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Abstract
Fractional Fourier transform (FRFT) can transform data into the space of the fractional order domain, where fractional order can
be used to search for the maximum value of fault. Instantaneous spectrum estimation is an important method to analyze non-
stationary signals. Through it, the transient characteristics of these signals can be obtained in both time and frequency domain. A
new fault diagnosis method for rolling bearing is proposed by combining instantaneous spectrum estimation with FRFT. Firstly,
the optimal order of fractional Fourier transform is determined using the principle of maximum kurtosis coefficient. Then the 2-D
fractional domain power spectrum under the selected fractional order is obtained using the rotation property of fractional Fourier
transform. Furthermore, the energy intensity of each frequency component in the fractional domain is achieved by integrating the
time-frequency spectrum along the time axis, and is applied to the fault diagnosis. The simulated signal and some actual bearing
fault data are processed to verify the effectiveness with Renyi entropy introduced as an evaluation parameter. Experimental
results show that the new algorithm has higher time-frequency resolution. Especially, there is a good aggregation for weak fault
signals. The proposed method can obtain more accurate characteristic frequency identification and provide a new alternative for
fault diagnosis of rolling bearing.
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Introduction

Lots of faults about rotating machinery are related to rolling
bearings which have a great influence on the working state of
the machine [1, 2]. Therefore, study on rolling bearing fault
diagnosis is of great significance.

The research on fault diagnosis of rolling bearing began in
1960s. In 1974, Boeing invented the technology of resonance
demodulation. Modern analytical methods of fault diagnosis
are mainly based on feature extraction in time domain and
frequency domain. The time domain analysis of rolling

bearing fault needs complex parameter comparison, and the
stability and sensitivity are not good. Frequency domain anal-
ysis method solves these problems to a certain extent.
However, it is not enough to study the complex non-
stationary signals separately from the time domain or frequen-
cy domain. It is necessary to analyze the signals both in time
and frequency domain. Meanwhile mechanical fault signals
are non-stationary signals, it is not comprehensive that the
characteristics of fault signals are described only in time do-
main or frequency domain [3].

Scholars hope to analyze the characteristics of fault signals
in time and frequency domain simultaneously [4]. Short-time
Fourier transform (STFT) is the first one to be used. This
method can obtain better local characteristics in time-
frequency domain. However, STFT is limited by the selection
of window functions and is difficult to analyze various situa-
tions [5]. In order to get rid of this limitation, researchers put
forwardWavelet technology. Experiments prove thatWavelet
method has strong resolving power to the fault signal.Wavelet
method is widely used in bearing fault diagnosis because of its
multi-scale decomposition [6, 7]. As a priori algorithm,
Wavelet analysis needs to set parameters in advance, and the
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improper selection of parameters will have a bad impact on the
results [8]. Wigner-Ville method is used in the field of me-
chanical fault diagnosis due to its high time-frequency resolu-
tion and good aggregation. However, the biggest disadvantage
of this method is the existence of cross terms [9]. In recent
years, some new signal processing methods, such as empirical
mode decomposition and auto-encoder, are also used in fault
diagnosis [10–12]. Intelligent fault diagnosis of rolling bear-
ing has also been developed based on hierarchical
convolutional network, learning machine, and genetic algo-
rithm [13–16].

Fractional Fourier transform is a signal processing technol-
ogy developed recently. Its remarkable advantage over
Fourier transform is that it can provide more choices for
time-frequency analysis and obtain some improvements in
performance. Almeida laid the foundation for time-domain
analysis in fractional domain [17, 18]. Power spectrum, which
describes the average power of each frequency component in
a random process, is one of the important representations of
random signals [19, 20]. Referring to fractional time-
frequency rotation characteristics, the power spectrum distri-
bution is directly calculated in fractional domain.
Furthermore, the energy intensity of each frequency compo-
nent in fractional domain is achieved by integrating the time-
frequency spectrum along the time axis, which is applied to
the fault diagnosis. The proposed algorithm can separate noise
signals from the fault signals in the fractional order domain,
which provides a good condition for further extracting their
time domain and frequency domain characteristics.

Method Principle

Fractional Fourier Transform

The fractional Fourier transform of signal x(t) is defined as
following [17, 18].

Mα uð Þ ¼ FRFTα x tð Þ½ � ¼ ∫þ∞
−∞ x tð ÞNα t; uð Þdt ð1Þ

Here,
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α is the transform angle andα < |α| < π. Transform order
isp = 2α/π. When p = 1, FRFT is Fourier transform.

Considering the relationship between the one-dimensional
power spectrum and the spectrum distribution, the 2D distri-
bution of power spectrum in the fractional domain with angle
of α is given [21].

PSD u−v;αð Þ u; υð Þ ¼ 1

2T
∫Mα u

0
� �

H u0−uð Þe− j2πu0υdu0
��� ���2 ð3Þ

In the Formula, Mα(u) is the result of fractional Fourier
transform at α angle, which is applied for a signal with a
length T. H(u) is a fractional domain window function. In
order to have a higher time-frequency resolution,H(u) is cho-
sen as Gauss window function generally. u' is a variable in the
u ‐ υ domain. According to 20th reference, the fractional do-
main power spectrum of α angle is defined as

PSDα uð Þ ¼ lim
T→∞

1

2T
Mα uð Þj j2 ð4Þ

In the formula, Mα(u) is the result of fractional Fourier
transform of x(τ) at α angle based on Eqs. (1) and Eq. (2),
where x(τ) is a segment of signal intercepted from x(t), with a
length T.

Time Frequency Distribution of Power Spectrum in
Fractional Domain

In order to have a clear physical meaning, the power spectrum
is rotated from the u ‐ υ plane of the fractional field to the t ‐ f
plane. Then the direct expression of the time-frequency distri-
bution in the fractional domain is obtained [22].
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In the form, t'is a variable in t ‐ f domain. Rα represents
rotation and the Formula (5) is the rotation equation.

And h(t) is determined by the fractional Fourier transform
of H(u).

h tð Þ ¼ FRFTP H uð Þ½ � ð7Þ

Formula (5) shows that the power spectrum distribution in
the fractional domain is identical with the two-dimensional
spectrum in form. The key lies in the selection of Gauss win-
dow function in fractional domain. According to the conclu-
sions given in document [23, 24], when

H uð Þ ¼ e
−
πu2Bxp
Txp ; ð8Þ

the aggregation of the power spectrum in the fractional do-
main will be optimal.Txp andBxp are the time-wide and

frequency-wide of signal x(t) in the p order fractional domain.
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In the vast literature, there are many ways to determine the
best order p. Considering the characteristics of the fault signal,
the maximum kurtosis coefficient method is adopted as fol-
lowing [25–27].

K Mα uð Þf g ¼
E Mα uð Þj j− Mα uð Þ

��� ���� �4
 �

E2 Mα uð Þj j− Mα uð Þ
��� ���� �2
 � ð9Þ

p ¼ arg max
0≤p<2

K M uð Þgf ð10Þ

In the formula, Mα uð Þ is the mean value ofMα(u)and E is
mathematical expectation.

Quantitative Evaluation Index

Entropy is a tool to measure the uncertainty of information.
For signals with strong randomness, the greater the uncertain-
ty, the greater the entropy. For signals with strong certainty,
the entropy is smaller. Applied to the time-frequency analysis,
the more concentrated the energy distribution is, the smaller
the uncertainty is and the smaller the entropy is. The more
dispersed the energy is, the greater the uncertainty is and the
larger the entropy is. The entropy value can be used to judge
the degree of time-frequency energy convergence, and then
judge the result of time-frequency analysis.

Renyi entropy, as evaluation index, is used to evaluate the
advantages of the proposed algorithm and other algorithms.
Renyi generalized the concept of entropy in 1973, and put
forward the Renyi entropy.

Rα pð Þ ¼ 1

1−α
log2

∑
i
pαi

∑
i
pi

ð11Þ

Where, α is the order of entropy, when α→ 1, Renyi en-
tropy became Shannon entropy. pi is the probability density
(i = 1, 2,…).

Simulation Analysis

In order to verify the effectiveness of the presented algorithm,
a set of sinusoidal frequency modulation signals are selected
for testing. Its time domain waveform and instantaneous fre-
quency distribution are shown in Fig. 1. According to the
theory deduced above, the optimal order p is searched by
Eqs. (9) and Eq. (10). Then the optimal window function
H(u) in the fractional domain is obtained from Eq. (8). And
the u ‐ υ distribution of the power spectrum in the fractional
domain can be achieved by Eq. (3). Finally, the t ‐ fdistribution

of the power spectrum in the fractional domain can be obtain-
ed based on Eq. (5).

For comparison, the results from STFT method and the
improved Wigner-Ville method are given. Figure 2 shows
the time-frequency spectrum and the power spectrum of the
simulated signal from STFT, the improved Wigner-Ville and
the proposed method respectively. Here, the smoothing pseu-
do Wigner-Ville distribution is used to effectively solve the
problem of cross-interference in Wigner-Ville distribution.
From Fig. 2(a), it can be seen that the two-dimensional spec-
trum of STFT exhibits the instantaneous frequency character-
istics of the simulated signal with sinusoidal variation.
However, the resolution of the two-dimensional spectrum is
low, and the bright band which represents the frequency
change is very wide. In Fig. 2(b), the obtained marginal spec-
trum (power spectrum) is also smooth and lacks peak infor-
mation. In the improvedWigner-Ville spectrum shown in Fig.
2(c), the clarity and resolution are improved. Its marginal
spectrum in Fig. 2(c) is more detailed than that shown in
Fig. 2(b), but its practicability is still low. The time-
frequency spectrum and power spectrum of the fractional do-
main obtained from the presented method are shown in Fig.
2(e) and (f). In the 0.05–0.1 Hz frequency band, the amplitude
variation of each frequency component is shown in Fig. 2(f)
clearly while the variation is smoothed in Fig. 2(b) and (d).

Renyi entropy of time-frequency spectrum from three
methods are compared in Table 1. Compared with the STFT
method, the entropy value has been reduced from 9.9979 to
7.9664 using the proposed method. And it is smaller than that
of the smoothing pseudo Wigner-Ville method. The time-
frequency aggregation of the instantaneous spectrum from
FRFT is greatly enhanced. It can be seen that the accuracy
of instantaneous energy distribution and marginal spectrum
has been greatly improved. Resolution is significantly higher
than that of Fig. 2(a) and (c). The bright band with sinusoidal
shape is more concentrated, the time frequency clustering is
greatly improved and the brightness is uniform. The time-
frequency distribution of energy coincides well with the in-
stantaneous frequency distribution shown in Fig. 1. The mar-
ginal spectrum is no longer smooth, and the peak information
is displayed, which is conducive to further identification.

Measured Data Processing

To further illustrate the effectiveness of the proposed method,
it is applied to fault diagnosis of rolling bearings. The exper-
imental data come from the electrical engineering laboratory
of CaseWestern Reserve University, USA. The tested bearing
is 6205-2RS JEM SKF. The parameters of some main com-
ponents are described below: Rolling element number is 9, the
contact angle is 0, bearing speed is 1750 r/min. Inner diameter
is 25.0012 mm, outer diameter is 51.9989 mm, thickness is
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14.5906 mm, pitch diameter is 39.0398 mm, rolling body
diameter is 7.9412 mm. In outer ring, damage diameter is
0.1778 mm which is made by the electric spark machining.
The sampling frequency of vibration signal is 12 kHz. The
selected data contains fault signals from the inner, outer and
rolling rings and its time series are shown in Fig. 3. Based on
the theory, the fault frequency of bearing can be calculated as
following [2]:

Fault frequency on inner race:

f i ¼
z
2

1þ d
D
cosα

� �
f r ð12Þ

Fault frequency on outer race:

f o ¼
z
2

1−
d
D
cosα

� �
f r ð13Þ

Fault frequency on rolling ball:

f b ¼
D
d

1−
d
D

� �2

cos2α

 !
f r ð14Þ

Here, fr is the bearing speed, z is the number of balls, d is
the rolling diameter, D is the bearing pitch diameter, α is
rolling contact angle. So based on the theoretical formula,
fault frequency can be determined as: fi ≈ 158 Hz, fo ≈
104 Hz, fb ≈ 137 Hz.

Firstly, the vibration signal of rolling bearing with
outer ring fault is considered. The smoothing pseudo
Wigner-Ville spectrum and its corresponding marginal
spectrum of outer ring fault signal are shown in
Fig. 4(a) and (b). In time-frequency spectrum, there is
an obvious bright band near 104 Hz, but it is discon-
tinuous and its divergence is large. In the marginal

Fig. 1 Time domain waveform of sinusoidal frequency modulation signal (a) and it Instantaneous frequency distribution (b)

Fig. 2 Time-frequency spectrum and power spectrum of simulated signal: (a), (b) is from STFT; (c), (d) is from the smoothing pseudo Wigner-Ville
method and (e), (f) is from the presented method
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spectrum, there is an obvious spectral peak at the char-
acteristic frequency point 104 Hz, and the amplitude is
very large. This is because the fault position acts as an
excitation source when the outer ring of the rolling
bearing fails, and the excitation produces an impact ev-
ery rotation. The vibration signal of the impact is
expressed by the modulation of the amplitude modula-
tion signal to the carrier signal of the bearing natural
frequency, where the modulation frequency is the fault
characteristic frequency. Therefore, the bearing fault
lists in outer ring, which can be obtained from the
spectrum line at the characteristic frequency fo =
104 Hz. However, through careful observation it can
be shown that other components of the fault diagnosis
interference are greater and other harmonic components
can’t be shown in the smoothing pseudo Wigner-Ville
spectrum and its corresponding marginal spectrum.

The time-frequency spectrum and the corresponding
marginal spectrum in the fractional domain are shown
in Fig. 4(c) and d. In the time-frequency spectrum, not

only the 104 Hz energy band is brighter and more con-
centrated, but also the second harmonic can be seen. In
the marginal spectrum, the characteristic frequency of
104 Hz, its harmonics 208 Hz and 312 Hz all can be
marked clearly, which is more helpful to the diagnosis
of bearing fault. Obviously, the proposed method can
get more detailed time-frequency spectrum and higher
time-frequency resolution. The Renyi entropy of time-
frequency spectrum of the measured data are shown in
Table 2. Compared with the smoothing pseudo Wigner-
Ville method, the entropy value has been reduced from
8.998 to 7.8468 by using the proposed method. The
energy distribution is more concentrated. The time-
frequency accumulation spectrum of the fractional ener-
gy band has the characteristics of focusing. The frac-
tional energy band can highlight the target component
to the greatest extent, and restrain other components and
noise. This feature is especially suitable for extracting
weak fault characteristics of vibration signals.

Table 1 Comparison of Renyi
entropy of time-frequency spec-
trum from three methods

Evaluation indexe Method

STFT method The smoothing pseudo Wigner-Ville method The presented method

Renyi entropy 9.9979 9.0173 7.9664

Fig. 3 Measured rolling bearing fault signal: (a) inner ring, outer ring (b) and the roller(c)
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Furthermore, the rolling bearing vibration signals from
inner ring and rolling body are analyzed. Similarly, the
results are compared with the smoothing pseudo
Wigner-Ville method. According to the physical informa-
tion of rolling bearing, we can calculate the fault frequen-
cy of ring as: fi = 158 Hz and fb = 137 Hz. Figures 5 and 6
show the processed results. It can be seen that the conclu-
sions obtained from the analysis are consistent with these
shown in Fig. 4. Similarly, these Renyi entropy values
listed in Table 2 reflect the same conclusion that the pro-
posed algorithm has higher time-frequency resolution than
smoothing pseudo Wigner-Ville method. In the fractional
domain time-frequency spectrum and the corresponding
marginal spectrum, the characteristic frequency and its
harmonics can be marked more clearly. It is more condu-
cive to the diagnosis of bearing failure. The presented
method is better than the smoothing pseudo Wigner-
Ville method in fault diagnosis.

Conclusion

In this paper, a new fault diagnosis method is proposed
based on instantaneous power spectrum estimation in
fractional domain. Here, the maximum kurtosis coeffi-
cient method is used to estimate the spectrum of opti-
mal fractional domain. And the power spectrum distri-
bution in fractional domain is transformed into time-
frequency distribution by using fractional domain time-
frequency analysis technique. This method enables intu-
itive physical meaning in fractional domain of the pow-
er spectrum distribution. At the same time, the resolu-
tion of two-dimensional power spectrum is improved.
Especially in weak signal analysis, there is a good ag-
gregation for weak fault signals. Experimental results of
simulation signal and real data show that the proposed
algorithm has higher time-frequency resolution than the
smoothing pseudo Wigner-Ville method, and can obtain

104Hz
104Hz

208Hz

312Hz

208Hz

104Hz

a

b d

c

Fig. 4 Time-frequency spectrum and power spectrum of outer race fault signal: (a), (b) based on the smoothing pseudo Wigner-Ville method; (c), (d)
based on the proposed method

Table 2 Renyi entropy of time-
frequency spectrum of the mea-
sured data

Bearing fault signal Method

The smoothing pseudo Wigner-Ville method The presented method

inner ring 8.9426 7.8593

outer ring 8.9981 7.9686

the roller 8.7747 7.5986
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158Hz

Fig. 5 Time-frequency spectrum and power spectrum of inner race fault signal: (a), (b) based on the smoothing pseudo Wigner-Ville method; (c), (d)
based on the proposed method

274Hz

137Hz

411Hz

274Hz
137Hz 411Hz

a c
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Fig. 6 Time-frequency spectrum and power spectrum of rolling body fault signal: (a), (b) based on the smoothing pseudoWigner-Ville method; (c), (d)
based on the proposed method
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more accurate characteristic frequency identification for
fault diagnosis.
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