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Abstract
In the last years, the wind industry has increased in a large scale. A wind turbine out of service leeds to high costs due
to both maintenance and repair costs and the incapability of producing electricity. A substantial part of the wind turbine
failures are in the drivetrain, mainly in generator and gearbox. Several recent works focuses in the study of benefits of the
integration of condition monitoring with current maintenance techniques, that would drive to the reduction of costs. For
condition monitoring, vibration analysis has been widely accepted as the technique that gives most information about faults
in a rotating machine, thus vibration sensors are often used in wind turbine applications. In this work, data from several
vibration sensors installed in 18 wind turbines in cold climate were analysed using the Wavelet Packets Transform energy.
Signals were acquired for more than four years (from 2011 to 2015), registering failures in gearboxes and generators of the
wind turbines. Data were obtained under varying conditions of load and speed as well as varying weather conditions. Signals
were analysed with the aim of finding parameters that indicate the presence of a fault. This would be useful to predict a
failure with enough time to plan a stop of the wind turbine in the proper moment for similar faults in the future.
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Introduction

The wind energy industry is expanding worldwide in a
rapid way. Nowadays, the trend is to locate larger tur-
bines in remote areas and exposed to severe environmen-
tal conditions. Consequently, most effective solutions of
maintenance are required to solve the new challenges that
appear. Gearboxes and related mechanical components are
designed with the aim of saving weight, therefore the prob-
ability of failure increases. According to [1], the number
of unscheduled stops due to failures in a wind turbine is
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of up to 10 times per year, hence there are inefficient time
and cost of maintenance. Condition monitoring (CM) sys-
tems are highly demanded in this industry and the research
in this area has focused much attention in the last years.
The aim of CM is to use measured data to reach a higher
understanding of the operation of wind turbine generators
(WTG) and to predict deterioration and failure of bearings
and other machine components. The elements that gener-
ate more costs due to unplanned corrective maintenance
and downtime are related to the gearbox, thus the study of
condition monitoring of the gearbox has concentrated more
attention, as in works as [2, 3]. Besides, generator elements
are also a non-negligible source of failures [4].

A review of the different techniques used in CM of WTG
can be consulted in [5], that includes techniques such as
vibration signals, acoustic emission, or ultrasonic testing.
However, it is widely accepted that vibration analysis is
the technique that gives more information about faults in
a rotating machine, so vibration sensors are often used in
wind turbine applications. Despite the majority of the works
that use vibration analysis are focused in the diagnosis of
the bearings and the gearbox, it is highlighted in [5] that
vibration signals have been also used to diagnose blades,
rotors, and the tower, but not for the case of the generator.
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However, the advances in this area are not going fast due
to the lack of real data available. In the last years, data are
being kept for private development. It is highlighted in [6]
that there is a lack of public reliability data.

Condition monitoring of WTGs is a special case where
the operating conditions of speed and load are variable. That
fact makes this application more difficult to analyse. Several
works have analysed the problem of condition monitoring
in non-stationary conditions. A high number of works have
analysed the influence of the operating conditions on the
amplitude components in the spectrum of a vibration signal.
The possibility of rescaling the observed data to a standard
condition is highlighted in [7], in order to make more
reliable the diagnosis condition system. A linear model of
the relation between the amplitude components and the
operating conditions is proposed in [1], according to Eq. 1.

Y = b0 + b1 · S + b2 · L + b3 · F (1)

Where Y represents the vibration amplitude, as a function of
the speed S, load L and fault level F. The terms b1, b2 and b3

represent slopes of speed, load and fault, respectively. The
term b0 is independent. Under known conditions of speed,
load and fault, the three slopes can be easily calculated.

The work [8] proposes a technique that combines vibra-
tion, acoustic, and lubrication oil analysis to address the
problem of non-stationary conditions in a laboratory scale
wind turbine gearbox. A review of the methods to avoid
the effects of the non-stationary conditions is done in [9].

Vibration signals comprise a lot of information, so
processing techniques are required in order to find the
features that indicate the presence of a fault. According
to [10], the 80% of the failures in the gearbox are due to
bearings. A review of the vibration based methods used
in CM for the planetary gearbox is also done in [9].
Some techniques used for gearbox analysis in WTGs using
vibration signals are based on statistical methods, cepstrum
analysis, FFT or Wavelet transforms [5]. Nowadays, other
techniques based in the frequency domain, as the Envelope
Analysis [11], are replacing the classical ones. Nevertheless,
the Envelope Analysis is hardly affected by the noise. Other
popular tool to diagnose bearings in frequency domain
is the Empirical Mode Decomposition (EMD), that is
performed to calculate the Intrinsic Mode Functions [12,
13]. However, the use of frequency domain techniques has
serious limitations since they do not provide information
about the time domain. By this reason, their use is not
recommended to work with non-stationary signals, which
are obtained in this application. Time-frequency analysis
techniques are more suitable for this kind of purpose.
The Hilbert-Huang Transform (HHT) is a time-frequency
analysis technique based on the EMD. The HHT has shown
high reliability, as in the case of [14]. The same way as HHT,
the Wavelet Transform (WT) also provides information both

in time and frequency domain, offering the proper treatment
both for stationary and for non-stationary signals. WT has
been widely applied for fault diagnosis of rotaty machines,
and a review can be consulted in [15]. WT has been applied
to detect bearing faults in WTGs, as in [16]. The work [17]
proposes an adaptive fault detection method that combines
the extraction of the empirical modes with the Wavelet
Transform. Specifically, the energy of the Wavelet Packets
Transform (WPT), that is a variant of the WT, has shown
its effectiveness in previous related works applied to other
mechanical rotating systems [18–21].

In the present work, a methodology to find features for
condition monitoring in WTGs using vibration signals is
proposed. Signals obtained under the same conditions of
load and speed are studied to avoid the problem of working
with non-stationary conditions. Real time vibration signals
obtained from 18 WTGs in operation during more than four
years are analysed. The signals acquired registered failures
both in the gearbox and in the generator, that are the failures
that generate more costs. Thus, this information is really
valuable to find features indicators of fault that can be
useful to predict the failure before it occurs. This would
allow to plan the maintenance tasks for the most convenient
moment avoiding costs. Specifically, the trend of the energy
of the Wavelet Packet Transform (WPT) is studied before
and during the failures studied. Some features found seem
to contain information about the fault occurring, since they
show strong changes when the failure approaches. These
features found can be used for the inverse process of fault
detection and failure prediction.

Data Available

A database of 40 Gb information is obtained from 18
WTGs, corresponding to 4 years of acquisition (2011-
2015). Database registered several faults in drivetrains
during operation. The primary drivetrain components (high
speed shaft (HSS), main bearing (MB), gearbox (1st Pl.
stage) and generator (GENO)) are sensed, registering time
vibration signal information.

The HSS and MB are sensed in the axial direction.
The GENO is sensed in the non-drive side (NDS), and the
gearbox in the first planetary stage. Accelerometers GENO
NDS, HSS, and MB have been mounted on the structural
housing components as close to the bearings as possible.
The sensor located at 1st Pl. Stage was located in the
planetary ring gear.

Each sensor, depending on the mechanical element where
it is installed, is configured with the optimal sampling
rate and length of the signals to obtain. Thus, the sensors
connected to the MB and the Pl. stage have a sampling
rate of 2560 Hz. They are elements connected to the slow
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Table 1 HSS sensor signal parameters

Data Parameters HSS axial ACC

Dates 19/03/2011-15/09/2015

Generator speed range (cpm) 700-1200

Sample rate Fs (kHz) 12.8

Number of lines 8192-16384

Time (s) 0.64-1.28

speed shaft, before the gearbox increases the velocity, so the
sensors monitoring the high speed shaft and the generator
need a higher sampling frequency, that is configured to
12800 Hz. The sensors and signal parameters obtained can
be observed in Tables 1, 2, 3, and 4.

Data are stored in a database in SQL server with a
specific structure. To extract and process data in Matlab,
a specific software is developed. This software connects
to a SQL server that contains the database, and using an
interface it allows the extraction of the signals in Matlab,
selecting them by the sensor and dates. Each signal is
converted to a Matlab structure, where besides the vector
with the time-signal information, each signal contains the
following information:

– Generator speed
– Generator minimum speed
– Generator maximum speed
– Load
– Time signal lines
– Sampling frequency

.
The failures registered in the database can be consulted

in Table 5.
Data from 6 months before the maintenance task for each

failure have been extracted and analysed. This period of
time has been considered enough to see the changes on
the energy of the WPT that the appearing of a fault causes
on the vibration signals, since before this time no changes
are observed in any case. The remaining acquired data
show similar values of energy in all cases and no trend is
observed, so they are discarded for the purpose of diagnosis
of the faults analysed in this work.

Table 2 Generator NDS sensor signal parameters

Data parameters Geno NDS

Dates 19/03/2011-15/09/2015

Generator speed range (cpm) 700-1200

Sample rate Fs (kHz) 12.8

Number of lines 16384

Time (s) 1.28

Table 3 MB sensor signal parameters

Data parameters MB axial

Dates 19/03/2011-15/09/2015

Generator speed range (cpm) 500-1200

Sample rate Fs (kHz) 2.56

Number of lines 16384

Time (s) 6.4

Data are only acquired while the wind turbine is working,
and the acquisition system is programmed to get one signal
each day. Besides, some data are discarded to warrantee
that all data are measured at stationary conditions of load
and speed, as explained further below. Thus, to represent
the trend of energies with respect to time, since the time
between signals is variable, in the X axis the number of
measurement ordered in ascendant order of time before the
maintenance task is represented.

Data Processing

Data were obtained under varying conditions of load and
speed, as well as varying weather conditions. In order to
have a reliable analysis for condition monitoring, since
the signal amplitudes depend on the operating conditions,
two options are considered; the first one is to rescale data
according to [1], and the second one to filter data by equal
conditions of load and speed.

Filtering signals by conditions to perform the analysis
seems to work better due to different causes; first, data
rescaling is based on a linear model that can no be
accurate, and the slopes calculated would depend on the
data selected, introducing large errors. On the other hand,
bearing fault frequencies depend on the speed, however
structural frequencies (that are unknown in most cases) are
independent from the speed. Thus, the certain knowledge
about all frequencies would be required to rescale the
frequency axis. All these processes can introduce errors and
difficulties to find interesting information.

Figure 1 shows typical registers of load in kilowatts
and speed in cycles per minute, versus the number

Table 4 1st planetary stage sensor signal parameters

Data parameters 1st planetary stage

Dates 19/03/2011-15/09/2015

Generator speed range (cpm) 500-1200

Sample rate Fs (kHz) 2.56

Number of lines 16384

Time (s) 6.4
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Table 5 Failures registered during the four years acquisition

Failure Maintenance task

1 Generator bearing replaced DS

2 Generator bearing replaced DS

3 Generator bearing replaced DS and NDS

4 HSS bearing replaced

5 Gearbox replaced (BPFI in bearing 1st planetary stage)

of measurement in ascendant order by date before the
maintenance task.

As can be observed in Fig. 1, the majority of the values
of load are close to 1485 kW in this case. However, they
tend to group to other values depending on the failure. On
the other hand, the speed values always tend to achieve two
different values of around 800 and 1150 cpm.

After a preliminary analysis of the trend of energies of
the WPT using signals at 800 and 1150 cpm separated, it
is concluded that a clearer trend is observed for 800cpm,
so it is considered that signals with speed values of around
800 cpm seem to contain better information about failures.
Therefore, results will show the trend of energies for signals
measured at speeds that falls within the range 785 and
815 cpm for all the cases. For the specific case of the
figure, the signals that were measured with load values
between 1470 and 1500 kW were analysed. These values
have been selected to get a compromise between assuring
stationary conditions as much as possible, and including
enough signals to analyse the trends. A ramp control for

the speed is also set; if the speed variation during the
signal is higher than 4 cpm, the signal is also discarded
in order to warrantee the stationary conditions during each
measurement.

Once data are selected and extracted, the WPT energies
are calculated. This parameter can be calculated with low
computational cost and constitutes a simple parameter easy
to handle and to be automatically classified.

The WPT energy parameter has shown effectiveness
diagnosing rotating machinery in works as [18, 19, 21, 22].
A review of the application of the WPT energy to diagnose
rotating machinery can be consulted in [23].

Wavelet Packet Transform (WPT)

The WPT is selected, among other reasons, due to its
capability to calculate energy using both time and frequency
domain information. Thus, the Wavelet Transform is
specially efficient to carry out local analysis of non
stationary and transient effects that occur when a fault
appears in signals [24].

The same way as the Fourier Transform obtains
correlation coefficients of the signal with a sinusoidal
function, WT obtains correlation between the signal and the
mother wavelet. Coefficients obtained depend on the scale
(a) and on the shift (b) of the mother wavelet. The WT
can be applied in a continuous way (Continuous Wavelet
Transform (CWT)) or in a discrete way (Discrete Wavelet
Transform (DWT)).

The Continuous Wavelet Transform (CWT) allows the
analysis of structures of signals through correlation
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Fig. 1 Evolution of load (a) and speed (b) registered by the sensor in the main bearing, in the six months prior to the failure 1, and ranks of data
selected
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Fig. 2 WPT analysis, procedure
of decomposition through low
pass filters and high pass filters
[19]
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coefficients, instead of using the whole signal. The
mathematic formulation of the CWT is shown in Eq. 2:

T (a, b, ψ) = w(a)

∫ ∞

−∞
S(t)ψ∗( t − b

a
)dt (2)

Where S(t) is a time signal and ψ is the mother wavelet. The
weight function is represented by w(a) and T (a, b, ψ) are
the coefficients of the wavelets as functions of a, b, and ψ .
The product of the conjugate mother wavelet with the signal
is integrated in the whole range of the signal. This operation
is known mathematically as convolution [25].

From the definition of the CWT, it is a usual practise
working with Discrete Wavelet transform (DWT). Latest
developments of the DWT allow the decomposition of
signals by means of recursive filters related to the mother
wavelet [26]. A signal is decomposed dividing the spectrum
into separate halves with a low pass filter and a high pass
filter. The Wavelet Packet Transform (WPT) is an extension
of the DWT. The WPT consists on the application of the
DWT in a recursive way [24]. The scheme of decomposition
in the WPT is shown in Fig. 2.

Where W(k, j) represents the coefficients of the signal
in each packet. The decomposition level is represented
by k and j is the position of the packet within the
decomposition level. Then, each correlation vector W(k, j)

has the structure of Eq. 3:

W(k, j) = {w1(k, j), ..., wN(k, j)} = {wi(k, j)} (3)

Where i is the position of the coefficient within its packet.

WPT Energy Extraction

When working with WPT, the same resolution is obtained
for each packet within the same decomposition level. The
decomposition level selection is a critical decision since it
determines frequency resolution of each packet. Using a
decomposition level k, the signal is divided into a number
of packets 2k that are able to reconstruct the signal until
the signal frequency resolution Fr (half of the sampling
frequency, Fs , according to the Nyquist theorem). The
frequency resolution fr of each packet is given by Eq. 4
[18].

fr = Fr

2k
= Fs

2 · 2k
(4)

Since two different sampling frequencies are used depend-
ing on the location of the sensor, two different values of
decomposition level are selected. The decomposition levels
are selected in order to have a similar frequency resolution
for the packets for all the sensors considered. In this case,
the decomposition levels selected are k = 3 (8 packets) for
the case of the sensors in the MB and 1. Pl. stage with a
sampling frequency of 2.56 kHz, and k = 5 (32 packets) for
the sensors in the HSS and Generator, that use a sampling
frequency of 12.8 kHz. With these values, the frequency res-
olution obtained for each packet in all cases is around 200
Hz, that is an optimal value to minimize the computational
cost and the number of packets to analyse. Table 6 shows
the frequency parameters for each sensor depending on the
sampling frequency Fs and the decomposition level selected
k.

Table 6 Decomposition level
and frequency parameters Decomposition level k 5 3

Number of packets 2k 32 8

Measurement points HSS and Geno NDS MB and 1.Pl. stage

Sampling frequency Fs (kHz) 12.8 2.56

Signal frequency resolution Fr (kHz) 6.4 1.28

Frequency resolution of each packet fr (Hz) 200 160
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Fig. 3 WPT analysis, node
names and frequency bands after
reordering for a sampling
frequency of 2.56 kHz
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The energy of the WPT packets can be obtained as the
sum of all the squares of the coefficients of each packet,
according to Eq. 5 [24].

Ek,j =
∑

i

{wi(k, j)}2 (5)

The WPT processing as shown in Fig. 2 Results in a order
of packets that does not correspond to the natural order
of frequencies. In this work, only the last level packets
are considered. For showing the results, the packets have
been ordered according to natural order of frequencies,
so each packet corresponds to the position of the packet
within the decomposition level after reordering according
to the natural frequency order. Then, after reordering, the
nomenclature of nodes and the frequency bands related for
the decomposition level k = 3 and a sampling frequency of
2.56 kHz are shown in Fig. 3. The energies are represented
until the signal frequency resolution Fr for each case.

Thus, the part of the signal energy contained in each
frequency band is obtained when calculating the energy of
the WPT. Figure 4 shows an example of the energy of the
packets obtained using WPT at decomposition level 3 (23

packets) for a signal coming from a sensor located in MB.

Results

The WPT energy is calculated for the available signals 6
months prior to the maintenance task for all the failures.
The aim is to detect trends in energy when the fault appears,
useful to detect it and predict the failure. The evolution with
time of the energy of the WPT that seem to have relevant
information about the faults are shown. Since the time
between signals is not constant, the number of measurement
is represented in the X axis in all cases.

Results are shown for signals measured under approx-
imately the same conditions of load and speed. Data are

filtered to assure stationary conditions, and only results
at 800 cpm are shown, since they seem to contain better
information about the faults analysed.

Theoretical fault frequencies depend on the specific
location of the fault, that can be the inner race, the outer
race, the rolling element or the cage, finding the ball
pass frequency inner (BPFI), the ball pass frequency outer
(BPFO), the ball spin frequency (BSP) and the fundamental
train frequency (FTF), respectively. Theoretical fault
frequencies also depend on the bearing geometry, and on
the rotation speed [27, 28]. Since the specific location of the
faults are unknown, all the theoretical fault frequencies are
computed for the speed value of 800 cpm. The purpose is to
see if the packets that contain information about the failures
match these frequencies.

The results are separated in generator failures (failures 1,
2 and 3) and gearbox failures (failures 4 and 5).
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Fig. 4 Energy V 2 calculated using WPT at decomposition level 3 for
a signal coming from a the main bearing
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Table 7 Theoretical fault frequencies for bearings in DS and NDS of
the generator at 800 cpm

Generator NDS/DS1 (Hz)
BPFI 167.2
BPFO 136.1
BSF 63.75
FTF 5.78
Generator DS2 (Hz)
BPFI 71.4
BPFO 47.25
BSF 30.94
FTF 5.15

Generator Failures

According to Table 5, there are three generator failures,
numbers 1, 2 and 3. The failures 1 and 2 ended by replacing

the bearing in the generator DS. On the other hand, the
failure number 3 was solved replacing two bearings, both
in DS and NDS. Theoretical fault frequencies both for NDS
and DS bearings at 800 cpm, are shown in Table 7.

As the frequency band covered by each packet for the
sensor located in the generator NDS is of 200 Hz, all
the theoretical fault frequencies are contained in the first
packet. Figure 5 shows the evolution in time of the energy
of the first packet, containing all the fault frequencies. As
can be observed, attending to the packet number 1, only
in the case of failure number 2 a change of energy could
be detected before the failure, indicating the presence of a
fault.

Analysing the WPT energy trends of the rest of the 31
packets obtained for the signals obtained with the sensor
Geno NDS for failures 1, 2 and 3, stationary evolutions
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Fig. 5 Evolution of energy V 2 of the first packet with time for the signals obtained using the sensor located in the Geno NDS prior to a failure 1
b failure 2 and c failure 3
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are observed in terms of mean and standard deviation in
almost all the packets, finding no evidences of the fault.
However, in packet number 5 (800-1000 Hz) an upward
energy trend is observed for failures 2 and 3. Figure 6
shows the evolution in time of the energy of the packet
number 5 for all the generator failures. The energy prior
to failures 2 and 3 shows strong increments, specially in
the failure number 3 where both bearings were replaced.
Thus, this packet contains valuable information about the
fault in the bearing. In this case, failures number 2 and 3
could have been predicted using the changes in energy in
packet number 5. Packet number 5 is related to a frequency
band that contains a structural frequency, where the bearing

defects are modulated. However, for the case of failure 1,
a stationary evolution of the energy is observed without
any changes of energy indicating the presence of a fault,
probably due to the lack of a sensor in the DS of the
generator (where the faulty bearing was located).

Gearbox Failures

Two gearbox failures are analysed, numbers 4 and 5.
In the case of failure number 4, one of the HSS bearings

was replaced. The theoretical fault frequencies at 800
cpm of the two bearings in the HSS can be consulted in
Table 8.
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Fig. 6 Evolution of energy V 2 of the fifth packet with time for the signals obtained using the sensor located in the Geno NDS prior to a failure 1
b failure 2 and c failure 3
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Table 8 Fault frequencies for bearings located in the HSS at 800 cpm

HSS GS1 (Hz)
BPFI 127
BPFO 96.7
BSF 40.8
FTF 5.625
HSS GS2 (Hz)
BPFI 143
BPFO 107.6
BSF 45.8
FTF 5.625

Again, all the theoretical fault frequencies are contained
in packet 1, but the energies at this packet show a stationary

behavior in terms of mean and standard deviation. Thus,
the energies at this packet can not be used to predict the
failure. Figure 7 shows the evolution in time of the energy of
some packets that seem to have relevant information about
the fault, since they show a significant energy increasing
when the failure approaches. In the rest of the cases,
stationary energy trends are observed. The changes in
energy observed in the packets selected may be used to
predict the failure. The fault in this case causes an increasing
in the vibration amplitude at the high frequencies, probably
due to the oscillations that appear in structural frequencies
when the impacts due to bearing faults take place. All the
packets above the number 9 (1600-1800 Hz) show this
behavior.
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Fig. 7 Evolution of energies V 2 with time for signals obtained from the sensor located in HSS prior to failure 4 for a packet 9, b packet 12, c
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In the case of failure number 5, the bearing located in the
first planetary stage bearing was replaced. In this case, it is
known that the damage was in the inner race. Then, the fault
frequency 5 Hz (contained in packet 1).

Fig. 9 Evolution of energies V 2

with time for signals obtained
from the sensor located in the
main bearing prior to failure 5
for a packet 1, b packet 2, c
packet 3 and d packet 8
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Figure 8 shows the evolution in time of the energy of
the first packet using the signals obtained with the sensor
located in the first planetary stage. A slight positive trend is
observed, however it does not appear to be enough to predict
the failure with reliability.

However, sometimes a fault in a certain element
can be observed from other parts of the machine. The
malfunction can cause an increasing in the vibration level
in certain frequency bands. Using signals obtained from
the accelerometers located in the MB and in the GENO
NDS, important changes in energy are observed for the
case of failure 5. Figures 9 and 10 show the evolution
in time of the energy of some packets that seem to have
relevant information about the fault occurring in the first
planetary stage bearing, using signals from the sensors in
MB and in GENO NDS respectively. The packets that seem
to have relevant information are related to low frequencies
(mainly between 0-480 Hz) in the case of the MB sensor.
In the case of the GENO NDS signals, the information
about the fault is contained in high frequencies related
to a structural frequency around 4300 Hz in the case of
the generator sensor. In the rest of the cases, no relevant
information about the fault is observed in the energy
trends.
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Fig. 10 Evolution of energies V 2 with time for signals obtained from the sensor located in generator prior to failure 5 for a packet 19, b packet
21, c packet 22 and d packet 23

Conclusions

A methodology to find features for condition monitoring
in WTGs has been proposed. The methodology has been
applied to analyse real data coming from a wind farm.
Data available are vibration signals corresponding to 4 years
of acquisition that registered 5 faults in main components
of the drivetrain; the generator and the gearbox. Data
corresponding to 6 months before of all maintenance tasks
are analysed.

Data have been analysed using the WPT energy looking
for parameters that experiment changes with time when
a fault appears. In two of the three failures registered in
the generator, this behavior is found in certain packets.

This behavior is not observed in failure 1, surely due to
the lack of a sensor in the DS of the generator (where
the faulty bearing was located). The acquisition of time-
domain signals in a sensor located in the DS of the generator
would improve the reliability detecting generator faults.
Regarding the gearbox faults, some of them can cause
impacts that can be seen at specific frequencies, and some
of them malfunction in the machine that can be observed in
the increasing of vibration level in wide frequency bands.
Specifically, the faults in the HSS are detected in a wide
frequency band of the spectrum, where the vibration level
increases in a strong way. The failure occurred in the
first planetary stage bearing can also be detected using the
changes in trend that can be observed from the sensors
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located in the MB and in the NDS of the generator, in low
and high frequency bands respectively.

The results of this preliminary study are promising,
however the reliability of the results need to be statistically
verified with the register of more failures of the same
type, that are not easily obtained. A further analysis of the
frequencies should also be performed to try to predict the
frequencies where the fault is going to appear, but this study
could not be done due to confidentiality reasons. Besides,
Intelligent Classification Systems can be implemented, such
as Artificial Neural Networks, that have been successfully
applied in the bibliography after acquiring the indicators of
fault from the vibration signals [18, 22, 29].
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22. Gómez MJ, Castejón C, Garcı́a-Prada JC (2016) Automatic
condition monitoring system for crack detection in rotating
machinery. Reliab Eng Syst Saf 152:239–247
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