dis-
crete conclusion from a non-stationary signal. Moreover, 
multi-component faults can pose a challenge when using 
a single scale. Since the scale is used to capture an abrupt 
change in the signal (event), the frequency of event has to 
be within the scale’s limit. However, this can vary based on 
the component generating it. A single component such as 
a gear can have a distinct signature based on its operating 
configuration. A component with multiple objects such as 
a bearing can have multiple frequencies, which may not be 
within a single scale’s limit. Previous studies have overcome 
this by manually changing the scale to accommodate these 
frequencies individually [20]. While the trend is to adopt 
advanced algorithms in order to process complex signals, 
such networks can be extremely demanding on computa-
tion resources and tend to grow exponentially as the data-
set grows. Portable or remote condition monitoring devices 
may not have the required computation resources to handle 
advanced algorithms in order to produce any output within 
an acceptable time frame. Moreover, a large data-set would 
not be feasible as memory on portable devices are also at a 
premium. CWT is very versatile, as a mother wavelet can be 
chosen or designed, which best matches the features being 
extracted. However, the CWT coefficients extracted will be 
equal to the input signal. A large signal would generate a 
large data-set of CWT coefficients which would prove dif-
ficult to adapt to portable devices. As such, the present study 
focused on a real-time gearbox health monitoring system 
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for portable devices. The approach was based on CWT, a 
matured signal processing technique used for non-station-
ary signal analysis. Handling a non-stationary signal would 
generally adopt more advanced signal processing techniques 
such as auto-encoders and Convolution Neural Networks. 
However, deployment of such systems, especially embed-
ded systems would be computationally expensive. Here, the 
authors propose a simplified feature extraction and reduc-
tion technique which works with simpler algorithms such 
as decision trees. Since decision trees are ‘if-else-if’ state-
ments deploying them onto simpler devices are relatively 
quick when compared to Neural Networks. While decision 
trees are simple, they are also crude which indicates that the 
data-set supplied to the decision tree must be properly gener-
ated with necessary features. Due to the non-stationarity of 
the signal, a multi-scale wavelet approach was chosen. As 
discussed before a single scale CWT would not suffice as 
the signal was non-stationary. Here, the scale of the wavelet 
was adjusted to accommodate all possible frequencies gen-
erated from the gearbox for all sensor channels. This would 
generate a large feature set which would then be abstracted 
by means of descriptive statistics. The statistical features 
were tagged with the different gearbox conditions and used 
to train two decision trees and one pattern recognition algo-
rithm. An application was built to test the capability of the 
proposed approach. The application using the proposed 
approach was capable of classifying the faults within the 
wind turbine gearbox located in a remote location.

Experimental Analysis

Experiment Setup

A customized miniature wind turbine planetary gearbox was 
designed and constructed (see Fig. 1) with an overall gear 
ratio of 1:100. The gearbox consists of three stages, two 
planetary and one parallel stage. Both the planetary stages 
featured a gear ratio of 1:5 and the parallel stage featured 
a gear ratio of 1:4. A variable frequency drive (VFD) was 
used to vary the motor speed to simulate random changes 
in wind speed that a regular wind turbine would experi-
ence. The speed of the low speed shaft was varied from 8 
to 18 RPM. The inputs to the VFD were random analogue 
signals generated from a computer using a random number 
generator. This induced non-stationary loading on the wind 
turbine gearbox. Two tri-axis piezoelectric accelerometers 
were used to capture the signal from two distinct points of 
the gearbox (Fig. 2).

The accelerometers were mounted using an acrylic based 
adhesive. Since all gears were straight cut gears, the Z axis 
(axial direction) did not carry much information as opposed 
to the X and Y axis and was neglected. As the study focused 
on developing a methodology for a real-time condition mon-
itoring system, an NI 9134 controller with an NI-USB 4432 
ADC was used for data acquisition. The axes were desig-
nated as Intermediate Speed Stage (ISS X-axis, ISS Y-axis) 
and Low Speed Stage (LSS X-axis, LSS Y-axis). The sam-
pling rate was set to 22.05 kHz and the sample length per file 
was set to 131,072 data-points which translates to approxi-
mately 6 s of vibration data per file. This was done to ensure 
that at least one full rotation of the low-speed shaft would be 
captured in a file irrespective of the gearbox operating speed. 

Fig. 1   Wind turbine Planetary 
Gearbox
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A total of 15 such files were collected for each fault. This 
summed up to 90 s of vibration data per fault.

Fault Simulation and Data Acquisition

A series of single and multi-component faults were simu-
lated on the gears and bearings, see Table 1. All faults were 
created using an EDM wire cut. The diameter of the wire 
was 0.2 mm. The depth of fault was maintained as 2 mm. 
A single component fault was defined as a component in 
operation with only one induced fault at a time. A multi-
component fault was defined as independent components 
in operation having faults simultaneously or a single com-
ponent in operation having multiple faults. The bearing 
chosen was an SKF make SYJ20TF. The gear was a 24 
teeth 1.5 mm module prepared using mild steel. Figure 3, 
shows the bearing with a simulated fault (IO). Figure 4, 
shows the high-speed shaft pinion with a simulated fault 
(HRC). Figure 5 and Fig. 6 shows the time history (90 s) 
of non-stationary vibration data acquired for healthy and 

IOHR cases respectively. The Fig. 5 and Fig. 6 were gener-
ated by appending the individual files which summed up 
to 90 s of run-time. This was done to ensure that the signal 

Fig. 2   Sensor position on wind turbine Planetary Gearbox

Table 1   Seeded faults 
information

Class Component Fault Faults ID

1 Gear Root crack 1 HRC
2 Bearing Inner race fault 1 IR
3 Bearing Outer race fault 1 OR
4 Bearing Inner + outer race fault 2 IO
5 Gear and Bearing root crack + inner race fault 2 IRHR
6 Gear and Bearing root crack + outer race fault 2 ORHR
7 Gear and Bearing root crack + inner & outer race fault 3 IOHR
8 Gear and Bearing None None Healthy

Fig. 3   Bearing with seeded fault
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time history was non-stationary. The non-stationary nature 
of the signal was confirmed in both the time and frequency 
domain. In the time domain the non-stationary nature of the 
signal was confirmed by observing the fluctuations in ampli-
tude across six segments of 15 s each. It can be observed that 
the amplitude varies considerably between segments. In the 
frequency domain, the signal was first divided into segments 
where each segment would contain one full rotation of the 
LSS input shaft. The segmentation was done by means of 
the speed sensor attached to the gearbox which also doubled 
as a simple indexing sensor. Few segments were segmented 
from the main signal which spanned for a total of 90 s. In 
order to visually confirm the frequencies, the signals were 
first passed through a filter which filtered out the LSS and 

ISS component frequencies thereby, passing only the High 
Speed Stage (HSS) component frequencies. Figure 7 shows 
the segment’s raw waveform and the FFT of the respective 
segments. Here, the signal analyzed belonged to the Outer 
Race & High Speed Pinion Root Crack (ORHR) class. It 
can be observed that the peak frequencies for the segments 
shift considerably. Hence, the signals were categorized as 
non-stationary.

Data Pre‑Processing

Wavelet Feature Extraction

The raw vibration data can hardly be used to distinguish 
between a healthy and faulty signal. As such relevant dis-
tinguishable features need to be extracted from healthy and 
faulty vibration data collected. Since all signals were non-
stationary, CWT was used to extract the wavelet coefficients. 
Figure 8 shows the methodology followed.

CWT excels in time frequency analysis and filtering of 
time localized events, which corresponds to any potential 
vibration signature emitted by a component. The extracted 
wavelet features can be used to distinguish a faulty vibra-
tion signal from a healthy signal. Multiple scales of the 
same wavelet were used to extract information from the raw 
signal. This ensured that all relevant component signature 
would be captured irrespective of the speed. As the CTW 
scales could be used to target specified frequency ranges it 
allowed the signal to be sampled at different frequencies. 
This eliminated the need for down sampling and denois-
ing as only the frequency information falling within the 
scale’s range would be captured there by filtering out the 
frequency information outside the scale’s range. A moving 

Fig. 4   Gear with seeded fault

Fig. 5   Healthy waveform
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average filter was initially used to denoise the signal before 
computing the CWT coefficients. However, it was found 
that the denoising did not have any significant effect on the 
classification performance and was dropped so as to reduce 
computation time. The formula used to calculate the CWT 

coefficients is highlighted in Eq. 1. Here, W – Wavelets, S- 
scale, T- Translation, Sg -signal, WC- Wavelet conjugate, t 
-time [21].

Fig. 6   HRC waveform

Fig. 7   FFT of ORHR waveform
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Wavelet Selection

To identify the best mother wavelet from a family of wave-
lets available, wavelet selection was performed. The mini-
mum Shannon entropy criterion was used to narrow down 
the wavelet selection [19]. The minimum Shannon entropy 
was calculated using the equations Eq. 2 & 3 [21, 22].

(1)W(S, T) =
1
√
S
∫

∞

−∞

Sg(Wc)

�
(t − T)

S

�
dt

Here pi stands for the probability distribution of energy 
for wavelet coefficients which can be defined as follows

A total of six wavelets namely: Discrete Meyer, Mexican 
hat, Morlet, db1, Haar and coif1 were analyzed to select 
the best mother wavelet that will suit the data in hand. The 
healthy signal shown in Fig. 5 was used as the raw signal 

(2)Shannonentropy −
∑m

j=1
pilog2pi

(3)pi =
|Cn,i|2

E(n)

Fig. 8   Methodology

Fig. 9   Shannon entropy of all 
chosen wavelets for all chosen 
scales
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to extract entropy information as this was considered to be 
the default state of the gearbox. Figure 9 shows the Shannon 
entropy values for different scales for all examined wavelets. 
The wavelets Discrete Meyer, Mexican hat and Morlet were 
chosen as they had the lowest Shannon entropy values. The 
scale factor of a wavelet is used to stretch or compress the 
wavelet before it translates in the signal. When the scale 
factor is low, the wavelet is compressed; thereby resulting in 
a detailed representation of the signal. However, a wavelet 
with a low scale factor may not last for the entire duration of 
an ‘event’. On the other hand, a higher scale factor stretches 
the wavelet, which indicates that the resulting representation 
contains less detail but may last for the whole event. Since 
the signal is non-stationary the length of an event can vary 
significantly. Hence, using a single wavelet scale alone may 
not be sufficient. The scale must be varied to match the sig-
nal to extract maximum possible information from it. Thus, 
the CWT coefficients were extracted from the signals for all 
fault conditions analyzed using multiple scales.

However, the wavelet coefficients generated using mul-
tiple scales made the sample space very large for the pro-
posed machine learning model to work with. Moreover, the 
computation requirements were also very high. As such, the 
CWT coefficients extracted from the signals acquired were 
‘compressed’ using descriptive statistics before passing it as 
input to the machine learning algorithms. This reduced the 
size of the data-set from a matrix size of 96,000 × 131,072 to 
96,000 × 14. The final data-set consisted of 96,000 instances 
in total (15 files × 4 axis × 8 conditions × 200 scales). The 
following attributes Mean, Max, Min, Median, Mode, Stand-
ard Deviation, Sample Variance, Kurtosis, Skewness, Range, 

RMS, Sum, Axis ID (range of 1 to 4) and condition were 
provided for each instance.

Results and Discussion

Wavelet Analysis and Classification performance

Since the signals were non-stationary, a single scale may 
not be sufficient to extract useful information. To test this 
uncertainty, both the algorithm types were provided with 
signals from all healthy and faulty classes extracted with 
different scales. The algorithm was supplied with a single 
feature vector (signals extracted with the CWT scale indi-
vidually set to 1, 2, 3, 4 etc.) and a group of feature vectors 
(scales were banded together such as scales 1–5, 1–10 etc.). 
As stated before, the scale information was compressed 
using descriptive statistics to reduce its size. Both classes 
of algorithms -ANN and DT were employed in this phase of 
the study. The ANN model (Fig. 10) used for the study was 
a shallow neural network (feed-forward) which had a total 
of three layers. The input layer had fourteen neurons which 
corresponded to the number of attributes of the data-set. The 
hidden layer had ‘N’ neurons where ‘N’ was set to 10, 100 & 
1000. The hidden layer was activated using a sigmoid func-
tion. The output layer had eight neurons which corresponded 
with each class (IO, IOHR etc.) in Table 1. The data-set was 
divided into a training set, a testing set & a validation set. 
The division was kept at a ratio of 70:15:15. The maximum 
number of epochs was set to 1000 and the maximum number 
of validations were set to six.

Fig. 10   ANN model layout
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Under the Decision Tree (DT) class, two classification 
algorithms C4.5 and random tree were chosen such that their 
basic operations were fundamentally different. The C4.5 
[23] (J48) algorithm builds a decision tree from a set of 
training data using the concept of information entropy and 
prunes the final tree whereas, the random tree [24] builds 
a tree that considers a set of randomly chosen attributes at 
each node and does not prune the tree. Results from both 
the algorithms were cross-checked to ensure that the prob-
ability of over-fitting was minimum. ‘Five’ fold cross vali-
dation was used to further reduce the chance of over-fitting. 
WEKA (Waikato Environment for Knowledge Analysis) an 
open-source machine learning tool was used to perform this 
process. Both the algorithms, C4.5 and random tree were 
run 3 times by shuffling the data-set and enforcing fivefold 
cross-validation during every run. This was done to ensure 
that the possibility of over-fitting was minimized and pro-
duced a more realistic classification capability. Each algo-
rithm would generate a total of 6000 results (400 scales [200 

single scales and 200 scale bands] × fivefold cross-validation × 3 Runs) 
per wavelet which amounts to a total of 18,000 results for all 
3 considered wavelets.

Unfortunately, the compression which resulted in a matrix 
size reduction from 96,000 × 131,072 to 96,000 × 14 nega-
tively affected the ANN. Training accuracies were very low 
in the order of 15% (10 N) to 22% (1000 N) and testing 
accuracies was even lower. The most likely cause of this out-
come can be attributed to the low number of input nodes for 
such a large data-set. However, the DT algorithms responded 
positively to the abstraction and were hence pursued further. 
Figure 11 shows the classification accuracy of both the DT 
algorithms for the Mexican hat wavelet. The Mexican hat 
wavelet was selected as both the classification algorithms 
scored the highest classification accuracy with it as the 

pre-processor (Table 2). It can be clearly observed that as the 
number of scales were increased the classification capability 
improved drastically (see Fig. 11). However, as the number 
of scales grouped together increased, the computation time 
required increased drastically without a proportional impact 
on classification accuracy.

Hence, in the present investigation, the optimum 
number of scales was set to 200 so as to have a trade-
off between the classification accuracy and computation 
time. The signals for healthy and multi-component faults 
observed in detail. All signals analyzed were 6 s long. 
Figure 12 shows the scalogram which indicate the energy 
levels of the CWT coefficients up to 100 levels for the 
healthy signal. It was found that scales above 100 did not 
carry much visual information. The wavelet coefficient 
energy seemed to be dominant up to 56 scales after which 
it began to fade. It can be noted that the energy contained 
in the faulty component signal (Fig. 13) was significantly 

Fig. 11   Classification accuracy 
for multiple scales

Table 2   Classification accuracy for multiple wavelets with different 
algorithms

Sl. No Wavelet Algorithm Classification 
Accuracy (%)

1 Mexican hat J48 82.7
2 Random tree 82.2
3 ANN (10,100,1000) 14.7, 23.4, 18.7
4 Morlet J48 71
5 Random tree 69
6 ANN (10,100,1000) 15.3, 19.1, 19
7 Discrete Meyer J48 78.1
8 Random tree 77.4
9 ANN (10,100,1000) 13.6, 20.8, 22.7
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higher as when compared to the healthy signal. This can 
be observed by analyzing the energy associated with the 
wavelet coefficients which is dominant up to 90 scales after 
which it began to fade as compared to the 56 scales in the 
healthy signal. It can also be noted that the energy towards 
the lower frequency ranges have increased. This can be 
confirmed by the increased plot density towards the higher 
scales. Although scales above 100 did not carry much sig-
nificance from a visual interpretation, scales between 1 
and 200 were used to train and test the machine learning 
model as the DT algorithms clearly benefited from the 
large number of feature vectors (Fig. 11).

Another point to note was that the random tree algo-
rithm occasionally dips in classification accuracy as 
opposed to the J48 decision tree algorithm. Table 3 and 
4 tabulates and analyses the J48 algorithm’s performance 
while classifying the ‘Mexican hat 1–200 scale band’. 
Table 3 shows the detailed accuracy by class which can be 
used to identify classes (Table 1) which could reduce clas-
sification accuracies during classification due to misclas-
sification for its own class or other classes. The TP rate or 
true positive rate must approach 1 and the FP rate known 
as the false positive must approach 0. From Table 3, it can 
be noted that the TP and FP rate had marginal changes 

Fig. 12   Scalogram for Healthy 
condition

Fig. 13   Scalogram for fault: IO
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which clearly indicates the faults did not interfere with 
one another. Precision recall and F measure are perfor-
mance parameters of the algorithm. precision is the ratio 
of relevant instances to the retrieved instances, whereas 
recall is the ratio of relevant retrieved instances to the 
total number of relevant instances. Matthews’s Correlation 
Coefficient or MCC is the quality of the classification. It 
is measured between − 1 and + 1. A coefficient of + 1 rep-
resents a perfectly correct classification, 0 which is noth-
ing but a random classification and − 1 indicates a total 
disagreement between classification and observation. A 
ROC curve (Receiver Operating Characteristic) curve, is 
a plot that depicts the ability to diagnose the classifier 
system. The ROC curve is obtained by plotting the true 
positive values against the false positive values whose 
corresponding values have been shown in Table 3. Both 
ROC and PRC (precession recall rate) must be above 0.5 
to ensure that the classification process is not occurring 
randomly. Table 4 shows the confusion matrix generated 
by the J48 algorithm. The diagonal elements represent the 
correctly classified instances. A quick check on the ‘TP 
rate’ in Table 3 reveals that all classes were well above 0.8 
which yielded a good classification accuracy. The ROC 
also indicates a high score of 0.9 which indicates that 
the classifier is not randomly classifying the attributes. 
While analyzing the classes a notable observation could 
be made. The ‘Healthy’ had the lowest ‘TP rate’. This was 
fairly consistent for a few observations. However, due to 

the large number of results being analyzed, only the final 
classification accuracy was taken.

Development of an Automated system

To automate the process an application was built in the 
MATLAB environment. A decision tree model was trained 
with the same data-set and integrated into the application. To 
put the proposed method to test, the application was setup to 
receive the raw signals from a remotely located wind turbine 
gearbox setup over a network connection. Figure 14 shows 
the operation of the application.

The NI 9134 controller gathers raw vibration data from 
the gearbox and sends it to the file server using File Trans-
fer Protocol (FTP) / Secure File Transfer Protocol (SFTP)/ 
Common internet file system (CISF). The Data processor 
(any system with the application) downloads the files from 
the file server to the local storage. Once all files were down-
loaded, the raw signals were pre-processed to extract the 
CWT coefficients similar to the methodology used in the 
study (Fig. 8). After the CWT coefficients were extracted 
for all four axes, the coefficients were ‘compressed’ using 
descriptive statistics and then written to a test file for the 
machine learning algorithm to validate them. The valida-
tion process begins once the testing file is populated to 
the required number of rows. The trained tree had a total 
of 16,075 nodes. Figure 15 shows the sample structure of 
the trained tree. The root node used the standard deviation 

Table 3   Detailed accuracy by 
class

TP Rate FP Rate Precision Recall MCC ROC Area PRC Area Class

0.849 0.026 0.825 0.849 0.837 0.813 0.932 ORHR
0.825 0.029 0.802 0.825 0.814 0.787 0.921 OR
0.831 0.026 0.822 0.831 0.827 0.802 0.925 IOHR
0.824 0.024 0.832 0.824 0.828 0.804 0.923 IO
0.822 0.025 0.825 0.822 0.824 0.799 0.923 IRHR
0.818 0.024 0.830 0.818 0.824 0.799 0.921 IR
0.825 0.024 0.831 0.825 0.828 0.803 0.927 HR
0.814 0.022 0.843 0.814 0.829 0.805 0.923 Healthy
0.826 0.025 0.826 0.826 0.826 0.801 0.924 Weighted average

Table 4   Confusion matrix ORHR OR IOHR IO IRHR IR HR Healthy

10,184 284 307 204 302 233 282 204 ORHR
267 9903 280 316 295 344 273 322 OR
368 316 9976 220 325 242 321 232 IOHR
282 363 265 9885 262 378 273 292 IO
308 311 394 322 9867 246 328 224 IRHR
316 426 280 347 271 9816 252 292 IR
352 314 336 269 328 250 9899 252 HR
272 428 299 311 308 322 287 9773 Healthy

871Experimental Techniques (2022) 46:861–875



attribute. Figure 16 shows the frequency of attributes in the 
full tree. Here, it can be observed that the attribute Mode, 
sample variance and RMS did not have any useful infor-
mation for the algorithm to work with and were hence not 
selected. The pre-processing and processing; i.e., feature 
extraction and feature reduction can take up most of the 
computation time. It was observed that the testing/valida-
tion time was always under 1 s for any number of files cho-
sen (file limit was 1–5). The application was run in a Linux 
environment on a Q6600 with 8 GB of RAM and a 100 
Mbps network link.

The application was deployed as a standalone execut-
able. This allows porting the application on to any Linux 
capable device. Figure 17 shows GUI of the application 
operating in a Linux environment. The application per-
forms all the steps mentioned above to test the signal. 
However, before declaring the fault it splits the probability 
of the fault and displays it in the lower right corner of the 
application window. The ‘probability’ shown in the appli-
cation is a similarity check which tells how similar the 
signal is to the predefined faults provided to the algorithm 
during training. The screenshot (Fig. 17) is the result of 

Fig. 14   Application operation

Fig. 15   Sample output of the 
trained decision tree
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a healthy signal tested with the highest match of 26.5%. 
However, If the test signal was for an HR case there would 
be a very high chance of misclassification as the difference 
for the scores of HR and OR are very small. Here, more 
files (file limit > 1) should be used to increase separation 
of the classes instead of a single file. This can reduce the 
chance of a false positive at the expense of computation 
time. The standalone application developed is capable of 
automatically distinguishing the health and faulty vibra-
tion signatures obtained from a remotely located wind tur-
bine test rig with minimum human intervention using the 
proposed method.

Conclusion

The present work discusses the development of an auto-
mated reliable method to monitor the health of a remotely 
located wind turbine planetary gearbox. This was achieved 
using the multiple scales of the continuous wavelet trans-
form as a feature extractor. Descriptive statistics was then 
used to abstract the features to reduce the size of the data-
set and thereby reduce the computation requirements. The 
method was able to accurately predict the multi-compo-
nent faults of the gearbox under non-stationary loading 

Fig. 16   Attributes vs occur-
rences

Fig. 17   Application screenshot
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conditions. From this study the following notable points 
have emerged.

A)	 For a machine learning based approach of multi-com-
ponent fault diagnosis, a single feature vector is gen-
erally insufficient to classify between faults signatures 
effectively; as the number of correlations drawn are less. 
In the present study, a single wavelet scale information 
(feature vector) could not effectively classify the multi-
component fault signatures accurately. However, as the 
scales were grouped together in bands it resulted in 
increasing the number of the feature vectors thereby pro-
viding more information and generating more instances 
for the algorithm to work with, which in turn increases 
the chances of a correctly classified instance.

B)	 The scale bands are also effective when the signal is 
non-stationary. This can be attributed to the fact that at 
least one scale would have the optimal size to capture a 
specific event of a component in a non-stationary signal 
thereby increasing the chances of a correctly classified 
signature.

C)	 The present study discovered that usage of an Artifi-
cial Neural Network resulted in very poor performance 
for the proposed method. This can be attributed to the 
fact that the number of input layers were less than the 
required amount to ensure a reliable model. Updating 
the number of hidden layers did not yield much improve-
ment.

D)	 The present study discovered that usage of a decision 
tree algorithm resulted in minimum training and testing 
time. Decision tree algorithms are also less computation 
resource intensive; which allows applications featuring 
this method to be deployed on portable devices with 
limited processing power.

Taking the above observation into consideration an 
application was built in MATLAB to automate the pro-
cess and test the method. A trained model of the decision 
tree was supplied to the application. The raw vibration 
signals were processed and classified accurately without 
any human intervention.
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