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Abstract
Experimental studies of multiple shock wave interaction to study transition from regular to irregular reflection rely on
the processing of a large amount of schlieren photographs. Here we present an automated algorithm to track individual
shock fronts and triple points. First, correction to any optical distortions is applied to the photographs. Next, noise removal
and edge detection algorithms are implemented to extract the pixel locations of the shocks. The edge detection algorithm
takes advantage of the light intensity feature of the shock waves to distinguish shock fronts from background noise. This
algorithm is also capable of separating entangled shock fronts through pattern recognition, which utilizes a discretization
method to reduce complex shock geometries to localized linear patterns. Collectively, the algorithms can track shock wave
characteristics to sub-pixel precision. This algorithm has been deployed for post processing of shock wave experiments to
extract shock wave characteristics including positions and propagation velocities of shock fronts, vertical and horizontal
velocities of Mach stems, and triple point trajectories during shock-shock interactions. Results show that the algorithm
can process large volumes of data with minimal manual operations, making image processing more precise, efficient and
productive while allowing for tracking of Mach stems and triple points.
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Introduction

Experimental investigations of shock wave reflection phe-
nomena are often used to qualitatively validate results from
numerical simulations through schlieren photography. How-
ever, as advancements in ultra high-speed photography
make video recordings of shock dynamic events possible,
quantitative information from large volumes of consecutive

This study was partially supported by the US Air Force Research
Laboratory under grant No. FA8651-17-1-004 and the National
Science Foundation under grant number CBET-1803592.

� V. Eliasson
eliasson@mines.edu

1 Department of Mechanical and Aerospace Engineering,
University of California, San Diego, La Jolla, CA
92093-0411, USA

2 Department of Structural Engineering, University
of California, San Diego, La Jolla, CA 92093-0085, USA

3 Mechanical Engineering Department, Colorado School of
Mines, Golden, CO 80401, USA

schlieren photographs becomes desirable. Under such con-
text, computer aided image processing techniques that are
capable of efficiently and reliably tracking the positions of
shock fronts become critical for avoiding repetitive man-
ual work during post processing. Especially, in the study
of regular to irregular shock wave transition phenomena,
experimental images often consist of multiple developing
shock fronts intertwined, demanding more sophisticated
image processing techniques for data extraction.

Various techniques for detecting the edges of shock
fronts have been explored in previous studies. Shock fronts
can be visually identified through their higher and lower
light intensity characteristics compared to the background.
Hence, many of the methods explored previously rely
on finding the local extrema of light intensities through
approximated partial derivatives. Methods that use local
extrema to locate edges, such as the Canny and Sobel
methods, focus on different ways to approximate partial
derivatives while minimizing the impact of noise [1].
Although those approaches have proven to be effective
in finding edges inside images, they also have inherent
disadvantages. As indicated in Fig. 1, in cases of complex
shock geometries, such as Mach stem development, edge
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Fig. 1 Edge detection results
from Canny and Sobel edge
detection methods in
comparison to the original
image. Shock waves are not
obvious after edge detection,
and background noise is still
present. Secondary shocks are
also highlighted with Canny
edge detection. a original image.
b image after Canny edge
detection. c image after Sobel
edge detection. b and c were
obtained using the MATLAB
image processing toolbox

detection with local extrema tends to highlight both primary
and secondary shock fronts, adding to the challenge of
extracting meaningful information from the photograph.
Further, background subtraction alone is often insufficient
for fully eliminating noise.

Additionally, even after a relatively successful edge
detection process has been completed, complex shock
geometries may still contain highly entangled shock
fronts that require individual identification, which would
undermine the effort to automate the process of data
extraction.

Therefore, in this study, we propose an alternative
approach to edge detection applied to shock wave studies
and a system of image processing algorithms to obtain
quantitative results from shock wave experiments. Instead
of using local extrema in light intensity to identify
edges, morphological operations were used to highlight
only primary shock fronts, and as a result algorithms to
automatically track and identify individual shock fronts
were developed. Our experimental setup used to generate
the shock waves for developing these image processing
algorithms consisted of an exploding wire system that
is capable of producing small scale shocks with similar
characteristics as blast waves. The exploding wire system
is described in detail in [2] and very briefly explained
here. The experimental setup consists of three main parts:
the driver unit, the experimental test section, and a high-
speed schlieren imaging system. The driver contains four
capacitor banks each at 0.22 μF and 10kV storage (General
Atomics, Part No. 31160); two electromagnetic switches
(Ross Engineering, Model No. E40-DT-60) that serve to

ground the driver when not in use, and complete the
charging circuit when in use; a spark gap (10-65 kV, Hofstra
Group, Item No. 3114) used as a switch that is controlled by
a pneumatic trigger; and finally a Rogowski coil (Pearson
Electronics) that probes the current output and is used as
trigger source for the high-speed camera (Shimadzu HPV–
X2). Each test section contains the necessary number of
exploding wires strung across two brass electrodes. The
wires are held in place by small fishing weights. The
electrodes are then connected to the exploding wire setup
driver by flexible coaxial cables. All test sections are
enclosed in optically clear flat acrylic panels.

The schlieren photographs were obtained through a z-
type schlieren imaging system. Dynamic shock wave events
are captured with an ultra high-speed camera, here set
to record at 500,000 fps with a resolution of 400x250
pixel2. Schlieren photographs from the experiments were
first processed through an in-house developed distortion
correction algorithm to eliminate optical biases. The
distortion correction algorithm process is elaborated on in
“Distortion Correction”. The next step is to apply a series
of morphological manipulations to the binary converted
photographs to preserve only the primary shock fronts.
With the shock fronts isolated, edge detection becomes
a collection of locations of the remaining pixel objects.
For regular and irregular shock reflection experiments, a
discretization method was developed to simplify entangled
patterns down to local linear segments, and different linear
segments were cross compared to reconstruct the individual
shock fronts. This entire process has been tested and
utilized in numerous applications in the studies of regular
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to irregular shock wave transitions, and shock position and
velocity propagation profiles for various scenarios have
successfully been obtained.

Distortion Correction

Typically, two types of optic distortions are present in z-type
schilieren systems: coma and astigmatism. Coma is a result
of misalignment of the schlieren field mirrors away from
their optical axes and can be minimized through careful
calibration of mirrors and lenses [3]. Astigmatism, on the
other hand, cannot be effectively eliminated optically as it
is a consequence of the geometry of the z-type schlieren
system [3]. While careful alignment of mirrors can reduce
the presence of coma, it is difficult to determine how
effectively coma is eliminated, and since astigmatism is
always present alongside distortions introduced by camera
lens, extension tubes and other optical elements in the
schlieren system, distortion correction during post digital
processing is necessary to yield reliable data.

Experimental Implementation

To allow digital distortion correction, careful steps must be
taken during the experiments. Here, a clear acrylic plate
scored with equally spaced grid points was machined to use
as a reference for removing optical distortions. The spacing
between the grid points in the plate was predetermined
during manufacturing. After each experiment, the grid plate
was placed in the same plane as where the dynamic event
had taken place. The planar orientation of the grid plate was
intentionally rotated by a small amount for programming
purposes and also to reduce experimental aligning time
for the grid plate. A photograph of the grid plate was
then taken under the same optical condition as that of
the experiment. This way, any optical distortions that
occurred in the experiment would also be present in the
grid plate photograph, and the distortion could be corrected
for all experimental photographs by applying the same
transformation matrix that corrects the distortion in the grid
plate photograph. Figure 2a shows an example of a grid
photograph taken during one of the experiments.

Fig. 2 Image processing of a
grid photograph to obtain a
mathematical correction
transformation matrix. a
Original grid image. b Grid
image after Canny edge
detection has been performed. c
Position of corrected grid points
(red asterix) obtained from (b)
overlaid with the undistorted
grid points (blue circles)
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ImageMapping and Generation of Transformation

After the grid image was taken, all the grid points would be
recognized by edge detection method using the MATLAB
image processing toolbox. For the purpose of grid point
mapping, Canny edge detection was used. The result of
the edge detection result is demonstrated in Fig. 2b. Note
that due to interference from noise, some grid points are
omitted in Fig. 2b to ensure accurate grid point mapping.
Morphological boundary detection can then be used to
identify the center location of each pixel object that matched
the square pattern of the grid point arrangement. Noise
pixel objects that deviate from the grid point pattern are
automatically excluded.

The grid points should be equally spaced, but due to
distortion they are not equally spaced in the schlieren
photograph. Hence, a set of numerically generated and
equally spaced grid point locations are used as a reference
for the distortion correction procedure. If a transformation
mapping can be generated to move all the grid points
from their distorted positions to the equally spaced
and undistorted positions, then the distortion for the
whole image can be corrected. To generate the image
transformation matrix that corrects the distortion, each grid
point must be paired with a corresponding grid point in
the undistorted image. The extracted grid points are first
numbered and arranged orderly for pairing. The slightly
angled image makes numbering of points on the same
horizontal line easier, as the angle differentiates the points
on the same line due to their different vertical positions.
Since the supposedly undistorted image is impossible
to obtain optically, it has to be digitally generated. An
algorithm has been developed to create the undistorted grid
point locations that match with the points obtained from
the grid image. Since the angle of the rotation of the grid
plate can be recorded from the experiments, and the spacing
between all the points can be estimated from the distorted
photograph, equally spaced and undistorted grid points can
be generated along the orientation of the rotation and with
the estimated spacing. Figure 2c shows an example of the
original grid points overlaid with the corrected grid points.

After the undistorted grid had been generated, grid
point locations from both the distorted and undistorted
image are used as the input to a function in MATLAB’s
image processing toolbox to generate the mathematical
transformation matrix that can correct distortion in all
experimental images from that same setup. The original
photograph and the outcome of the distortion corrected
photograph are shown in Fig. 3. Though it may seem
to the naked eye that the amount of correction is small,
it nevertheless needs to be done to allow for accurate
measurements of the shock front location.

Edge Detection

After the optical distortion has been corrected, the next step
is to identify shock fronts in all the schlieren photographs
obtained throughout the experiment, and extract locations
of shock front pixels. To isolate the shock fronts from
background noise, morphological operations are applied to
the images.

Morphological Operation

Morphological operations target binary images where only
black (designated as 0) and white (designated as 1) pixels
are present. Morphological operations treat shapes, or
clusters of white pixels, in binary images as objects that
are subsets to its spatial definition. Manipulation of pixel
objects is done through matrix operations to highlight
certain features [4]. With the help of morphological
algorithms within the MATLAB image processing toolbox,
larger pixel objects stand out and small objects due to noise
can be eliminated, making edge detection of shock fronts
possible.

Implementation in experimental images

Before initiating the morphological edge detection process,
illustrated in Fig. 4, which is to be applied to the distortion
corrected schlieren photographs, a background image was

Fig. 3 Distortion corrected after
applying transformation. a
Image before distortion
correction, and b
distortion-corrected image
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Fig. 4 Edge detection workflow
for high light intensity regions of
the shock front (edge detection
for low light intensity regions of
the shock front follows the same
process). (a) Experimental
image after distortion
correction. b Background image
after distortion correction. c
Background subtracted image. d
Binary image after eliminating
pixels below threshold light
intensity. e Cleaned binary
image with only the shock front
after morphological operations

used for noise subtraction. This background image is
usually taken before any of the shock fronts enter the
experimental viewing area. Consistency in background light
intensity is critical for effective noise subtraction, but
consistent backgrounds cannot always be found in the image
sequences. For example, in this study, light interference
from the exploding wires can disturb the initial stages of the
collection of photographs: the intense light from the wire
explosion, for instance, may cause frames captured before
the shock wave enters the viewing area to be filled with
white light. In such cases, a post-generated background can
be pieced together using background regions from different
frames. After an appropriate background image has been
chosen (or created), noise subtraction is performed in the
spatial domain as shown in Fig. 4c. Note that one can also
perform noise subtraction in the frequency domain as some
studies have done [5], but for this current case, subtraction
in the spatial domain is found more effective. After the
initial noise subtraction, the light intensity characteristics
of shock fronts were used. From close inspection of the
shock front photographs obtained from the exploding wire
setup, brighter light is present immediately above the shock
front, and darker light is present immediately below the
shock front. Those two regions of bright and dark light

will be the basis for highlighting the shock fronts. The
average light intensity of the noise subtracted image is
first calculated, and a threshold can be set for what level
of light intensity would be preserved in reference to the
average light intensity obtained. Note that there is only one
threshold used for isolating shock waves. The threshold of
light intensity is ideally set to be just slightly lower than the
intensity of the lighter region of the shock wave, while also
being higher than the average light intensity of the image.
Hence, the threshold used can be considered to be a “high
threshold” relative to the average light intensity of the entire
image. Based on the application, the user must identify the
threshold properly to ensure no important information in
the image is lost. For example, in the case of Fig. 7, the
focus was on the incident shocks and the first reflections that
create a Mach stem. Thus, the light intensity threshold value
was chosen to highlight those features while other features,
such as secondary waves, are not shown. For preserving
the lighter region of the shock fronts, all pixel objects with
lower light intensity than the threshold are eliminated. The
result of the logical operation is a binary image, which
can be subjected to morphological operations. As shown in
Fig. 4d, the shock front clearly stands out, but small regions
of noise are still present in the image. For preserving the
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darker region of the shock fronts, the light intensity is first
inverted using a copy of the original image, and in this
way, the original dark region becomes the light region. The
exact same high threshold value is then applied to the image
to preserve the new lighter region and the binary pixels
produced will represent the darker region of the shock wave.
One can argue that a different threshold can be introduced
for this operation, but we have found that the same threshold
produces reliable results, and therefore, to save calibration
time for the algorithm, just one threshold is used.

With only shock front segments preserved, some
additional morphological operations were applied to fill
holes in broken segments and thicken thin pixel objects for
the ease of boundary detection. Figure 4e demonstrates the
outcome of the morphological operations. The two final
binary images containing the lighter and darker regions of
the shock wave are overlapped to reproduce the full shock
wave. Finally, the morphological boundary detection from
the MATLAB image processing tool box was used to extract
the pixel locations of the shock fronts to complete the
process of edge detection. Note, that while edge detection
based on morphological processes is effective for large
and continuous patterns of bright and dark features of the
shock wave, it has limited ability to detect shock fronts
with complex light intensity features. For example, in the
encircled regions in Fig. 6a and b, edge detection of the
shock front is not effective. This is due to the alternating
light intensity pattern observed in that section of the shock
front as bright and dark regions of the shock front appearing
as woven dashed lines. Since the current morphological
edge detection processes dark and bright features separately
using the original and a reversed image, the shock front,
in the eye of morphological operations, becomes scattered
points with similar sizes to the noise present in both the
original and reversed image. As a result, the shock front is
eliminated. In case of such complex light features of the
shock front, the user may need to manually characterize the
position of the shock front if that shock front is of interest.

Based on the pixel location of the shock wave, the
physical position of the shock front can be calculated
and the uncertainty may be determined. To estimate the
uncertainty of the edge detection algorithms presented
above, the algorithms were applied to five repeated
experiments to obtain shock position data and the results
were first compared with the shock positions measured
manually. The average uncertainty in position from the
algorithm compared to the manual result is calculated to
be 1.4%. Details of the experiments used in the uncertainty
calculation is elaborated in the single expanding cylindrical
shock wave example in “Single expanding cylindrical shock
wave”. The uncertainty value of 1.4% shows the consistency
and precision of the edge detection algorithm, but users also
need to take into account the uncertainty between the real

location of the shock and the location of the shock produced
from post processing of schlieren images. The minimum
uncertainty in the real location of the shock wave lays in
the thickness of the shock. Depending on the quality and
resolution of the schlieren image, the thickness of the shock
wave may vary, and therefore, the user needs to determine
this uncertainty in shock position on a case by case basis.
For example, in the case of the schlieren image presented in
Fig. 4a, the average thickness of the shock can is estimated
to be 5 pixels through visual inspection, and hence, the real
location of the shock has an uncertainty of at most 5 pixels,
which in this case results in 2% of the vertical resolution of
the image.

Shock Recognition

In the study of shock wave reflection, shock wave
segments are often convolved, leaving analysis of shock
interaction more difficult even after the edge detection
has been performed. Individual shock segments still need
to be identified manually, adding work load for post
processing. Therefore, an algorithm that can recognize
different shock front segments when they are entangled
leading to individual shock front tracking was developed
here.

Image Discretization Process

To manage tracking of individual shock fronts with complex
shock geometries, the whole experimental image is, after
edge detection has been performed, discretized into cells
and all the positions where the shock fronts cross the
boundaries of the cells are recorded. To achieve successful
shock recognition, it is critical to select an appropriate
discretization cell size, and the process of cell size selection
is discussed later in this section. Figure 5 shows the

Fig. 5 Discretization of a binary image after edge detection. The
image shows two shock waves that are interacting with each other
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discretization into cells and highlighting of boundary points.
If the shock front objects cross the boundaries of a cell only
twice, that cell is considered to contain a linear segment of
a shock front. This process yields local segments of shock
fronts that can be approximated by a linear function. Note
that only the positions of the linear shock front segments
are preserved for the next step in the algorithm. Nonlinear
segments and intersections of shock fronts within the cell
will yield more than two crossing points with the boundaries
of the cell, and therefore will not be included in the next
step of the algorithm. In the next step, the algorithm applies
linear fits to shock cell segments in a left to right loop.
The leftmost cell segment is first picked as the current cell
and is linearly fitted. The cell segment immediately to the
right of the current cell is defined as a neighboring cell,
and if the shock segment from the neighboring cell can be
closely approximated by the linear fit of the current shock
segment, the neighboring cell segment and the current cell
segment are considered to be on the same shock front,
as shown in Fig. 6. Note that only the current cell is
linearly fitted, the shock segment in the neighboring cell is
only plugged into the linear fit of the current cell to test
the goodness of fit. After one comparison is finished, the
algorithm will move on to make the current neighboring
cell the new current cell in the next step in the loop,
and the cell segment immediately to the right of the new
current cell will become the new neighboring cell. The loop
will continue as long as the algorithm judges the two cell
segments in question to be from the same shock front, and
once the algorithm determines the cell segments to be from
different shock fronts, the loop will break off and move
the shock segments from previous cells in the loop to a
new array representing a recognized shock front. A new
loop will begin after the process to examine the remaining
unsorted shock cell segments until all segments are sorted.
Figure 6 demonstrates two examples of shock separation.
In both Fig. 6a and b, edge detection and discretization
procedures have already been applied. In Fig. 6a and b, the
blue dots represent a current local segment where linear
approximation has been applied; and the red dots in the
image represent a shock segment from a neighboring cell.

From Fig. 6a, it can be seen that the red segment
is relatively close to the linear approximation of the
current local segment, wheres in Fig. 6b, the neighboring
segment clearly deviates from the current local segment.
The algorithm will sort the two segments shown in Fig. 6a
into one shock front, and the two segments shown in Fig. 6b
will be sorted into different shock fronts. Figure 7 shows
the workflow from the schlieren image to the separated
shock fronts. The current version of this shock recognition
algorithm, in essence, recognizes geometric features in the
image that have continuous slopes. Hence, if two different
shock waves happen to form a single continuous feature

Fig. 6 Shock separation algorithm depicted for the two steps of
determining if the shock wave of a neighboring cell is the same or a
different shock wave. a Scenario where two discrete segments would
be sorted and assumed to be the same shock front. b Scenario where
two discrete segments would be sorted and assumed to be two different
shock fronts

with a continuous slope, the algorithm will designate the
two shocks as single shock front. Figure 8a shows shock
recognition results from iterations of different cell sizes.
In this case, the algorithm sorts the incident shock wave
and the reflected shock wave, stretching continuously from
the left edge of the image towards the right edge, to be
on the same shock front. In cases like this, the user may
need to manually distinguish the incident and the reflected
shock. Furthermore, for the case in Fig. 8a specifically,
the misrecognition mentioned above disappears eventually
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Fig. 7 Shock front separation. a Original schlieren image. b Data
obtained after the edge and boundary detection procedures. c Data
obtained after different shock fronts are separated

as the incident and reflected shock depart from a single
continuous feature with the formation of the Mach stem.

Cell size determination

When using the process of shock recognition shown in
Figs. 5–8, it is also necessary to determine the cell size to

Fig. 8 Shock recognition results from using different cell sizes.
a Original schlieren image overlapped with discrete shock fronts
recognized by cell size varying from 16x10 to 22x14 pixel2. b Zoomed
in view of the white dashed rectangle in (a) showing the two incident
and reflected shock fronts as recognized by the algorithm using cell
sizes of 18x11 pixel2. Cell boundaries are shown as white dashed lines

use for image discretization. The cell size is dependent on
the curvature of the shock fronts as well as the resolution of
the schlieren image. For the case shown in Fig. 5, the cell
size is 20x13 pixel2 while the schlieren image resolution is
400x250 pixel2. In general, if large curvatures are present,
smaller cell sizes may be required to produce local linear
segments within the cells. The pixel size of the cell is also
relative to the overall resolution of the schlieren image. For
example, the 20x13 pixel2 cell size is 1/20 of the image
resolution (12.5 is rounded up to 13). However, to determine
the exact size of cells to produce the optimal result, an
iterative procedure is required.

To guide the process of determining an appropriate cell
size, the user first defines a viable range for the cell size. The
lower bound of the cell size must be larger than the average
thickness of the shock front. This is to avoid a single shock
front segment filling a cell. For example, the shock waves
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shown in Fig. 5 on average have a thickness of 3 pixels after
edge detection, and hence, the lower bound of the cell size
is set to 3 pixels. The upper bound of the cell size is limited
by the shortest shock front segment that the user wishes to
recognize. For the shock front segment to be recognized,
it needs to cross at least two cells and leave more than
two crossing points for the second order polynomial fit to
work. Therefore, the upper bound of the shock segment
is half the length of the shortest shock front segment that
the user desires to track. For example, for the shock waves
shown in Fig. 5, the shortest shock wave segment is roughly
100 pixels long, and hence, the upper bound of cell size
for the image is 50 pixels. If the user is planning to apply
the shock recognition algorithm to an image sequence, the
shortest shock front segment should be the shortest segment
that exists in the entire image sequence as sometimes shock
waves tend to change in shape during propagation.

Within the upper and lower bounds of the cell sizes,
iterations of different cell sizes are performed to ideally
achieve a converging result of recognized shock fronts. This
convergence is reflected in the error between the second
order polynomial functions defined in the domain of cells
that contain the shock front segment. If the error is below
5%, in this work, the cell size is deemed sufficient. In
the example shown in Fig. 7, the limit of the cell sizes
is determined to fall between 3 to 50 pixels, and hence,
cell sizes of 50x31, 40x25, 30x19, 25x16 22x14 and 20x13
pixel2 were tested. The aspect ratio of the cells was kept
the same as the image for consistency. From the tests, cell
sizes 50x31, 40x25, 30x19 and 25x16 pixel2 were unable to
recognize the detected linear segments to belong to the same
shock front. This is because the shock segments contained
within the cells can no longer be reasonably fitted with a
linear function. Both cell sizes of 22x14 and 20x13 pixel2,
as shown in Fig. 8a, can successfully recognize the shock
front, and the error between the second order polynomials
obtained from the two cells in the domain of the cells was
2.5%. Finer cell sizes of 18x11, 17x11 and 16x10 pixel2

were also tested and yielded errors of 1.2%, 2.8% and 1.6%
compared to the results from cells with 20x13 pixel2 sizes.
The results of recognized shock fronts are also shown in
Fig. 8. The error, consistently lower than 5%, shows that the
choice of 20x13 pixel2 cell size is sufficient. Note that as
reflected in the fluctuating errors, for smaller cell sizes the
algorithm can successfully recognize different shock fronts,
but the accuracy of the shock location does not necessarily
increase as the cell size decreases. When the cell size is
small, it is more likely to be affected by noise leftover
from the edge detection process that exists near the shock
fronts. As stated previously, the sources of noise include
physical dust on schlieren mirrors and field lenses, which
are difficult to eliminate entirely through an automated
process especially when the noise is close to the shock front

to the extent that they appear to be a part of the shock
front. When the cell size is sufficiently small, the noise can
potentially fill parts of the cell, resulting in misdetection
of multiple crossings within the cell boundaries, which
causes the linear segment to be removed by the algorithm.
This will result in shock fronts having fewer segments, and
subsequently, less accurate positions calculated from the
second order polynomial fits. As the cell size becomes too
small, it also becomes more likely for the cell boundaries
to overlay on regions of noise, further adding to inaccurate
shock front tracking. Moreover, cell sizes that are too small
can increase the chance for its boundaries to potentially
cross intersection points of shock fronts. This leads to small
parts of different shock fronts, referred to as “lost” shock
segment, to be included in a cell, causing misdetection of
a single shock segment when in fact, multiple shock fronts
exist within the cell.

An example is shown in Fig. 8b where shock recognition
results from the cell size of 18x11 pixel2 is performed. The
shared boundary of cell A and cell C slices through the
intersection point of a shock wave, causing a “lost” shock
segment, which results in a small part of the shock front
belonging to the shock in cell B, to be included in cell A.
This should have resulted in three crossings of shock fronts
with the boundaries of cell A, but because the “lost” shock
segment is small, the crossing on cell A’s right boundary by
the “lost” shock segment is close to the crossing on cell A’s
bottom boundary by the main shock segment. Therefore, the
shock recognition algorithm mistakenly considers the two
crossing points to be the same point, resulting in the final
shock segment in cell A to result in a slight tilt. Similar
error also occurs in cell C. To resolve this issue, the user
can choose to change the cell size slightly to move the cell
boundaries out of the intersection points of shock fronts, as
shown in Fig. 8a where none of the results from 17x11 or
20x13 pixel2 cells displays the same type of error.

A flowchart summarizing the algorithms discussed in
“Distortion Correction”-“Shock Recognition” is illustrated
in Fig. 9. This flowchart shows the overall work flow from
reading the experimental images to obtaining separately
tracked shock front positions.

Applications to ShockWave Dynamics
Examples

Next, three illustrative examples are shown to depict the
efficiency and accuracy of the presented algorithm: (1)
tracking of a two-dimensional single expanding shock
wave; (2) tracking of Mach stem development due to the
interaction of two two-dimensional cylindrical expanding
shock waves; and (3) multi-shock interactions with several
rigid structures in two dimensions.
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Fig. 9 Flowchart of the image processing algorithm from distortion
correction to shock recognition

Single expanding cylindrical shock wave

In this example the proposed algorithm has been used
to obtain radius versus time data for a single expanding
cylindrical shock wave. Pixel positions of the detected shock
front were fitted to a circular shape, as shown in Fig. 10a, the
radius of which is recorded as a function of time. While the
tracked shock front positions were constrained by the spatial
resolution of the high-speed camera, the fitted function can
reach sub-pixel precision as long as the edge detection is
determined to be reliable. Four sets of shock waves were
generated using different voltage levels in the capacitors

Fig. 10 Tracking shock wave radius versus time for a single cylindrical
expanding shock wave. aDetected shock front position (red x) with the
superimposed fit of a circular curve (black solid line). b Radius versus
time result obtained from four different sets of shock wave experiments
in which the capacitors of the exploding wire setup were charged to
different voltages. The uncertainty in shock wave radius is 0.25 cm for
all experiments
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that are driving the exploding wire setup. These experiments
were repeated, and the radius as a function of time results
are shown in Fig. 10b. The edge detection of the shock front
positions not only allowed efficient data processing, but also
made sub-pixel precision tracking of the shock wave radius
possible.

Mach Stem Example

In the study of regular to irregular shock reflection
transition, the development and propagation of a Mach
stem have for long been a point of interest to the shock
dynamics community. Here, a rough outline of where the
Mach stem occurred was first manually traced from the
sequence of photographs, and the algorithm is then used
to isolate the Mach stem from other shock fronts. To more
accurately obtain the position of the triple points on each
side of the Mach stem, the shock recognition algorithm was
applied to primary shock fronts as shown in Fig. 11a. Then,

Fig. 11 Estimation of triple point location in irregular shock reflection.
a Schlieren image after edge and shock separation. b Zoomed in view
of polynomial intersection.

as demonstrated in Fig. 11b, each shock front was fitted
with individual second order polynomial functions, and the
intersection of the two polynomial functions was classified
as a triple point. If necessary, the triple points can also
reenter the algorithm to refine the region where the Mach
stem is located.

The vertical and horizontal positions versus time for
the Mach stem propagation is shown in Fig. 12. Two
experiments are plotted for the 13kV setting, and three
experiments are plotted for the 21kV setting.

Complex shock geometries example

Experiments involving the interaction of shock waves and
structures can produce complex shock reflection geometries
that are time consuming to quantify. Here we propose to use

Fig. 12 Propagation of Mach stem in the vertical direction. a Position
of Mach stem, and b velocity of Mach stem. Uncertainty in the vertical
position of Mach stem is 0.20 cm for both the 13kV experiments and
21kV experiments, and uncertainty in the velocity of Mach stem is
7.11m/s and 7.34m/s for the 13kV experiments and 21kV experiments
respectively
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Fig. 13 Tracking of individual
shock front positions in complex
reflection geometries as shock
fronts progress through a set of
obstacles. The algorithm
displays different shock front
segments in different colors, and
the relative position of the shock
front segments are recorded. a
Single blast front approaching a
city scale model. b – d
Individually tracked shock fronts
shown using different colors.

the edge detection and shock wave separation techniques
presented herein to recognize and quantify the positions of
single shock fronts in complex geometries.

Preliminary use of the algorithms in complex geometries
has been applied to shock-structure interaction experiments.
The experiments were conducted to study shock reflections
resulting from a single blast wave impacting a set of
obstacles mimicking city environment. Here, 3D printed
plastic obstacles were used in the experiments. Even though
the shock wave produced during these experiments is weak,
the plastic obstacles may or may not be treated as rigid
obstacles in the following analysis – however, this is not
of concern for this particular study. Simply, the goal of
the experiment has to determine the appropriate materials
of the obstacles (e.g. the acoustic impedance and surface
roughness) and how the obstacles’ interaction with the
shock waves should be modeled. The same background
subtraction and morphological operations as described
earlier were applied to detect the shock fronts. The whole
image was then discretized and shock waves were separated.
The resultant tracking of multiple shock fronts are displayed

in Fig. 13, and shows that the algorithm is successful in
recognizing and tracking separate shocks. More details on
this topic is presented in the study by Dela Cueva et al. [6].

Conclusion

In conclusion, we have developed a set of image processing
algorithms that are capable of:

– automatically correcting image distortion using edge
detection techniques;

– reliably removing background noise and extracting
shock front patterns with morphological operations;

– efficiently tracking the positions of developing shock
fronts with an uncertainty of 1.4% and an error within
the thickness of the shock front while obtaining precise
sub-pixel locations of shock positions and triple points
using interpolation techniques;

– separating and tracking the positions of individual
shock fronts in complex reflection geometries.
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In summary, to determine the optimal cell size for shock
recognition, the user must first examine the input image and
define a rough range for cell size. Then, the user can perform
iterative trials with decreasing cell sizes. When different
shock fronts are successfully recognized and separately
tracked and the error in position produced by different cell
sizes converges, the user can then decide upon the cell
size with relative confidence. Additionally, a small cell
size does not necessarily produce the best result. The user
must inspect recognized shock fronts to ensure no errors,
such as the ones shown in Fig. 8b, are present, and when
necessary, adjust the cell size by small increments until the
error disappears.

Finally, it is also worth noting the impact of image
resolution on the effectiveness of the algorithms presented
in “Distortion Correction”–“Shock Recognition”. Due to
the complex nature of schlieren optics, the resolution of the
image as well as the quality of the shock wave in the image
are determined by multiple factors, including but not limited
to camera sensor resolution, dust on schlieren mirrors and
field lenses, and quality of the schlieren photograph (e.g.
shock thickness, noise etc.). Hence, defining a specific
pixel resolution for the presented algorithms is not very
meaningful as the resolution does not necessarily reflect the
quality of the shock wave in the image. However, for the
purpose of edge detection and shock recognition, as long as
the shock wave can be visually identified in the schlieren
photograph, meaning that the shock wave shows distinctive
and continuous light intensity characteristics compared to
the background, and has a thickness that is larger than
a single pixel, morphological operation should be able to
isolate the shock fronts.

This algorithm has already been applied to various
applications in the study of shock wave reflection ranging
from parameterization of blast propagation to Mach
stem development. The algorithms yield position data in
sub-pixel precision, improving the traditional constraint
imposed by the high-speed camera resolution.

Although some noise still exists after the analysis has
been performed, but at this stage the proposed algorithm

shows promising potential in tracking individual shocks in
complex shock geometries.

For future work, machine learning techniques can
potentially be incorporated to further recognize shock fronts
based on their geometric features, and the development of
an individual shock front can potentially be tracked against
time.
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