
Investigation on Vibration Response of Aluminum Foam Beams
Using Speckle Interferometry

Y. H. Ma1 & N. Tao1 & M. L. Dai1 & F. J. Yang1 & X. Y. He1

Received: 12 August 2017 /Accepted: 31 October 2017 /Published online: 9 November 2017
# The Society for Experimental Mechanics, Inc 2017

Abstract This paper firstly presents a brief review on the
representations of speckle fringe pattern in vibration measure-
ment using time-averaged electronic speckle pattern interfer-
ence (ESPI) method. Based on laser phase noise, a new rep-
resentation of speckle fringe intensity generated by real-time
subtraction ESPI method for vibrating measurement is then
proposed. In the experimental performance, the real-time sub-
traction ESPI method is employed to inspect the vibrating
response of a closed-cell aluminum foam cantilever beam. In
contract with the results of the finite elemental method simu-
lation, the vibration mode shapes obtained by the ESPI meth-
od are well agreed with numerical prediction. The optical
vibration analysis is also carried out to determine the effective
Young’s modulus of aluminum foam, and the results verify the
validation of the ESPI method for investigation on mechanical
properties of metal foam materials.
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Introduction

Due to its excellent stiffness-to-weight and strength-to-weight
ratios, metallic foams with a cellular structure are used in a
wide range of applications, such as structural sandwich panels,

energy absorption devices and acoustical damping panels [1].
Among of metallic foams, aluminum foams have much low
density and are attractive materials for constructional purpose
used as the cores of sandwich panels, shells, and tubes. To
better understand its mechanical behaviors, a large amount
of research had been conducted on aluminum closed-cell or
open-cell foams experimentally by means of optical tech-
niques. For example, Bastawros et al. [2] investigated the
evolution of plastic deformation of aluminum alloy upon axial
compression through a digital image correlation procedure. In
the work presented in [3, 4], X-ray micro-tomography was
employed to collect three-dimensional images of aluminum
closed-cell foam in compressive deformation experiment and
to characterize the internal structure in three dimensions.
Regarding to dynamic experiment, several researchers
employed digital image correlation (DIC) together with
high-speed photography to study strain-rate effects of the alu-
minum foam in the Split-Hopkinson Pressure Bar test [5, 6].
Other mechanical data is either needed for the evaluation of
specific applications or more generally to build databases
which are needed for computer aided modelling of cellular
materials. For example, Young’s modulus is an essential pa-
rameter for modelling of aluminum foam in Finite Element
Method (FEM). The challenges for aluminum Foam and its
sandwich structure used in aerospace or automotive environ-
ment include the long exposure time to flutter. Due to its
cellular structure and inhomogeneous with an unknown mass
distribution, it is difficult to obtain the effective (average)
Young’s modulus and resonant mode shapes by finite element
method. Hence it is very important to call for an effective and
faster investigation method for evaluating dynamic behavior
without damage.

As we know, the vibration analysis is one of the simply
methods to determine Young’s modulus. Optical techniques
like holography and laser Doppler vibrometry (LDV) are well
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suited for measuring vibrations. Time-averaged interferomet-
ric holography is a non-destructive and full-field method for
vibration analysis with a sensitivity of vibration amplitude of
0.1 μm. It is a popular technique for inspection of defects in
bonded structures, turbine blades, etc. [7, 8]. LDV can also
characterize the dynamic response of an entire surface, how-
ever, it needs 2-D fast-scan mirrors and it is time-consuming.
With the advent of speckle interferometry, time-averaged ho-
lographic interferometry was taken over by electronic speckle
pattern interferometry (ESPI), also called TV holography [9].
When time-averaged ESPI method is applied to vibration
analysis, because of DC signal component in the interference
terms, the fringe visibility is very poor. Therefore, Creath and
Slettermoen [10] proposed digital subtraction method for DC
removal and fringes’ visibility enhancement. In the subtrac-
tion method, one speckle pattern is first recorded as the refer-
ence image before vibration and continuously subtracted from
the incoming speckle pattern after vibration. To increase the
visibility of the fringe pattern and reduce environmental noise,
Wang et al. [11] introduced an amplitude-fluctuation ESPI
method (AF-ESPI) for measuring resonant vibration. In AF-
ESPI method, two speckle patterns corresponding to the ob-
ject in vibrating state are captured and the fringe pattern is
generated by digital subtraction and can be observed in quasi
real time. As presented in [11], the intensity of fringe pattern
from AF-ESPI method is a first-order Bessel function. On the
other hand, Ma and Huang [12] used a zero-order Bessel
function to describe intensity of fringe pattern reproduced by
AF-ESPI method. One may mind that there is a little discrep-
ancy between these two functions representing the contour of
vibration amplitude reconstructed in AF-ESPI technique.

In this paper, the terminology of laser phase noise is used to
explain the fringe pattern reproduced in so-call AF-ESPI
method. Subsequently, ESPI and real-time subtraction with
self-refreshed image method is employed for mode shape de-
termination of closed-cell aluminum foam cantilever beam
under out-of-plane and in-plane vibration, respectively.
Based on the model of Euler-Bernoulli beam, Young’s mod-
ulus of the aluminum foam beam is obtained using vibration
analysis accordingly.

Theory

The schematic of out-of-plane and in-plane vibrating study
using ESPI method is shown in Fig. 1(a) and (b), respectively.
The surface of vibrating object, illuminated by laser light from
different directions, is recorded by a CCD camera as a speckle
interference pattern. Vibrating surfaces may be studied using
either time-averaged or real time digital subtraction speckle
interferometry. The intensity of speckle pattern formed by
interference between object and reference light waves de-
scribes as follows. For the simplicity of illustration, we only

introduce the theory of ESPI for out-of-pane vibration mea-
surement as presented in Fig. 1(a).

Time-Averaged ESPI

As shown in Fig. 1(a), the laser beamwas diverged by a beam-
splitter as two beams as reference and object beams for illu-
minating the reference object and the vibrating object, respec-
tively. If the vibrating object at rest, the interference pattern is
formed by the addition of wave-fronts from the surface of the
reference object and from the surface of the vibration object at
rest. The intensity recorded by CCD camera is given by

I x; yð Þ ¼ Io þ I r þ 2
ffiffiffiffiffiffiffiffi
IoI r

p
cos ϕ x; yð Þ½ � ð1Þ

where Io is the object beam intensity, Ir is the reference beam
intensity, ϕ(x, y) is the phase difference between object and
reference beams and is time-independent [10].

Assuming the object is excited with sinusoidal vibration at
a circular frequency ω, the vibrating object presents a contin-
uum of surface deformations. A unique interferometric pattern
is associated with each state of the surface for any particular
point in time during the vibrating cycle. Hence, the image of
the vibrating object observed is visual time average of this
continuum set of interference patterns. Because the refresh
time of CCD sensor is usually multiple vibration periods, the
image obtained by CCD camera shown in Fig. 1 may be
thought of as a continuum set of exposures. The end result is
represented as

I x; y; tð Þ ¼ 1

τ
∫τ0 Io þ I r þ 2

ffiffiffiffiffiffiffiffi
IoI r

p
cos ϕ x; yð Þ þ φ x; y; tð Þð Þ

h i
dt

ð2Þ

Where τ is the CCD refreshing time, φ(x, y, t) is the phase
related to out-of-plane displacement of the specimen at point
(x, y). From the optical setup shown in Fig. 1(a), the phaseφ(x,
y, t) for normal illumination is given as

φ x; y; tð Þ ¼ 4πA x; yð Þcos ωtð Þ
λ

ð3Þ

Here, A(x, y) is the amplitude of vibration and λ is wave-
length of laser light. In time-averaged ESPI method, CCD
sensor is exposed for a period of time τ much greater than
the period of vibration, the intensity of speckle pattern can
be reproduced as [13]

I x; y; tð Þ ¼ Io þ I r þ 2
ffiffiffiffiffiffiffiffi
IoI r

p
J 0

4πA x; yð Þ
λ

� �
cosϕ x; yð Þ ð4Þ

where J0 is a zero-order Bessel function of the first kind as
illustrated in Fig. 2A. It can be seen from (equation (4)) and
Fig. 2A that the result from time-average ESPI method is a
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speckle fringe pattern related to the surface vibration, in which
the fringe lines represent contours of constant vibration am-
plitude. The nodes of the vibrating object (for regions at rest)
yield the maximum possible value for zero-order Bessel func-
tion, and therefore appear brighter than any other feature in the
speckle pattern, while regions in motion (antinodes) will ap-
pear dark. In time-averaged ESPI method, due to DC signal
component, the fringe visibility is very poor. Hence, Creath
and Slettermoen [10] proposed digital subtraction method for
DC removal and fringes’ visibility enhancement.

Subtraction Method

In the traditionally time-averaged ESPI method for vibration
analysis, a single frame of the speckle pattern is recorded. In
this case, in order to improve visibility of the fringe pattern,
the Ir and Io terms in (equation (4)) will be cancelled by DC
filtering, and the fringe pattern is rectified, and then squared.

Since Ir and Io are time independent, it can be assumed that
they will not change between the two recorded speckle pat-
terns. They can be cancelled by continuously subtracting a
reference frame from the time-averaged data frames of the
vibrating object. The subtraction ESPI method generally em-
ploys the frame captured the vibrating object at rest as the
reference and subtracts from incoming frames of the vibrating
object. It yields the fringe pattern expression for out-of-plane
vibration as

I x; yð Þ ¼ 2
ffiffiffiffiffiffiffiffi
IoI r

p
jcosϕ x; yð Þ J 0

4πA x; yð Þ
λ

� �
−1

� �
j ð5Þ

If the object is vibrating sinusoidally, the intensity of speck-
le fringe pattern by subtraction method is proportional to a
function of 1-J0(m) as shown in Fig. 2B. Thus vibration nodes
will appear to be dark, and subsequent fringe orders will have
a minimum greater than 0 and modulate about a value of 1.

Real-Time Subtraction with Self-Refreshed Frame
Method

In the time-averaged and subtraction methods, the dynamic
range of the ESPI does not reach that of holographic films
so that only about 5–10 fringes can be seen, depending on
the gamma correction, level of digitization and noise perfor-
mance of the system. To produce good fringe contrast, the
slowly varying intensity must be removed by high-pass filter-
ing. This will significantly enhance the fringe contrast.
However, there is residual noise owing to the self-
interference of both the object and the reference beams with
themselves that is left after filtering.

In order to enhance the contrast of the speckle fringe pat-
tern and reduce the environmental noise, Wang et al. [11]
proposed an amplitude-fluctuation ESPI (AF-ESPI) method
for vibration measurement. In the AF-ESPI method, the refer-
ence frame is recorded in a vibrating state and then repeatedly
subtracted from other time-averaged speckle patterns of the
vibrating object. In the viewpoint of AF-ESPI method, owing
to the environmental or electronic noises of the vibration sys-
tem, the vibration amplitude would be varied slightly during
each cycle even for a periodic vibrating motion. According to
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Fig. 2 Curves of Bessel
functions. A, J0(m), B, 1-J0(m),
and C, J1(m)

Fig. 1 Schematic of optical setup
for (a) out-of-plane; and (b) in-
plane vibrating measurement
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literature [11], the brightness distribution B(x, y) of AF-ESPI
method is expressed as

B x; yð Þ∝2
ffiffiffiffiffiffiffiffi
IoI r

p
jJ 1

� 4πA x; yð Þ
λ

� �
cosϕ x; yð Þj ð6Þ

where J1 is a first-order Bessel function of the first kind as
illustrated in Fig. 2C. Based on (equation (6)), nodal area of
vibrating surface will appear dark. However, experimental
outcomes shown in [11] is in conflict with the prediction.
Therefore, Ma and Huang [12] carried out a modification of
the expression for AF-ESPI method as

B x; yð Þ ¼
ffiffiffiffiffiffiffiffi
IoI r

p
2

jcosϕ x; yð Þ 4πΔA
λ

� �2

J 0
� 4πA x; yð Þ

λ

� �
j ð7Þ

where ΔA stands for the drift of amplitude in out-of-plane
vibration. The function of fringe intensity is modulated by a
zero-order Bessel function. However, the amplitude of nodal
regions is null and ΔA should be equal to zero too. It will
affect the brightness of the nodal area. Hence, this analysis
still failed to agree with the experimental results.

As we know that the output of well-stabilized laser is af-
fected in two ways owing to quantum noise. One is the am-
plitude of the laser output is caused to fluctuate about its sta-
bilized value, and another is the phase of laser output to
change with time in a random fashion. This random phase
fluctuation determines the theoretical minimum linewidth of
well-stabilized laser. In two-beam interferometers, such as
Michelson interferometers, coherent interference is the basic
mechanism of the nonlinear conversion process of phase to
intensity modulation. Due to the laser phase noise, the inter-
ferometric phase changes randomly with time. Consequently,
the intensity exhibits some random fluctuations.

In practice, as shown in Fig. 1, it is difficult to ensure the
length of the two arms to balance perfectly. According to the
analysis of Armstrong [14] and Petermann et al. [15], when
the delay between the two arms of the interferometer is far less
than linewidth of laser source, the influence of laser intensity
noise can be neglected. Phase noise of laser is dominant and it
is the time-varying random phase of the light [16].

Owing to laser phase noise, the phase ϕ(x, y) shown in
(equations (1), (2) and (4)) is not time-independent. It will
slightly fluctuate with time. For the sake of simplicity, the
intensity of the reference frame from time-averaged method
is still represented by (equation (4)), and those of the incoming
frames of the vibrating object is given by

G x; y; tð Þ ¼ Io þ I r þ 2
ffiffiffiffiffiffiffiffi
IoI r

p
J 0

4πA x; yð Þ
λ

� �
cos ϕ x; yð Þ þ δ tð Þ½ �

ð8Þ

Where δ(t) stands for laser phase noise, it is small in
amount and time-varying randomly. Hereby, it will yield the

fringe pattern expression for out-of-plane vibration by sub-
traction (equations (8)) from (equation (4)),

I x; yð Þ ¼ jG x; y; tð Þð Þ−I x; y; tð Þj
¼ 4

ffiffiffiffiffiffiffiffi
IoI r

p
jsin

h�
ϕ x; yð Þ þ δ tð Þ

2

i
sin

δ tð Þ
2

j⋅jJ 0 4πA x; yð Þ
λ

� �
j

ð9Þ

Here, laser phase noise in the reference represented as
(equation (4)) is set to zero for simplification. Hence, the
speckle fringe pattern represents the contour of vibration
amplitude related through the absolute of the Bessel func-
tion of zero order. The nodes of the vibrating object yield
the maximum possible value for the absolute zero-order
Bessel function, and therefore appear brighter than any
other feature in the speckle pattern. The dark fringes, at
which the intensity drops to zero, correspond to the zeros
of the function |J0(m)|.

Young’s Modulus Determination by Vibration
Analysis

Measurements of aluminum foam properties are difficult
when compared to pure aluminum. One method for finding

Fig. 3 A cantilever beam under transverse vibration

Fig. 4 Closed-cell aluminum foam cantilever beam (a) top, (b) bottom,
and (c) side views respectively
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the modulus of elasticity of metal foam is from frequency
analysis of a cantilever beam. If the cantilever beam studied
is long and thin, the Euler-Bernoulli theory can be used to
describe its vibrating response [17]. For a long slender canti-
lever beam with a uniform symmetric cross-section, when it
vibrates transversely as illustrated in Fig. 3, the natural fre-
quencies of the vibrating beam are computed from the Euler-
Bernoulli theory as

ωn ¼ β2
n

l2

ffiffiffiffiffiffi
EI
ρA

s
n ¼ 1; 2; 3;⋯ð Þ ð10Þ

Where β1 = 1.875, β2 = 4.694, β3 = 7.855, β4 = 10.996,
et al. l is the beam length, E is the Young’s modulus of the
material, I is the moment of inertia of the beam cross section
about the y axis (I = bt3/12, b the width and t the thickness
of the beam), ρ is the mass density and A is the cross-
sectional area of the beam. The natural frequencies of the
vibrating beam may be measured experimentally, thus the
Young’s modulus of the material can be determined based
on (equation (10)).

Experimental and Numerical Analog Comparison

Specimen Preparation

The optical system for vibration measurement is illuminated
in Fig. 1. As shown in Fig. 4, the tested specimen used in this
paper is a closed-cell aluminum foam cantilever beam with a
porosity of 87.6% and a size of 180×40×20mm3. In order to
keep an ideal clamped boundary without damaging the cellu-
lar structure during vibration, two pure aluminum plates with a
size of 30×40×1 mm3 are attached to the top and bottom faces
at one end of the beam using expoy. When the specimen is
clamped as a cantilever beam, the size of its free part is
150×40×20 mm3. That is to say, the beam used in this study,
is l = 150 mm long, b = 40 mm wide, and t = 20 mm thick.
Generally speaking, if the length l is much larger than the
thickness t, for example the ratio of them is larger than 5, the
beam can be assumed as very slender. This assumption leads
to a good approximation by using the Euler-Bernoulli theory.

As illustrated in Fig. 3, when the beam bends along x-di-
rection in the plane x-z plane, it will deflect into a curve. The
deflection deformation can be measured by using the optical

1st 2nd 3rd 4th 5th 6th 7th

Fig. 6 First 7 order out-of-plane
vibration mode shapes obtained
by the FEM simulation

Fig. 5 The experimental systems
for (a) out-of-plane; and (b) in-
plane vibrating measurement,
respectively
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setup shown in Fig. 1(a). If the beam vibrates along x-direction
or y-direction in x-y plane, the deformation is in the form of in-
plane displacement, it can be determined using the optical
setup shown in Fig. 1(b). In this case, the laser beam passes
through the beam splitter and is divided into two parts, this
two beams of light are expanded and symmetrically illuminat-
ed on the surface of the object with irradiation angle θ, then
two beams of light produced by diffuse reflection interference
on the target surface of CCD camera. The phase φ(x, y, t)
appeared in (equation (2)) is given by

φ x; y; tð Þ ¼ 4πA x; yð Þcos ωtð Þsinθ
λ

ð11Þ

In this study, the harmonic out-of-plane displacement gen-
erated by a small PZT actuator attached to the bottom face of
the beam as shown in Fig. 4(b). The in-plane deformation is
generated by another PZTactuator attached to one side face of
the beam as shown in Fig. 4(c). Thanks to the repetition of the
PZT excitation, harmonic wave-field is formed in the beam.
The out-of-plane and in-plane vibration modes of the top sur-
face of the tested beam can be obtained by the ESPI experi-
mental systems as illustrated in Fig. 5(a) and (b), respectively.

Numerical Analogy

Because of its complex cellular structures, it is difficult to
establish closed-cell aluminum foam beam’s model and per-
form vibration analysis by the finite element method (FEM).

Hence, as an analogy for a certain degree, the FEM is
employed to yield the first 7 orders out-of-plane vibration
mode shapes and the first 4 orders in-plane vibration mode
shapes of one pure aluminum beam with the same size as the
tested aluminum foam specimen. The physical parameters of
the finite element model of the pure aluminum cantilever
beam are Young’s Modulus E = 70Gpa, Poisson’s ratio
ν = 0.33, mass density ρ = 2700 kg/m3.

All the numerical results of resonant mode shapes are cal-
culated by the commercial code ANSYS package in which
solid element 186 is selected. Fig. 6 shows the first 7 order
out-of-plane resonant mode shapes of the pure aluminum can-
tilever beam obtained by the FE method. The first 4 order in-
plane vibration mode shapes results of the FEM simulation
analysis present in Fig. 7.

Experimental Results and Analysis

(1). Out-of-plane vibration measurement

The aluminum foam beam is clamped at the left end for a
length of 30 mm and is excited through forced vibration at the
bottom using a PZT attached to the beam with adhesive as
shown in Fig. 4(b). Tests for deflection vibrating were con-
ducted using a MSL-FN-671 nm laser and with a 1280×1024
pixel monochrome CCD camera manufactured by IDS Inc.
The reference image of the vibrating beam was acquired and
real-time subtracted incoming frames, and yielded speckle
fringe pattern directly shown on the PC screen.

Fig. 8 Out-of-plane vibrating
responses at frequencies (a)
346 Hz, (b) 2062Hz, (c) 2122Hz,
(d) 5289 Hz, (e) 6280 Hz, (f)
9321 Hz and (g) 10,728 Hz

x-1st x-2nd x-3rd x-4th y-1st y-2nd y-3rd y-4th

Fig. 7 First 4 order in-plane
mode shapes of aluminum beam
vibrating components in x- and y-
directions result from the FEM
analysis, respectively
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Figure 8 shows the specimen’s first seven modes of vibra-
tion obtained by the ESPI method. The speckle fringe pattern
shown in Fig. 8(a) represents the first flap, the beam oscillates
back and forth of its free end relative to the root. Figure 8(b),
(d) and (f) are second, third and fourth flap, respectively. The
first torsion, where each corner of the beam tip oscillates in
opposite directions, twisting the beam along its central axis, is
shown in Fig. 8(c). Comparing with the mode shapes shown
Fig. 6, it can be seen that, except for the second flap, there is
no significant demarcation between the fringe patterns in the
case of experimental and FEM results. It is obvious that the
fringe contrast obtained by real-time subtraction with self-
refreshed frame method improves greatly. For example, the
total number of fringes can reach about 45 presenting in
Fig. 8(d). Figure 9 provides a quantitative comparison of
vibration amplitude obtained by experimental measurement

and theoretical prediction, respectively. According to (equa-
tion (9)), the brightest fringes are the nodes of the vibrating
object and the dark fringes, at which the intensity drops to
zero, correspond to the zeros of the function |J0(m)|. The digit
indicating dark fringes order is labelled on the image of the
second flap as shown in Fig. 9(a). Base on the theoretical
prediction, numerical simulation and experimental measure-
ment, the vibration amplitude distribution along the central
line is depicted in Fig. 9(b), with well agreement between
the two results.

(2). In-plane vibration measurement

Figures 1(b) and 5(b), respectively, present the optical set-
up and experimental system for real-time subtraction ESPI
system used to measure in-plane vibration. The aluminum
foam beam is still clamped at the left end for a length of
30 mm and is excited through forced vibration at the side
using a PZT attached to the beam with adhesive as shown in
Fig. 4(c). Tests for in-plane vibrating were conducted using a
green light laser with a wavelength of 532 nm. The laser light
illuminated the specimen at a symmetrical angle of 30 degree.
The reference image of the vibrating beam was acquired by a
monochrome CCD camera with resolution of 1280×1024
pixels and real-time subtracted from incoming frames, and
yielded speckle fringe pattern.

Figure 10(a)-(d) show the first 4 order mode shapes of the
test beam vibrating along x-direction, and Fig. 10(e)-(h)
present the first 4 order mode shapes of the beam vibrating
along y-direction, respectively. Because the moment of inertia
I of the test beam cross section about the z axis (Iz = tb3/12) is
larger than that about the y axis (Iy = bt3/12), the exciting
frequency of in-plane vibration is higher than that of out-of-
plane vibration response. Based on (equation (10)), for the test
beam studied in this paper, the fundamental frequency of in-
plane flap is double that of out-of-plane. It is obvious that the
experimental result is well agreed with the theory prediction
from 647 Hz/346 Hz = 1.870. Due to its higher bending stiff-
ness, the response amplitude of in-plane vibration is smaller
than that of out-of-plane under the same exciting force. Hence
the number of fringes shown in Fig. 10 is less than that in
Fig. 8. In contrast to the mode shapes shown in Fig. 7, the

(a)
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Fig. 9 Comparison of the second out-of-plane mode, (a) Mode shape
from FEM and experiment; (b) the displacement distribution along the
central line of the beam obtained by experiment and theory

Fig. 10 In-plane vibrating
responses at frequencies (a)
647 Hz, (b) 3337Hz, (c) 7880Hz,
(d) 12,942 Hz, (e) 647 Hz, (f)
3337 Hz (g) 7880 Hz and (h)
12,942 Hz
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experimental results presented in Fig. 10 are in excellent
agreement with the theory prediction.

It needs to point out that each resonant mode of in-plane
vibration has one mode shape with the U and V configura-
tions. Owing to the limitation of testing system shown in Fig.
1(b), it can only measure one modal component at a time.
Therefore, the specimen needs to rotate 90 degree about z-
axis and measure another component under the same con-
trolled condition after one configuration is acquired.

(3). Measurement of Young’s modulus

Owing to its cellular structure and inhomogeneous with an
unknown mass distribution, it is difficult to obtain the effec-
tive Young’s modulus of aluminum foam by conventional
experimental methods, such as stress-strain analysis of uniax-
ial compression or tension testing. Therefore, alternative mea-
surement methods need to develop. Vibration of cantilever
beams is a simple and effective method. If the following as-
sumptions of a slender cantilever beam is fulfilled: small de-
flections, linearly elastic and uniform cross-section, the Euler-
Bernoulli theory can be employed to determine the resonant
frequencies of flap as given by (equation (10)). From the pre-
vious experimental results, the maximum amplitude of the
tested specimen deflection is about several micrometers as
presented in Fig. 9(b), here it is reasonable to calculate the
Young’s modulus of aluminum foam using (equation (10)).

Equation (10) is used to measure modulus of elasticity
of the aluminum foam from the fundamental frequency as
given by

E ¼ ρAω2
1l
4

β4
1I

ð12Þ

Here, ρ = (1–0.876)×2700kg/m3 = 334.8 kg/m3,
A = 0.02×0.04 = 8×10−4 m2, ω1 = 346×2π = 2174/s,
l = 0.15 m, β1 = 1.875, and I the moment of inertia of the
beam cross section about the y axis is 2.667×10−8m4. It yields
E value of 1.944GPa.

Ashby and Evans et al. introduced extensive analytical,
numerical and experimental works on metal foams for the
Young’s modulus E and compressive strength in [18], and
their analytical solution for E is given as

E
Em

¼ 0:3163
ρ
ρm

� �
ð13Þ

where Em and ρm are the elastic modulus and mass density
of the parent material, respectively. It is need to note that
(equation (13)) predicts the upper bound elastic moduli of
closed-cell foams whose relative density is less than 20%.
For pure aluminum Em = 69 GPa and ρm = 2700 kg/m3, and
the relative density is 12.4% of the close-cell aluminum foam
used in this research. Equation (13) gives an E of 2.704 GPa.
This value is 28% higher than that of the present study.

Considering the microstructural defects and local density fluc-
tuation will attenuate the E, the result of vibration analysis for
Young’s modulus measurement is well agreed with the pre-
diction in a certain degree.

Conclusion

Based on the laser phase noise, a reasonable representation of
speckle fringe pattern generated by real-time subtraction ESPI
method for vibration measuring is proposed. The vibration
response of closed-cell aluminum foam cantilever beam is
investigated by speckle interferometry. The first seven order
deflection vibrating mode shapes and two components of the
first four order in-plane vibration mode shapes are obtained.
Comparing with mode shapes of the pure aluminum beam
from the FEM simulation, it can be found that the irregular
shape of cells and its random distribution in space does not
influence the cantilever beam’s vibration mode shapes at all.
This paper also demonstrates the capability of vibration anal-
ysis for metal foams Young’s modulus measurement using the
ESPI method. Owing to the nature of noncontact, full-field,
and results visualization, vibration of cantilever beams cannot
be used to determine the modulus of material elasticity only,
but also be employed to measure damping properties [19].
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