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Abstract
Image-based techniques have been extensively deployed in the fields of condition assessment and structural mechanics to
measure surface effects such as displacements or strains under loading. 3D Digital Image Correlation (3D-DIC) is a technique
frequently used to quantify full-field strain measurements. This research uses 3D-DIC to detect interior anomalies of structural
components, inferred from the discrepancy in constitutive properties such as elasticity modulus distribution of a three-
dimensional heterogeneous/homogeneous sample using limited full-field boundary measurements. The proposed technique is
an image-based tomography approach for structural identification (St-Id) to recover unseen volumetric defect distributions within
the interior of a 3D heterogeneous space of a structural component based on iterative updating of unknown or uncertain model
parameters. The approach leverages full-field surface deformation measurements as ground truth coupled with a finite element
model updating process that leverages a novel hybridized optimization algorithm for convergence. This paper presents a case
study on a series of structural test specimens with artificial damage. A computer program was created to provide an automated
iterative interface between the finite element model and an optimization package. Results of the study illustrated the successful
convergence of the selected objective function and the identified elasticity modulus distributions. The resulting updated model at
later stages of loading was also shown to correlate well with the ground truth experimental response. The results illustrate the
potential to detect subsurface defects from surface observations and to characterize internal properties of materials from their
observed mechanical surface response.

Keywords Inverse problem . 3Ddigital image correlation (3D-DIC) . Full-fieldmeasurement . Image based tomography .Hybrid
algorithm . Optimization . Interior defects . Damage identification

Introduction

Material properties such as elastic modulus, shear modulus or
Poisson’s ratio are critical to both the design and evaluation
processes of engineered systems ranging from buildings to

aerospace structures, as these properties serve as the link be-
tween stress and strain (constitutive law) [1–3], which de-
scribe the response of these engineered systems. In many
cases, these material properties can be derived using standard
testing approaches, but these tests are typically suitable to
virgin materials that are not part of an existing system [4].
Typically, the measurement of these constitutive properties
for existing structural systems requires a nondestructive indi-
rect in-situ measurement that can be correlated with a specific
material property, or a destructive extraction of a representa-
tive sample for traditional testing [4]. However, in many
cases, these types of measurements are insufficient or repre-
sentative samples cannot be extracted and alternative ap-
proaches are necessary. In these cases, an inverse engineering
solution for structural identification (St-ID) aims to resolve the
non-homogeneous material properties, demanding the knowl-
edge of interior and exterior deformation fields such as
displacement/strain fields and boundary conditions. One
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extension of this inverse engineering solution is in discovering
the presence of internal abnormalities (e.g., internal geometric
features such as voids or other types of defects), presumed as a
locally heterogeneous status inferred from non-uniform sto-
chastic elastic modulus distribution in the interior of a three-
dimensional (3D) region of a sample.

Ideal solutions to this type of inverse problem require mea-
surements of deformation fields such as displacement/strain
fields internal to the body of the solid. In medical applications,
internal properties of a sample can be observed by non-
destructive imaging tools. An example of such tools is ultra-
sound devices, which depend on utilizing high-frequency
sound waves to produce dynamic visual images of a sample/
organs from the returning echoes traveling through the area of
interest. Magnetic resonance imaging (MRI) and optical co-
herence tomography (OCT) are other examples of non-
invasive 3D imaging technologies that rely on the detection
of changes by using magnetic fields and low-coherence lights,
respectively [5], which can be used to identify displacement
fields from image sequences [6–11]. A more recent medical
imaging technique, termed elastography, is based on mapping
a sample’s mechanical properties such as stiffness based on
imaging the changes subject to known displacement fields,
thus helping to detect abnormalities [8–11]. While these
methods can assess the volumetric displacement of biological
tissue samples, they can not be practically applied to most
materials of engineering interest, such as metals, concrete,
and reinforced concrete. For instance, MRI technology cannot
be employed on metals and reinforced concrete because the
powerful magnetic field can attract objects made from certain
metals and cause them to move suddenly with great force.
Nevertheless, recently, the X-ray computed tomography
(XCT), a 3D imaging technique commonly used in medicine,
has been broadly employed to identify the internal properties
of structural components due to its high resolution, non-
destructive nature and ability to clearly visualize details in-
cluding internal anomalies such as different streams of de-
fects. Moreover, XCT can be combined with the Digital
Volume Correlation algorithm (DVC) to map the relative de-
formations between consecutive XCT images with high reso-
lution [12]. Although this technique is very promising, it pre-
sents a series of limitations: it requires expensive and complex
equipment (e.g., X-ray computed tomography scanners [13,
14]), and is applicable only to materials with a natural random
internal structure (e.g., foams, bones tissue, composites
[15–17]), and the correlation algorithms are computationally
expensive. Moreover, the procedure to implement the XCT
technology requires loading of the sample while scanning,
which is difficult especially for in-situ fill-scale complicated
structures [18].

A proposed alternative approach to address the inverse
problem in elasticity is to solely use the exterior surface mea-
surements of a sample. From an equipment perspective,

measuring surface deformations requires only a set of cameras
to capture the image of the surface of the sample during ex-
ternal loading. Thus, the experimental setup is significantly
cheaper and less complex when compared to XCT. This ap-
proach has been successfully demonstrated to recover target
material property distributions using limited surface observa-
tions with simulated and experimental data. More recently,
Mei et al. [19–22] proposed a strategy to solve the inverse
problem in elasticity for a simulated experiment for the shear
modulus distribution using only surface deformations. Their
methodology does not require a priori information about the
problem domain and is based on finite element method (FEM)
techniques, where the shear modulus distribution is represent-
ed as unknowns on the mesh nodes and interpolated with
FEM shape functions. Mei et al. [20] tested their method on
a problem domain consisting of an inclusion embedded in a
homogeneous background and recovered the shear modulus
distribution using simulated surface displacement fields.
While their approach proved successful for the tested scenario,
extension to real experimental data was not discussed and
their choice of gradient-based optimization algorithm has the
potential for convergence difficulties in more complex
problems.

Unlike state-of-the-art methods based on internal 3D scan-
ning (e.g., XCT), the image-based tomography approach pro-
posed in this paper utilizes digital cameras to gather exterior
full-field measurements of a sample to adjust an initial FEM
model via an optimization algorithm and recover the elastic
modulus distribution, from which the internal abnormalities
can be inferred. Image-based techniques using digital cameras
are frequently employed to measure surface displacements/
strains on a sample under external loading. One of these
image-based techniques, Digital Image Correlation (DIC), is
a non-contact photogrammetric technique used to measure
full-field deformation (2D and 3D) from a sequence of im-
ages. Deformations are measured by tracking pixel move-
ments through correlated speckle pattern subsets from image
to image, and are interpolated to describe the full-field defor-
mation over the specimen surface. Applications of the DIC
technique can be found in the literature [23–26], with exam-
ples typically used to adjust and improve the mechanical char-
acterization of solids [27, 28]. A comprehensive treatment of
DIC is available in the literature [29, 30] and not presented
herein, but additional details on the DIC deployment used in
this investigation are provided in a later section.

Recently, the authors took advantage of the DIC technique
as a full-field measurement approach for constitutive property
identification of a full-scale steel component using a St-ID
approach [31–34]. The results of these previous studies dem-
onstrated the robustness of the proposed hybrid approach for
identifying uncertain/unknown system parameters (e.g., mate-
rial properties and boundary conditions). In this paper, a series
of laboratory experiments were developed to evaluate the
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feasibility of extending this hybrid approach in an inverse
problem to detect internal structural defects merely by surface
measurements, without a priori postulation about the internal
features of a structure.

Proposed Methodology

Building upon the premise that internal abnormalities and de-
fects can result in external perturbations in the surface re-
sponse of structural components, this work proposes to use
full-field sensing of the surface as a proxy to identify hidden
internal defects. To that end, the proposed technique performs
modifications to the constitutivematerial properties (e.g., stiff-
ness) in the affected regions while maintaining the original
geometry. These modifications are driven by an optimization
problem that aims to minimize the disparity between the ob-
served surface response (e.g., strains and deformations) and its
simulated numerical counterpart. The final modified stiffness
distribution of the specimen after optimization will indicate
potential defects in the form of regions with significantly re-
duced stiffness. This approach aligns with constitutive law
modifications based on traditional damage-mechanics theory,
in which the effective stiffness is diminished based on the
history of applied loads. The ultimate goal of this work is
not only to diagnose the current geometric description of a
structure, but also to predict/project damage evolution of the
structure, allowing for accurate evaluation of the capacity of
the structural component.

The proposed approach involves an experimental test of the
specimen under study, where full-field surface response is
measured via DIC. A corresponding FEM model of the spec-
imen is also built and analyzed under the same conditions as
the experiment. The FEMmodel is dissected into a number of
partitions and the stiffness of each partition is used as a design
variable and iteratively modified via an optimization algo-
rithm such that the model can mimic the experimental re-
sponse. The success of the process is evaluated using an ob-
jective function that quantifies the differences between the
experimental and numerical response at each iteration. At
the conclusion of the optimization process, if a partition con-
tains a defect (e.g., internal void or inclusion), its stiffness
value will be adjusted through the optimization process to a
value that is significantly different from the intact base mate-
rial. The process will be terminated when further iterations do
not result in a reduction in the objective function. The follow-
ing sections outline the implementation of the proposed ap-
proach including 1) a set of laboratory experiments with the
use of DIC to measure the surface load effects, 2) a numerical
simulation using FEM, and 3) an optimization scheme with
the definition of an objective function. Performance of the
proposed approach, a sensitivity analysis of the results, and

limitations and future works will also be presented later in the
paper.

Experimental Setup

In this investigation, a series of quasi-static laboratory exper-
iments were developed including four representative A36
structural steel tensile coupon samples subjected to the same
displacement-controlled loading and boundary conditions.
The structural configurations used in this work are illustrated
schematically in (Fig. 1(a)) and can be described as:

1) Configuration 1: coupon specimen without any defect,
subjected to tensile load.

2) Configuration 2: coupon specimen with two artificially
manufactured defects on the back side of the sample,
subjected to tensile load.

3) Configuration 3: coupon specimen with one artificially
manufactured defect on the back side on the top region
of the sample, subjected to tensile load.

4) Configuration 4: coupon specimen with one artificially
manufactured defect on the back side on the middle re-
gion of the sample, subjected to tensile load.

As illustrated in (Fig. 1), controlled rectangular zones of
artificial damage were machined into the back side of the
coupons (i.e., configurations 2–4) to simulate damage on a
component that would be unseen from the measurement sur-
face. The four testing configurations described above give rise
to heterogeneous and non-uniform in-plane strain fields, (i.e.,
longitudinal, transverse, and shear strain components), as well
as in-plane/out-of-plane displacement fields (i.e., longitudinal,
transverse, and out-of-plane components).

Quasi-Static Mechanical Testing

The experimental testing program consisted of a series of
quasi-static tests under uniaxial tensile loading within the
elastic range of the structural steel coupon specimens. The
specimens were tested using a universal servo-hydraulic
testing machine. Testing was performed in displacement
control (0.13 ~ 0.6 mm/min) according to the test method
defined in ASTM E8 [4] on the four steel coupon speci-
mens. The geometric dimensions of the coupon specimens
are shown in (Fig. 1(b)). Also, the experimental and DIC
setup are illustrated in (Fig. 2) where the Area of Interest
(AOI) has been defined as the region on the specimen
where the DIC measurements are compared with numeri-
cal simulations.
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DIC Setup

The mechanical response of the specimens was measured by
3D-DIC to describe full-field surface measurements of dis-
placement and strain of the coupons, analogous to the types
of results derived from a FEM model. A commercially avail-
able DIC system from Correlated Solutions Inc. was used in
this investigation [35]. The DIC system components consisted
of a camera system, an image acquisition package (VicSnap),
and 3D-DIC post-processing software (Vic-3D). The DIC im-
age acquisition used one set of two stereo-paired digital cam-
eras, 5-megapixel charge coupled device (CCD) image sensor
with a resolution of 2448×2048. The camera was connected to

a C-mount optical lens (12 mm) and the acquired data was
communicated to the control PC through FireWire cables. The
camera pair was positioned 0.6 m from the coupon which
yielded a field of view (FOV) of 0.7 × 0.7 m. For the exper-
iment, the basic process consisted of specimen preparation,
camera setup (focusing, calibration), image acquisition, and
post-processing of results. Images acquired during the test
were extracted every 0.5 s. Prior to testing, the surface of each
specimen was covered with a fine, dense and random speckle
pattern (flat white paint for base and fine tip permanent marker
for pattern) for the correlation process. For the pixel tracking
process in DIC, the area of interest on the speckle pattern was
split into rectangular windows or “subsets” and unique

Fig. 1 Intact and simulated damage coupons (a) painted steel coupon specimens used in the experimental setups, and (b) geometric dimension of the
coupon specimens

Fig. 2 Experimental and DIC setup configuration (one system including two CCD cameras)
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patterns of speckles remained available within each subset to
allow for tracking across subsequent frames. The patterns in
the subsets were tracked on a grid of a specific “step” size,
which dictated the spatial resolution of the calculated points.
To achieve a fine grid of unique patterns in subsets, the selec-
tion of the subset size was determined through direct experi-
mentation during post-processing and a square subset of 23
pixels at a step of 7 pixels was selected (Fig. 2). For more
details regarding DIC setup, the reader is referred to the au-
thors’ previous works [31–34].

Numerical Implementation

As previously noted, the finite element model updating pro-
cess requires the development of an initial numerical model
that can be updated based on experimentally derived behavior
results. In this investigation, the FEM model of the sample
was deve loped in ABAQUS [36 , 37] , a robus t
commercially-available FEM software package. The speci-
men was modeled using a total of 4300 continuum 3D
hexahedral solid elements (C3D8) with full integration. The
FEMmodel and mesh configuration of the coupon specimens
are shown in (Fig. 3(a)). The region of interest in the middle of
the coupon was also partitioned into a number of regions
whose material properties were considered as unknown de-
sign variables in the optimization process. These partitions
are depicted in (Fig. 3(b)) for configuration 2 as an example.
It should be noted that ABAQUS allowed for the development
of a direct interface with the optimization package, which

facilitated the iterative parameter optimization algorithm via
the Python tool. In this work, the initial FEM model of the
specimen was initially created using the Graphical User
Interface (GUI) of ABAQUS allowing for the model devel-
oped script to be extracted. The extracted script was iteratively
interfaced with the Python package, which executes the FEM
computations, extracts the deformation results, and evaluates
the objective function to assess the optimality/convergence of
the solution at that iteration. If the stopping criteria are not
met, the Python tool will then iteratively generate new param-
eter sets and re-run the analysis until convergence is achieved.
Details of the optimization procedure are presented in the
following sections.

Definition of the Objective Function

The proposed inverse-problem approach is based on solv-
ing an optimization problem to obtain the distribution of
the modulus of elasticity as an unknown design variable
within the FEM mesh. The basic principle of inverse
problems is to minimize the discrepancy between the
experimentally-measured and the numerically-computed
responses by fine-tuning the unknown variables of the
FEM model. In this investigation the following objective
function was defined to quantify this discrepancy by in-
cluding the surface strain and deformation components of
the specimen, which will be pushed to minimum in the
optimization process (equation (1)):

F Eð Þ ¼ ∑p
k¼1 ∑

m

i¼1
∑
ni

j¼1

εexpxx;i j−εnumxx;i j Eð Þ
εexpxx;i j

 !2

þ εexpyy;i j−εnumyy;i j Eð Þ
εexpyy;i j

 !2

þ εexpxy;i j−εnumxy;i j Eð Þ
εexpxy;i j

 !2

þ δexpyy;i j−δ
num
yy;i j Eð Þ

δexpyy;i j

 !2
2
4

3
5 ð1Þ

Where E is the vector of unknown design variables which
are the constitutive properties of the model partitions, p is the
number of experimental tests (p = 1 in this work), m is the
number of load steps (m = 20 in this work) and ni the number
of data points in the DIC measurement at load step i. The
subscripts exp and num indicate the experimental and numer-
ical responses, respectively. The three components of the
strain tensor and the longitudinal component of displacement
are represented by εexpxx ; ε

exp
yy ; ε

exp
xy and δexpyy respectively that are

extracted at a point i of coordinates xi at time t. Similarly, εnumxx

; εnumyy ; εnumxy rand δnumyy represent the corresponding values com-

puted from the FEMmodel. As the numerical and experimen-
tal components of the response are developed through differ-
ent procedures, for their accurate comparison within the ob-
jective function, it is necessary to interpolate the results from

DIC and FEM onto a common mesh grid. With both results
mapped to this common grid, the discrepancy between FEM
and DIC results can be calculated using (equation (1)) and
used within the optimization process [31–34]. The compo-
nents of the proposed objective function are also schematical-
ly shown in (Fig. 4).

Proper design of the objective function can help pre-
vent numerical issues associated with non-unique solu-
tions. While from a purely mechanical point of view, it
would be expected that such an approach could yield non-
unique solutions, a successful solution is possible by
using a variety of load steps and boundary strains/
displacement data sets from multiple load configurations,
sequentially applied at discrete locations around the spec-
imen [31–34]. Therefore, a larger value of m in the ob-
jective function increases the chance of ensuring
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uniqueness of the final solution, while also incurring a
higher computational cost. Another reason for using a
large value of m is to combat the effect of random noise
and uncertainties in the accuracy of the full-field DIC
measurements at each load step. Some of the sources of
noise in the measurements include lighting fluctuations,
glare, irregularities, and poor quality of speckle pattern,
as well as noise resulting from image acquisition (e.g.,
sensor noise) and quantization [35]. Moreover, interpola-
tion of DIC and FEM can also be a possible source of
uncertainties. Therefore, to decrease such uncertainties, a
large value for m was chosen in this work (m = 20) . To
offset the resulting increase in computational cost, parallel
optimization was used.

Description of Optimization Techniques

In this work, a hybrid approach combining a genetic algorithm
(GA) [38] and a limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm (L-BFGS-B), is introduced and used to
solve the optimization problem. The genetic algorithm (GA)
was used to perform a broad preliminary search in the solution
space for locating the neighborhood of the solution.
Subsequently, the L-BFGS-B algorithmwas employed to start
from the final solution provided by the GA and to further
refine the solution toward an optimal state. This design of
the optimization scheme was inspired by the previous litera-
ture that has shown that in problems involving a large number
of parameters, a combination of these two techniques can

Fig. 4 Components of the
objective function

Fig. 3 (a) FEMmodel of the coupons, and (b) constraint boundary conditions, the direction of external loading and the partitioned regions considered in
optimization process for configuration 2
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yield superior optimization performance [39]. Figure 5 illus-
trates a basic flowchart of the hybrid optimization approach
adopted in this work. First, a genetic optimization step is
employed to explore the space of parameters and locate the
approximate region of the optimum solution. After reaching a
certain number of iterations, which is selected according to the
size of the problem and computational cost, the GA halts
(stopping criteria). After this point, the global optimum is used
as a starting point for a finer local optimization to “polish” the
optimum to a greater accuracy. In this second step, a gradient-
based method (L-BFGS-B) is utilized to continue the search
within the approximate region to quickly converge on the
precise location of the optimum solution. As a result of this
setup, the favorable characteristics of both methods, namely
the efficient exploration of the space by the GA and the supe-
rior convergence of the gradient-based methods, are leveraged
to achieve an efficient optimization. The stopping criteria for
the L-BFGS-B algorithm is realized when there is no more
significant decrease in the objective function.

Similar to other optimization methods, a feasible initial
guess for the parameters is used to start the process. The initial
guess is used to generate an initial FEM model which, upon
analysis, is evaluated within the objective function. If the

stopping criteria are not met, a new solution is generated
through a set of operations in the GA (e.g., selective reproduc-
tion, crossover, and mutation). The basic operations involved
in the design of the GA developed in this study have been
documented in various studies by Dizaji et al. [31–34]. The
new solution gives rise to an updated FEM model and the
process is repeated as necessary. Once the stopping criteria
are satisfied, the final solution of GA is used to initiate the
gradient-based scheme (L-BFGS-B) which takes the best GA
solution as its starting point to further refine the GA solution.
This process will continue to minimize the objective function
(equation (1)) until the convergence criteria are satisfied and
the final optimal solution is identified. Table 1 presents the set
of optimization hyper-parameters used with GA based on the
literature [40, 41], where Npop, Nelites, and Nmut represent the
initial population, the population of elites which go directly to
the next generation, and those randomly selected for mutation,
respectively. Additionally, μ represents the probability rate of
mutation, Npairs denotes the selecting parents for mating, and
iterations describe the stopping criteria for termination.

In the L-BFGS-B algorithm, the objective function is ap-
proximated by a second-order Taylor series around the current
design variables. As a result, this method requires the evalua-
tion of the objective function and its gradient with respect to
the design variables (modulus of elasticity) [42, 43]. The input
arguments for the L-BFGS-B subroutine are the gradient of
the objective function with respect to the unknown elasticity
modulus distribution and the functional value at each minimi-
zation step. The subroutine then returns with an updated esti-
mate of the parameters and this process is repeated until the
change in the objective function is smaller than a specified

Fig. 5 Overview of the proposed optimization approach

Table 1 Parameters of the genetic algorithm (GA) for the three identi-
fication tests for the first configuration

GA parameters Npop Nelites Nmut μ Npairs Iterations

Value 20 2 4 0.04 14 500
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tolerance. To implement the L-BFGS-B algorithm, an open-
source python optimization package was used (https://docs.
scipy.org/doc/scipy/reference/generated/scipy.optimize.
fmin_l_bfgs_b.html).

Results and Discussion

This section presents the results of the proposed approach
implemented using the four coupon specimens previously
depicted in (Fig. 1). For the defined configurations, the initial
FEM models of the coupons were partitioned into 10 sections
as shown in (Fig. 6) and the material properties of each parti-
tion were considered as design variables within the updating
process. The selection of the 10 partitions provided a rational
configuration to locate the vicinity of damage for this evalua-
tion; however, further partitioning is feasible, but at an in-
creased computational cost due to an expanded search region
within the optimization process. In this work, defects on the
unseen side of the model were constrained to locations that
aligned with separate partitions, which limits the search space,
but ensures that the entire structural component response is
considered. The partitions considered within the optimization
process for all the configurations are illustrated in (Fig. 6). It
should be noted that in this figure, EADS and EIS are acronyms

for the elastic modulus of the artificially damaged section
(ADS) and the intact section (IS), respectively. At the conclu-
sion of the optimization process, the value of the elastic mod-
ulus for the partitions belonging to defects are expected to
decrease dramatically to reflect the existence of defects in that
partition, similar to the observations within the simulated ex-
periments. Conversely, the values for the intact base material
are expected to converge to target properties of the material
under study.

Defect Detection Using Simulated Experiment

To evaluate the initial feasibility of the proposed approach
using simulated measurements, a FEM model of the coupon
specimen with simulated defects of configuration 2 (Fig. 1)
was created and analyzed within the elastic range. The objec-
tive was to evaluate the feasibility using idealized surface
measurements (i.e., full-field strain and displacement mea-
surements) analogous to those derived from DIC measure-
ments. Table 2 shows the initial values randomly selected
within the feasible range (maximum and minimum values)
used as the initial guess for the parameters in the optimization
procedure. To demonstrate the performance of the proposed
approach, (equation (2)) computes the percentage change of
the design variables defined as:

Fig. 6 Divided partitions of the configurations to import into optimization process, (a) configuration 1, (b) configuration 2, (c) configuration 3, and (d)
configuration 4
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ET ¼ Eupdated−Em

Em
� 100 ð2Þ

where Emwas assumed as 200 GPa for the idealized modulus
of elasticity of the couponmade of A36 steel [4]. It should also

be noted that the target values for the damaged section (EADS
1

and EADS
2 Þ are given as zero in Table 2 signifying the absence

of the base material.
As can be seen in Table 2, the partitions corresponding to

the simulated defects, EADS
1 and EADS

2 , exhibit dramatic reduc-
tions equal to 99.4 and 98.9%, respectively, demonstrating
that the defects were recovered properly. Simultaneously, all
of the intact regions are shown to converge to within 1% of the
target modulus of elasticity. These initial results demonstrated
the feasibility of the proposed St-ID approach, prompting fur-
ther evaluation using the proposed full-field experimental
approach.

Defect Detection Using Experimental 3D DIC
Measurements

To evaluate the performance of the proposed approach using
real-world data, an experimental study was conducted using
the coupon specimens with machined damage previously
shown in (Fig. 1), the FEM modeling procedures described
before, and the partitions shown in (Fig. 6). Using the pro-
posed hybrid optimization approach, the minimization of the
objective function was performed for 500 epochs where the
first 50 epochs utilized the GA and the optimization process
for the remaining epochs were performed using the L-BFGS-
B method. It should be noted that the starting point of the L-
BFGS-B algorithm is the last optimal point obtained from the
GA. Summary of the results for the elastic modulus of the
selected partitions before and after the optimization process
for all configurations is presented in Table 3. As expected, it
was observed that the elastic modulus belonging to the defect
regions converged to significantly smaller values when com-
pared to the regions without any defect features. These results
confirmed that the proposed approach was capable of

effectively inferring the existence of defect regions from con-
stitutive properties of the material. The convergence of the
objective functions for all the configurations is presented in
(Fig. 7). According to the results shown in Table 3 and (Fig.
7), it can be concluded that the proposed approach has the
capability of converging to the desired global minimum.

For configuration 2, the optimization convergence of the
objective function and elastic modulus of the partitioned sec-
tions are shown in (Fig. 8(a-b)). These plots show that both the
objective function and the moduli of elasticity of the partitions
quickly converge to stable plateaus (objective function to ze-
ro, and modulus of elasticity of intact and defective regions to
200GPa and zero, respectively). Moreover, in order to show
the superiority of the proposed algorithm, the optimization
process was conducted for three separate cases: 1) only GA
was used for optimization, 2) only the gradient-based algo-
rithm was used for optimization and 3) Hybridized optimiza-
tion scheme was used. As seen in (Fig. 8(a)), using the pro-
posed hybrid algorithm, the objective function has decreased
more than the two base algorithms when applied alone. This
demonstrates the efficiency of the hybridized optimization
scheme in reducing the objective function. Moreover, the ini-
tial values and corresponding optimized solutions illustrated
in (Fig. 8(c)) show proper convergence of the initial values
toward their expected solutions. It should be noted that for
each partitioned section, a different initial value was selected
to show the capability of the proposed method in converging
to the expected target value accordingly regardless of the
starting point. As can be seen from (Fig. 8 (b-c)), even though
initial design variables were randomly-assigned, their final
updated values successfully converged to the correct expected
target values.

The full-field strain measurements from DIC and FEM,
along with the absolute error, before and after model updating,
are shown in (Fig. 9) where the initial FEM model yields
distinctly different contour patterns for the longitudinal strain
than the experimental response, but following convergence to
the final solution, the patterns nearly mirror each other.
Through this convergence, the error, which describes the

Table 2 Initial, minimum, maximum, updated and target values of the updating parameters for configuration 2

E (MPa) EADS
1 EADS

2 EIS
1 EIS

2 EIS
3 EIS

4 EIS
5 EIS

6 EIS
7 EIS

8

Initial 150,000 180,000 110,000 300,000 220,000 90,000 120,000 50,000 280,000 320,000

min 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000

max 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000

Updated 1122 2050 199,223 200,776 197,990 201,999 199,001 200,333 200,888 201,992

Expected Value 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000

ET (%) −99.4 −98.9 −0.38 +0.38 −0.1 +0.99 −0.49 +0.16 +0.44 +0.99
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differences between the model prediction and experimental
results, drops an order of magnitude from the initial
prediction.

Optimization Robustness

Non-convex optimization problems can have several different
local minima resulting in different non-unique solutions to the

same discretized problem given different starting points and
parameters of the algorithms. Global optimization methods
are known to have difficulty handling problems of the size
of a typical inverse problem with a large number of design
variables [38–41]. In this work, two strategies were employed
to overcome optimization difficulties, namely combining the
global GA technique with a local gradient-based method, as
well as using additional results derived from the use of multi-
ple load steps increments (i.e., 20 load steps). To investigate
the robustness of the proposed approach and ensure that the
results were not sensitive to and dependent on the initial
values, a series of iterations with different initial values were
performed (Table 4). Four sets of randomly-generated initial
starting points for the modulus of elasticity of the partitions

were selected and the values of EADS
1 ;EADS

2 and EIS
3 were

used to evaluate the optimization performance with their con-
vergence trends plotted in (Fig. 10). As can be noted from
(Fig. 9(a - c)), even though the initial points are selected ran-
domly for the 4 initial sets, the proposed algorithm consistent-
ly converges to the optimal values. Also, the initial values and
corresponding optimized solutions for different sets of initial
scenarios are illustrated in (Fig. 11). As shown in (Fig. 11),
even though the initial values are selected randomly, the

Table 3 Summary of differences between elasticity modulus of the selected partitions before and after optimization process

Configuration 1

E (MPa) EIS
1 EIS

2 EIS
3 EIS

4 EIS
5 EIS

6 EIS
7 EIS

8 EIS
9 EIS

10

Initial 420,000 160,000 180,000 220,000 120,000 70,000 80,000 110,000 220,000 400,000

Updated 208,998 191,114 203,224 195,444 198,001 188,001 189,001 196,555 202,114 210,012

Expected Value 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000

ET (%) +4.5 −4.4 +1.6 −2.5 −1.0 −6.0 −5.5 −2.0 +1.3 +5.0

Configuration 2

E (MPa) EADS
1 EADS

2 EIS
3 EIS

4 EIS
5 EIS

6 EIS
7 EIS

8 EIS
9 EIS

10

Initial 150,000 180,000 110,000 300,000 220,000 90,000 120,000 50,000 280,000 320,000

Updated Value 6557 9122 189,223 208,776 191,990 209,999 189,001 206,333 204,888 209,992

Expected Value 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000

ET (%) −96.0 −95.0 −5.5 +4.4 −4.0 +5.0 −5.5 +3.3 +2.5 +4.5

Configuration 3

E (MPa) EADS
1 EADS

2 EADS
3 EADS

4 EIS
5 EIS

6 EIS
7 EIS

8 EIS
9 EIS

10

Initial 110,000 250,000 130,000 290,000 180,000 60,000 220,000 180,000 250,000 420,000

After 7445 8445 9984 8554 189,222 179,000 208,000 191,224 206,002 210,111

Ideal 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000

ET (%) −96.0 −95.7 −95.0 −95.7 −5.5 −10.5 +4.0 −4.4 +3.0 +5.0

Configuration 4

E (MPa) EADS
1 EADS

2 EADS
3 EADS

4 EIS
5 EIS

6 EIS
7 EIS

8 EIS
9 EIS

10

Initial 170,000 220,000 280,000 130,000 100,000 140,000 220,000 170,000 70,000 150,000

Updated Value 11,224 8225 9879 5469 181,003 195,224 211,225 194,225 179,887 190,336

Expected Value 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000

ET (%) −94.0 −95.9 −95.0 −97.0 −9.5 −2.4 +5.5 −3.0 −10.5 −5.0

Fig. 7 Convergence of the objective function for the defined
configurations
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Fig. 8 (a) objective function convergence for different optimization algorithms, (b) elasticity modulus convergence, and (c) initial and final values of
design variables

Fig. 9 Full-field measurements obtained from DIC and FE, along with the absolute error, before and after model updating (a) 3D DIC results, (b) initial
FEM results, (c) updated FEM model, (d) the error between DIC and initial model, and (e) the error between DIC and updated model
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proposed approach is able to converge towards unique and
consistent solutions accordingly. A summary of the initial
design variables and their corresponding optimized solutions
for the different initial configurations are presented in Table 4
for reference.

Experimental Validation

Once internal defects inside a component are detected using
the proposed image-based tomography method, the updated
model, which includes the detected defects, should be able to
describe the future behavior of the component under future
loads. To evaluate the updated model under new loads, the
numerical model of the coupon was used to predict strain
measurements for comparison with DIC results (Fig. 12).
The new loading included a displacement-controlled tensile
load applied using the testing machine as a separate test from
those used in the updating process. Again, configuration 2 was
used as the defective test specimen for this validation. Table 5
shows the comparison of strains at six selected regions of the
specimen with those predicted using both the initial and up-
dated models at the load level of 40% of the yielding load.
This table shows a very good agreement (<10% maximum

difference) between strains from the updated model and the
experimental results. As expected, the error between the ex-
perimental and numerical values decreases significantly when
using the updatedmodel comparedwith the initial model. This
verifies the effectiveness of the proposed approach in
extracting the true properties of a component, which can be
used for more realistic prediction of its response under future
loads.

Limitations and Future Works

The results presented in this paper demonstrated the feasibility
of the proposed technique to identify regions with unseen
embedded defects via sensing the disturbances in the surface
response of a component and updating a FEMmodel to reflect
its internal and external conditions. However, a number of
factors regarding the range of applicability and practical as-
pects of its implementation should be further studied in the
future. For example, the effect of internal damage on the ex-
ternal response perturbations is expected to decrease with a
reduction in the size and severity of the damage and with an
increase in its distance from the surface. In other words, this

Table 4 Summary of elastic modulus convergence for selected partitions for different parameter initializations (Configuration 2)

Initial set 1

E (MPa) EADS
1 EADS

2 EIS
3 EIS

4 EIS
5 EIS

6 EIS
7 EIS

8 EIS
9 EIS

10

Initial 250,000 150,000 180,000 250,000 160,000 50,000 110,000 80,000 220,000 400,000

Updated 5445 7889 188,811 220,110 192,001 180,330 202,001 190,111 200,002 209,002

Expected 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000

ET (%) −97.0 −96.0 −5.6 +10.0 −4.0 −9.8 +1.0 −5.0 +0.0 +4.5

Initial set 2

E (MPa) EADS
1 EADS

2 EIS
3 EIS

4 EIS
5 EIS

6 EIS
7 EIS

8 EIS
9 EIS

10

Initial 100,000 225,000 160,000 270,000 170,000 70,000 150,000 110,000 250,000 420,000

Updated 7700 8098 203,033 210,222 200,332 199,003 201,000 203,003 210,993 220,223

Expected 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000

ET (%) −96.0 −95.9 +1.5 +5.1 +0.2 −0.5 +0.5 +1.5 +5.5 +10.0

Initial set 3

E (MPa) EADS
1 EADS

2 EIS
3 EIS

4 EIS
5 EIS

6 EIS
7 EIS

8 EIS
9 EIS

10

Initial 150,000 170,000 220,000 100,000 60,000 220,000 80,000 140,000 110,000 90,000

Updated 8955 6773 200,322 188,555 192,222 200,433 179,007 201,222 205,055 200,443

Expected 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000

ET (%) −95.0 −96.6 +0.2 −5.7 −3.9 +0.2 −10.5 +0.6 +2.5 +0.2

Initial set 4

E (MPa) EADS
1 EADS

2 EIS
3 EIS

4 EIS
5 EIS

6 EIS
7 EIS

8 EIS
9 EIS

10

Initial 270,000 200,000 230,000 150,000 110,000 130,000 210,000 170,000 70,000 150,000

Updated 5445 7889 204,444 199,994 188,444 199,433 200,345 192,022 195,045 197,331

Expected 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000

ET (%) −97.3 −96.0 +2.2 −0.0 −5.8 −0.3 +0.2 −3.9 −2.5 −1.3
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technique is expected to be able to detect defects above a
certain severity and distance threshold, the limits of which
should be studied in the future. It should be noted however,
that this is similar to most nondestructive evaluation tech-
niques and knowledge about the range of applicability will
guide its future applications.

This paper showed the capability to detect the existence
and locate the vicinity of voids by dissecting the specimen
into a number of partitions whose stiffness is identified within
the optimization process. The extension of the proposed meth-
od to include the stiffness of each individual finite element as

an unknown design variable can lead to much-finer resolution
of detections. In other words, a topology optimization exten-
sion should update the stiffness of each individual element,
thus producing a “stiffness map” throughout the entire volume
of the specimen. The resulting stiffness map should then in
theory be able to point to a variety of defects such as voids
(regions with negligible stiffness), inclusions (anomalies in
stiffness), delamination and cracks (planar or layer-wise dis-
continuity in stiffness). In practice, however, future experi-
mental work with different defect types needs to be carried
out to demonstrate the range of applicability of the method

Fig. 10 Initializing the optimization procedure with different start point (a) the convergence of EADS
1 ; (b) the convergence of EADS

2 ; and (c) the
convergence of EIS

3

Fig. 11 Comparison of initial and final properties for partitions within CF2 (a) initial properties, (b) final properties
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with respect to defect types. This also applies to the assump-
tion and choice of material models and constitutive properties
considered in the optimization. While this paper used a simple
homogenous steel couponwithin its linear elastic region, other
parametrizations and more complicated materials can also be
investigated in the future, while taking into account the asso-
ciated numerical convergence implications.

In terms of practical implications, as this technique
relies on surface measurements using DIC, the surface
of the specimen needs to undergo surface preparation
(e.g., random high-contrast speckle pattern). This may in
turn affect the applicability of the technique for large-
scale structural components which may require sizable
surface preparation and multiple sets of camera systems.
While laboratory-scale feasibility was shown in this pa-
per, successful use of DIC for large-scale structures such
as wind turbines in the literature [44] is evidence for the
potential of the technique at larger scales. Finally, it was
stated that the main advantage of the proposed technique
over internal 3D scanning (e.g., XCT) is its reliance on
regular cameras and the reduced need for specialized
sensing equipment and expertise. However, this comes
at the expense of increased computational demand for
FEM modeling, optimization, and DIC postprocessing.

In order to investigate and extend the range of applicability
of the proposed method beyond the small-scale, uniaxial con-
figuration of the homogenous steel specimen tested herein,

future work is required to study its performance across a va-
riety of structural configurations such as large-scale, complex,
and multi-member structures, composed of different materials
such as reinforced concrete and composites. Study of such
complex examples will shed light on the identification capa-
bilities of the proposed technique in the presence of confound-
ing unknowns such as internal non-homogeneities, delamina-
tion and rebar corrosion. Further comparison with internal 3D
scanning techniques in terms of identification range and accu-
racy, practical issues, and costs can also highlight the potential
benefits of the proposed technique for future applications.

Conclusion

The purpose of this preliminary investigation was to evaluate
the feasibility of leveraging full-field measurements for struc-
tural identification, with the goal of recovering the volumetric
interior defect distribution in structural components. Within
this image-based tomography framework, steel coupon spec-
imens with simulated defects were used to evaluate the per-
formance of the structural identification approach that utilized
an inverse approach to identify unknown and uncertain con-
stitutive properties of the material based on full-field deforma-
tion measurements correlated with FEM predictions.

Digital Image Correlation was utilized to extract full-field
deformation measurements of the test specimen, subjected to

Table 5 Longitudinal strain
comparison of the experimental
results with initial and updated
model predictions at 40% of yield
stress (CF 2)

Selected
Regions

Initial Model
(με)

|DIC-Initial|/
DIC

(%)

Updated Model
(με)

|DIC-Updated|/
DIC

(%)

DIC results
(με)

1 655 41.9 987 12.5 1128

2 744 66.0 412 8.0 448

3 698 25.0 887 5.4 938

4 877 15.0 702 7.8 762

5 698 60.0 392 10.0 436

6 790 33.0 1102 7.0 1185

Fig. 12 Prediction
correspondence between
experimental and undated
numerical results (a) 3D DIC
results at load level of 40% of
yield, (b) FEM modeling results
at load level of 40% of yield
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standard ASTM E8 tensile testing, with the measurements
collected of only the intact surface (i.e. simulated defect un-
seen by the cameras). The corresponding FEM models of the
specimens were divided into a set of regions with uniform
modulus of elasticity, each of which had random initial stiff-
ness values. To establish the FEM model updating scheme,
the ABAQUS solver was interfaced with an optimization
package and the unknown parameters were adjusted iterative-
ly until finding the optimal values. The optimization strategy
leverages a genetic algorithm to perform the global search and
a limited-memory Broyden-Fletcher-Goldfarb-Shanno
scheme for the local search for the optimal solution parame-
ters. As a result of the optimization process, all of the intact
regions converged to elastic modulus close to the expected
value of 200 GPA for A36 steel, with the exception of the
defect regions that showed a dramatic reduction in elastic
modulus, which approached the expected value of zero for a
void. These outcomes demonstrated the ability of the pro-
posed image-based tomography framework to identify inter-
nal defects in the form of anomalies in material constitutive
properties. Moreover, to evaluate the uniqueness of the solu-
tion in the proposed approach, different sets of initial values
were selected to show the insensitivity of the results to the
selected initial values. The results showed that, even though
the initial points were selected randomly for the 4 different
sets, the proposed algorithm had the capability to converge to
the optimal values. The results of this preliminary investiga-
tion and the ability of the proposed method to detect internal
abnormalities hint at the possibility of determining not only
the material distribution of a specimen, but also determining
the location, dimensions, and shape of the defect. The results
of this paper are encouraging and may open up new opportu-
nities to characterize heterogeneous materials for their me-
chanical property distribution.
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