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Abstract Rolling element bearings are widely used in a vari-
ety of rotating machineries. If the rolling bearing elements are
damaged, a cyclical impact transient signal and the vibration
signal modulation phenomenon appears when the fault sur-
face contacts other components of the rolling element bearing.
To demodulate the cyclical impact signal and extract the bear-
ing fault information, this paper proposes a newmethod based
on resonance-based sparse signal decomposition (RSSD).
First, the bearing vibration signal is decomposed into three
components via RSSD. The high-resonance component con-
tains a sustained oscillation cycle signal, the low-resonance
component contains the impact transient signal, and the final
component is the residual. The sub-bands near the natural
bands are extracted for demodulation into two components.
Two main sub-bands are obtained by summing these sub-
bands. Next, these two main sub-bands are summed to obtain
the original signal’s main sub-band. Finally, the auto power
spectrum is extracted using envelope signal autocorrelation
processing, and it reflects the degree and location of the fault
in the rolling bearing. To verify its effectiveness in extracting
fault information, the proposed method is applied to two prac-
tical application examples with an inner race fault and an outer
race fault in a rolling bearing, respectively. Compared with
envelope analysis and wavelet analysis, the results indicate
that the spectra obtained with this method exhibit less burrs
and a higher signal-noise ratio, and outperforms the other

spectra in terms of revealing the amplitude modulation fre-
quency of the fault impact response.

Keywords Rollingelementbearing .Faultdiagnosis .Feature
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Introduction

Condition monitoring and fault diagnosis of machines is
gaining importance because of the need to improve product
reliability and decrease the possible loss of production due to
machine breakdown [1]. Due to the importance of rolling
bearings as one of the most widely used industrial machinery
elements, the development of a proper monitoring and fault
diagnosis procedure is necessary to prevent the
malfunctioning and failure of rolling bearings [2]. Rolling
bearing faults can occur for many reasons, e.g., improper de-
sign, improper mounting, acid corrosion, poor lubrication, and
plastic deformation. The most common defect is spalling due
to material fatigue after a period of operation, which is initiat-
ed by micro cracking under the surface of bearing elements.
These cracks propagate toward the surface under the effect of
periodical loads and cause cavities or crushing on the surface.
Statistical data [1] indicate that 90 % of faults occurring in
rolling bearings are due to cracks in the inner and outer race,
and the remainder is due to cracks in the balls or cage.

If the inner race, outer race, or rolling element of rolling
bearings is damaged, a cyclical impact transient signal is gen-
erated with the rotation of the bearing when the fault surface
contacts other components of the rolling element bearing. At
the same time, a vibration signal modulation phenomenon
appears with a characteristic structure and moving

* W. Huang
hwt@hit.edu.cn

1 School of Mechatronics Engineering, Harbin Institute of Technology,
92 West Dazhi St, Harbin, China

2 China Aviation Power Machinery Research Institute,
Zhuzhou, China

Exp Tech (2017) 41:251–265
DOI 10.1007/s40799-017-0174-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s40799-017-0174-5&domain=pdf


relationship. Therefore, extraction and demodulation of cycli-
cal impact signal is the key in bearing fault diagnosis [3].

The vibration signals of defective bearings are typically
complicated and are mixed with a variety of signals [4]. For
local faults, especially early faults, the fault features are not
sufficiently strong to be extracted from vibration signals be-
cause of the varying degrees of impact from the transmission
path, the normal vibration of other parts, and the presence of
noise [5]. Therefore, the study of an appropriate signal pro-
cessing method that can separate the rolling bearing vibration
signal components effectively has caught the attention of
many scholars.

In 2009, Li et al. [6] proposed a Hilbert-Huang transform
and marginal spectrum for the detection and diagnosis of local
faults in rolling bearings. In 2013, Osman et al. [7] developed
an enhanced Hilbert-Huang transform technique to diagnose
rolling bearing faults and noise. In 2010, Zvokelj et al. [8]
reported a new multivariate and multi-scale method that com-
bined ensemble empirical mode decomposition (EEMD) and
principal component analysis for large-size and low-speed
bearing fault monitoring. In 2015, Cai et al. [9] presented a
novel and adaptive procedure based on EEMD and Hilbert
marginal spectrum. The effectiveness was proven by the suc-
cessful diagnosis of an axle bearing with a single fault or
multiple composite faults. In 2012, Guo et al. [10] researched
methods for extracting the bearing fault signal from strong
noise using a hybrid method based on spectral kurtosis and
ensemble empirical mode decomposition. The Mahalanobis-
Taguchi system based on EMD-SVD was applied to fault
diagnosis and health assessment of bearings by Wang et al.
[11]. In 2013, Zheng et al. [12] introduced an adaptive data-
driven analysis method, known as the generalized empirical
mode decomposition (GEMD), which was applied to rolling
bearing fault diagnosis. In 2011, Li et al. [13] applied a
weighted multi-scale morphological gradient filter to detect
rolling element bearing faults. In 2012, Li et al. [14] proposed
a continuous-scale mathematical morphology based on the
optimal-scale band demodulation of impulsive features for
bearing fault diagnosis. In 2013, Raj et al. [15] focused on
the early classification of bearing faults using morphological
operators and fuzzy inference. Wavelet analysis, a superior
multi-scale time-frequency analysis method, was successfully
applied to signal de-noising [16–18] and fault feature extrac-
tion [19–21] for rolling bearing fault signals.

The exploration and research of these scholars advanced
the progress of rolling bearing fault diagnosis. However, the
commonly used methods include wavelet analysis and empir-
ical mode decomposition (EMD). These two signal processing
methods are both based on frequency band division and can-
not effectively extract the impact component if the center fre-
quency of the impact signal and the center frequency of other
signals overlap. The wavelet basis function cannot be changed
once it is chosen, and the rolling bearing vibration signal is

complex; thus, it is not suitable for decomposition using a
single wavelet basis function. These obstacles present a chal-
lenge to rolling bearing fault diagnosis.

In 2011, Selesnick [22] proposed the use of the resonance-
based sparse signal decomposition method (RSSD). In contrast
to the traditional signal decomposition method based on the fre-
quency band division, a complex signal is decomposed byRSSD
into high- and low-resonance components according to the qual-
ity factor (defined as the ratio of the center frequency and fre-
quency bandwidth, denoted as Q). The high-resonance compo-
nent is composed of sustained oscillation cycle signals. Here, an
oscillation cycle signal can be thought as the signal that oscillates
about a cycle of a sine in the time domain. Thus, the high-
resonance component usually exhibits sustained oscillatory be-
havior. Unlike the high-resonance component, low-resonance
component is composed of non-oscillatory transient impulsions
that do not exhibit sustained oscillatory behavior. The transient
impulse signal is awideband signal that possesses a lowQ-factor,
whereas the sustained oscillation periodic signal is a narrowband
signal with a high Q-factor. Therefore, effective separation of
transient impact signal and sustained oscillation cycle signals
can be achieved based on the different Q-factors. In 2013,
Chen [3] and Mo [2] assumed that the impacts of rubbing faults
and rolling bearing faults are transient, and therefore, during
RSSD of the vibration signal, the low-resonance component
was used to represent these fault impacts. In 2015, a nonlinear
demodulation analysis method based on resonance was intro-
duced [23], and it was applied successfully to the fault diagnosis
of rolling bearings. In 2014, Wang [24] combined EEMD with
tunable Q-factor wavelet transform (TQWT) to obtain satisfac-
tory extraction result. An ensemble super-wavelet transform
based on the combination of TQWT and Hilbert transform was
put forward for investigating vibration features of motor bearing
faults [25]. In 2015, Li et al. [26] published a new method based
on the resonance-based sparse signal decomposition with the
optimal Q-factor and extracted impact fault feature from low-
resonance component by Hilbert envelope demodulation meth-
od. In 2016, Tang [27] decomposed the original signal by
TQWT, and adopted kurtosis criterion and correlation coefficient
criterion to guide the analysis of the remained signal components.
However, among the most methods, only the low-resonance
component was used to extract the fault information. In fact,
when RSSD is applied to rolling bearing fault signal, because
the signal is complex and the quality factor wavelet is selectable,
both the high- and low-resonance components contain a wealth
of fault information.

This work proposes a new method that combines the main
sub-bands of high- and low-resonance components based on
RSSD and is applied to rolling bearing fault diagnosis. First,
the bearing fault signal is decomposed into three components
using RSSD. The high-resonance component contains a
sustained oscillation cycle signal, the low-resonance compo-
nent contains the rolling fault impact transient signal, and the
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final component is the residual. Next, according to the pro-
posed concept of the main sub-band, envelope demodulation
analysis is applied to main sub-bands of both high- and low-
resonance components. The bearing fault features are extract-
ed according to the envelope demodulation spectrum. The
analysis example illustrates that this method is able to extract
the impact elements in bearing fault diagnosis and highlights
the fault features effectively. The method proposed in this
paper provides a new solution for feature extraction of rolling
bearing fault signals.

Basic Theory of RSSD

In contrast to the traditional signal decomposition method,
RSSD is a new signal processing method based on morpho-
logical component analysis. The signal is decomposed by
RSSD based on the characteristics of the signal waveform
(vibration time, not vibration speed). The RSSD considers
resonance to be a property of the signal. The high-resonance
component is defined as a signal consisting of multiple simul-
taneous sustained oscillations, and the low-resonance compo-
nent is defined as a signal consisting of non-oscillatory tran-
sients of unspecified shape and duration. Therefore, a complex
signal can be decomposed by RSSD into high- and low-
resonance components. The concept of the Q-factor is used
to quantify the degree of the resonance. As shown in Fig. 1, a
signal with a higher resonance degree exhibits a higher degree
of frequency aggregation, a higher Q-factor, and more visible
oscillations in the time-domain waveform at the same time
(pulses 2 and 4 in Fig. 1), and vice versa (pulses 1 and 3 in
Fig. 1). The high-resonance component is the sum of a sparse
series of wavelets with the same high Q-factor Q1, and the
low-resonance component is the sum of a sparse series of
wavelets with the same low Q-factor Q2.

The basic theory of RSSD is a sparse representation of a
complex signal using two wavelet basis functions with differ-
entQ-factors. The higher-oscillation component of the signals
can be represented with highQ-factor wavelets, and the lower-
oscillation component can be represented with low Q-factor
wavelets. From this perspective, the theoretical foundation of
RSSD contains wavelets with tunable Q-factors and sparse
signal decomposition.

Wavelet with a Tunable Q-Factor

In RSSD, the Q-factor is defined as the ratio of the center
frequency and frequency bandwidth, which is widely used
in filter design, control, and the physics dynamical sys-
tems. The quantity reflects the frequency aggregation de-
gree of the signal. A higher Q-factor indicates a higher
degree of frequency aggregation and more oscillations in
the time-domain waveform; this is the primary problem in

how to obtain proper wavelet function according to the Q-
factor in RSSD. The binary wavelet transform is a com-
mon method with a constant Q-factor, but it is not suitable
for high-frequency resolution situations due to its small
Q-factor. The rational-dilation wavelet transform
(RADWT) was proposed by Bayram [28]. Selesnick [22]
proposed a tunable Q-factor wavelet transform (TQWT)
based on RADWT. The wavelets can be designed using
the Q-factor and redundancy factor r in TQWT, which
further increases the flexibility in selecting the Q-factor
and makes it more convenient to obtain the wavelets. The
low-pass scaling factor α and high-pass scaling factor β
[22] can be obtained according to formula (1):

β ¼ 2

Qþ 1
;α ¼ 1−

β
r

ð1Þ

In TQWT, all of the wavelet basis function libraries
generated by the determined Q and r have the same Q-
factor. As shown in Fig. 2, the center frequency (fc) and
bandwidth (BW) are different in different layers in the
same wavelet basis function library. The component rep-
resented by the j-th level wavelet in a signal is known as
the j-th sub-band. It assumes that the sampling frequency
of the input signal is fs [22]. The center frequency fc and
BW of each sub-band can be obtained according to the
following two formulas [22]:

f c≈α
j 2−β
4α

f s ð2Þ

BW ¼ 1

2
βα j−1π ð3Þ

Sparse Signal Decomposition

Different signal components based on the oscillation charac-
teristics are nonlinearly decomposed by RSSD using morpho-
logical component analysis [16]. The method establishes the
optimal sparseness of the high- and low-resonance compo-
nents. The specific steps are described as follows:

Step 1 Choose the appropriate Q1 and Q2 according to the
waveform characteristics of the actual signal and obtain the
corresponding wavelet basis function libraries S1 and S2 via a
wavelet transform with a tunable Q-factor.

For many vibration signals (i.e., the rolling bearing
vibration signal), a sustained oscillation component (i.e.,
fault impact response) and abrupt peaks (i.e., random
noise peaks) will exist. These two components are not
easy to distinguish via oscillation frequency but can be
distinguished by the quality factor. After obtaining the
wavelet basis functions S1, S2 with Q1 and Q2 (Q1 >Q2)
via TQWT, signal X can be expressed as
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X¼W1S1þW2S2þn ð4Þ

In equation (4),W1 andW2 are the wavelet coefficients of
S1 and S2, respectively, W1S1 and W2S2 are the high- and
low-resonance components of the signal X, respectively, and
n is the component that cannot be represented by W1S1 and
W2S2 in signal X, which is known as the named residual
component or error term. If many minimal values in coeffi-
cient matrixesW1,W2 exist and n is notably small at the same
time, equation (4) represents the sparse expression of signalX.

Step 2Define the objective function: Obtain the optimal trans-
formation coefficient matrix under the minimal objective
function.

The objective of RSSD is to separate the different reso-
nance components from one signal and minimize the coupling
between these two parts. The objective function is defined as

J W1;W2ð Þ¼ X ‐S1W1‐S2W2k k22þ
XJ 1þ1

j¼1

λ1; j W1; j
�� ��

1
þ
XJ 2þ1

j¼1

λ2; j W2; j
�� ��

1
ð5Þ

where J1, J2 are the decomposition levels of the high- and
low-resonance components, respectively, W1,j, W2,j are the
coefficient matrices of the high- and low-resonance compo-
nents of each level wavelet, respectively, and λ1,j, λ2,j denote

the weight coefficients of the high- and low-resonance com-
ponents, respectively. The value of λ1,j is correlated with the
energy (2 norm of Si,j) of Si,j (i = 1,2, j = 1,2 · · · Ji + 1).
Generally, the value of λi,j is proportional to the energy of
Si,j, denoted as

λ1; j ¼ L1i S1; j
�� ��

2
i ¼ 1; 2;⋯; J 1 þ 1ð Þ ð6Þ

λ2; j ¼ L2i S2; j
�� ��

2
i ¼ 1; 2;⋯; J 2 þ 1ð Þ ð7Þ

the value ranges of λ1,j (j = 1,2 · · · Ji + 1) and λ2,j (j =
1,2 · · · Ji + 1) are (0.1,1).

The split augmentation Lagrange search algorithm
(SALSA) is applied to the iteration update, and the optimal
wavelet coefficients W1

* and W2
* are obtained to minimize

the objective function value.

Step 3 Reconstruct the original signal, and obtain the high-
resonance component and low-resonance component.

The optimal transformation coefficient matrix is obtained
by reconstructing the observed signal as follows:

X¼W*
1S1þW*

2S2þn ð8Þ

Fig. 1 Signal resonance: (a) Signals. (b) Spectra
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In equation (8), W1
*S1 is the high-resonance component

and W2
*S2 is the low-resonance component.

When the object function J(W1,W1) reaches a minimal
value, the coupling degree between the high- and low-
resonance components and the residual component
reaches a minimum. Greater and lesser oscillations in
the signals are maximally decomposed into high- and
low-resonance components, respectively. The high- and
low-resonance components are effectively separated using
the above steps.

Experimental Setup

Two types of vibration arise when a rolling element
passes local defects (such as spalling) at a high speed.
One type is characterized by the relationship between
the structure and vibration movement, which produces

the impact of periodic vibration when the rolling element
contacts with the raceway at the local defect. Rolling fault
elements can be diagnosed by the vibration frequency,
which is caused by the impact frequency between the
defects and rolling elements. This frequency is known as
the characteristic defect frequency. The other type is the
natural frequency of the bearing system due to the effect
of impact and is characterized by the attenuation oscilla-
tion of each pulse. Based on a single-row angular contact
ball bearing, as shown in Fig. 3 [1], the formula for the
various characteristic frequencies is used [1, 29]. It is
assumed that the motion between the rolling elements
and race is characterized by pure rolling and that the inner
race rotates with the shaft.

The ball pass frequency of the outer race is

FBPO ¼ FS
Nb

2

� �
1−

Bd

Pd
cosϕ

� �
ð9Þ

Fig. 2 Wavelet shape and frequency features in TQWT
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The ball pass frequency of the inner race is

FBPI ¼ FS
Nb

2

� �
1þ Bd

Pd
cosϕ

� �
ð10Þ

The ball (roller) spin frequency is

FB ¼ FS
Pd

2Bd

� �
1−

B2
d

P2
d

cos2ϕ

� �
ð11Þ

The fundamental train frequency (cage speed) is

FC ¼ FS
1

2

� �
1−

Bd

Pd
cosϕ

� �
ð12Þ

where Fs is the shaft rotational frequency (Hz), Nb is the
number of rolling elements, Bd is the diameter of the rolling
element (mm), Pd is the pitch diameter of the rolling bearing
(mm), and ϕ is the bearing contact angle (°).

In this paper, all experiments were conducted on the ma-
chinery fault simulator (MFS) test bench manufactured by
SpectraQuest Inc, as shown in Fig. 4. The experimental setup
is able to simulate a fault in the bearing, gear, or belt as well as
indicate mispositioning and off-center faults. The driver is a
three-phase motor (1 horsepower). To reduce deviation caused
by motor vibration, a short shaft with a 3/4-inch diameter is
attached to the motor via a flexible coupling. The shaft is
supported by two rolling element bearings on the two sides.
The bearing located closer to the motor is the bearing under
test that simulates all bearing faults and the bearing at the
farther end is a good bearing. To ensure effective coupling
of the signal, a piezoelectric accelerometer of type
SQI608A11-3 F/8 is fixed on the bearing base via standard
stud mounting. The bearing vibration signals are input to a
computer through a data acquisition system with an 8-

channel data acquisition card for analysis and extraction of
the signal characteristics.

All test objects in this research represent the most common-
ly used industrial single-row deep-groove ball bearings of type
ER-12 T, as shown in Fig. 4. The sampling frequency, sam-
pling length, and rotation rate are 51.2 kHz, 65,536 points, and
30 Hz, respectively. The basic parameters of the bearings and
the fault characteristic frequency in the experiments are shown
in Table 1.

Engineering Validation

Experiment with an Inner Race Fault

A single point fault is introduced to the inner race using an
electrode via chargemachining with fault diameters of 0.4 mm
and a depth of 0.2 mm. To simulate an early weak fault signal,
the load on the shaft supported by the rolling bearings is re-
moved, and the test bench is tapped rapidly with a hammer
(approximately 5 times per second). The collected fault vibra-
tion signal and the spectrogram are shown in Fig. 5.
According to the spectrogram, it indicates that the harmonics
of the shaft rotation frequency are primarily concentrated be-
low 2 kHz, and there are two natural frequency bands (also
known as formants) in the bearing system at approximately
3.1 and 10 kHz. Because the formant peak at approximately
3.1 kHz is larger and narrower, this natural frequency band
will be chosen as the demodulation band.

To fit the impulse response curve better, choose the RSSD
parameters of Q1 = 4, Q2 = 1, J1 = 18, J2 = 20, and r1 = 3.5,
r2 = 3.5, and set the weight coefficients λi,j (i = 1,2; j =
1,2 · · · Ji + 1) at 0.15 times the l2-norm of the corresponding

Fig. 3 Rolling bearing
components
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wavelet Si,j (i = 1,2; j = 1,2 · · · Ji + 1). Then RSSD is applied
to the vibration signal, and the result is shown in Fig. 6.

The following observations can be made from Fig. 6:

(1) The high-resonance component contains several damped
oscillations at each acceleration mutation point
(Fig. 6(b)). In the low-resonance component, an oscilla-
tion of only a short duration (one to two oscillation cy-
cles) exists at each acceleration mutation point (see
Fig. 6(c)). Therefore, although both of the resonance
components contain a portion of the fault information,
additional fault information is available in the high-
resonance component than in the low-resonance compo-
nent. Careful observation of the high-resonance compo-
nent waveform indicates that each string of sustained
oscillation in the high-resonance component contains
two oscillation frequencies corresponding to the two nat-
ural frequencies of the bearing system.

(2) The bearing failure in this experiment is quite weak, and
therefore, there are only a few abrupt peaks in the atten-
uation oscillations provoked by the failure impact, which
indicates that the proportion of the low resonance-
component is considerably smaller than that of the
high-resonance component.

(3) As shown in Fig. 6, not every impact generated by the
contact of rolling elements and fault zone can be mani-
fested in the high-resonance component. One reason for
this phenomenon is that the fault is overly weak and the
load is removed, and therefore, only the impact

generated by the contact in the load zone may be
reflected in the high-resonance component. Another rea-
son is that the rolling elements that experience the fault
will not produce an impact in all instances. The rolling
element may occasionally directly skim over the peeling
area with no impact in terms of the gap between the
rolling element and inner and outer race.

It is necessary to analyze the sub-band that highlights
the fault impact response of the rolling element bearing.
Thus, the energy-dominated sub-band that is highlighted
in the analysis of sub-bands near the bearing natural fre-
quency should be analyzed. In this paper, it defines the
summation of the sub-bands with center frequencies that
are located near the natural bearing frequencies of the main
sub-band. The waveforms for 19 sub-bands in the high-
resonance component are shown in Fig. 7(a), and 20 sub-
band waveforms in the low-resonance component are
shown in Fig. 7(b). The sub-band energy distributions of
the resonance component are shown in Fig. 7(c) and (d),
which illustrate that the energy of the high-resonance com-
ponent is concentrated in two sub-band groups (5–8 and
15–18) and the energy of the low-resonance component is
concentrated in three sub-band groups (1–3, 4–7, and 17–
19). Obviously, the energy distribution of the high-
resonance component corresponds directly to the two nat-
ural frequencies (10 kHz and 3.1 kHz). Therefore, the de-
modulation band is determined by the sub-band groups of
the high-resonance component.

Fig. 4 Fault simulator set up

Table 1 Basic parameters of the
faulted rolling bearing Model Pitch dia.

(mm)
R. E. dia.
(mm)

Number of
R. E.

Contact
angle (°)

Characteristic frequency

Outer
ring

Inner
ring

Rolling
element

Cage
train

ER-12 T 34.170 7.105 9 0 107.06 163.3 69.12 11.90
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When determining the demodulation band, the natural fre-
quency of approximately 3.1 kHz is chosen as the demodula-
tion band, according to equations (2) and (3) or sub-band
groups 15–18 in Fig. 7(c) and 4–7 in d. These two sub-band
groups are summed up and the main sub-bands of the high-
and low-resonance components are obtained, respectively (see
Fig. 8(a) and (b)). Both the high- and low-resonance compo-
nents contain a portion of the fault information, and the fault
information is primarily contained in the main sub-bands.
Here, we sum up the two main sub-bands and obtain the orig-
inal signal’s main sub-band, which carries most of the fault
information (see Fig. 8(c)).

After applying the RSSD to the bearing vibration signal,
the main sub-bands of the high- and low-resonance compo-
nents are selectively analyzed. The envelope demodulation is
applied to the main sub-band to obtain the spectrum envelope
of the fault frequency. Then the envelope analysis is adopted
for the main sub-bands of the high- and low-resonance com-
ponents and original signal. The results are shown in Fig. 8(d),
(e), and (f).

Autocorrelation has a smoothing effect on the main sub-
band. As the fourier transform of the autocorrelation, the auto
power spectra of the envelope signal preserve the cycle com-
ponents so that the fault feature frequencies of the rolling
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bearings can be extracted from them. The auto power spectra
of each main sub-band’s envelope signal are shown in Fig. 9.

A clear peak occurs at the fault characteristic frequency
(163.5 Hz) in each auto power spectrum shown in Fig. 9.
This frequency (163.5 Hz) corresponds to the feature frequen-
cy of the bearing inner race from equation (10). In addition,
the side bands (133.5 and 193.5 Hz) on both sides of the fault
characteristic frequency (163.5 Hz) are quite small or may not
exist. An early fault indicates that this rolling element bearing
inner race fault signal is weak. Among all of the auto power

spectrums, the peak value at the fault characteristic frequency
in the auto power spectrum of the main sub-band envelope
signal of the original signal is the largest and most obvious;
the peak value at the fault feature frequency in the auto power
spectrum of the main sub-band envelope signal of the low-
resonance component is the smallest, and the peak is not dom-
inant in the auto power spectrum of low-resonance component
main sub-band envelope signal. The failure information
contained in the low-resonance component is smaller and
more easily interfered with by noise.
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Experiment with an Outer Race Fault

In this subsection, the method is validated by another experi-
ment with a hole of diameter 0.3 mm at the outer race. The
rotating frequency of the shaft is 30 Hz and the load on the shaft
is set to 5 kg. To enhance the noise, the hammer is used to tap
the test bench at approximately 5 times per second. The gath-
ered acceleration signal and its frequency spectrum is shown in
Fig. 10. In time domain, there is hardly any obvious accelera-
tion mutation caused by fault impacts, which indicates the fault
signal is extremely weak. For contrast, these two natural fre-
quency bands are both chosen as demodulation bands.

Because the fault feature is weaker, in order to make more
fault information decomposed into high- and low-resonance
components, smaller λi,j is chosen at 0.1 times the l2-norm of

the wavelet Si,j (i = 1,2; j = 1,2 · · · Ji + 1). Other parameters are
the same as Section 4.1. The RSSD result is shown in Fig. 11.

It can be seen that about six damped oscillations exist in the
high-resonance component. Moreover, there is some overlap
between two adjacent damped oscillations. This is because
two fault impacts are generated when the rolling element en-
ters and leaves the spalling area each time.

In terms of different demodulation bands, the auto power
spectra of each main sub-band’s envelope signal is shown in
Fig. 12. Obviously, peaks exist at the fault characteristic fre-
quency (107.06 Hz) and its harmonics in each auto power
spectrum. Comparing the peak values in different compo-
nents, it is easy to find that the peak values in main sub-
band envelope signal of the original signal are the largest. In
addition, the peaks at 3.1 kHz demodulation band are much
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clearer than those at 10 kHz. And the peak values at the fault
feature frequency in Fig. 12(a), (b), (c) are much larger than
those in d,e,f. It illustrates that more obvious fault information
can be extracted when choosing the frequency band at approx-
imately 3.1 kHz as the demodulation band. Therefore, when
there are several natural frequency bands, a larger and
narrower natural frequency band is preferable.

Comparative Analysis

To verify the effectiveness of the RSSD in bearing fault diag-
nosis, this paper compares the RSSD results with the results

from the envelope analysis and wavelet analysis for the same
signals.

Comparison with the envelope analysis

For the inner and outer race faults, in terms of the larger and
narrower formant peak at approximately 3.1 kHz, the enve-
lope decomposition frequency bands are defined at 2,700–
3,700 Hz and 2,500–3,300 Hz, respectively. The envelope
analysis results are shown in Figs. 13 and 14. Figures 13
and 14(c) present the frequency spectra after the envelope
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Fig. 12 Auto power spectrum of the main sub-band envelope signal for
the inner race fault: (a) Main sub-band of the high-resonance component
at 3.1 kHz. (b) Main sub-band of the low-resonance component at
3.1 kHz. (c) Main sub-band of the original signal at 3.1 kHz. (d) Main

sub-band of the high-resonance component at 10 kHz. (e) Main sub-band
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analysis, and Figs. 13 and 14(d) present the auto power spectra
of the envelope signals.

For the inner race fault, Fig. 13(c) and (d) illustrate that the
main spectral peaks occur at half, one time, and twice the inner
race fault feature frequency (163.5 Hz), but there are no side
peaks on both sides of 30 Hz from the main peak. An obvious
peak occurs at the fault characteristic frequency (163.5 Hz) in
Fig. 9(c), and the side bands on both sides of the fault charac-
teristic frequency are also rather obvious. For the outer race
fault, Fig. 14(c) and (d) show that the peaks only occur at one
time, and triple the outer race fault feature frequency (107Hz).
In contrast, the peaks in Fig. 12(c) are more dominant due to
fewer noise burrs and the high signal-noise ratio.

From above analysis, it demonstrates that RSSD is superior
to the envelope analysis and auto power analysis of the enve-
lope signal in fault feature extraction for rolling element
bearing.

Comparison with the wavelet analysis

In the subsection, the db10 wavelet is chosen as a basis func-
tion for the five-layer wavelet decomposition. The results are
shown in Figs. 15 and 16. Because the central frequency of the
third-layer wavelet is close to 3.1 kHz, the envelope analysis is
performed on d3.
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Fig. 14 Envelope analysis result of the outer race fault signal: (a) 2,500–3,300 Hz waveform in the time domain after band-pass filtering. (b) Spectrum
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Figures 17 and 18 present the spectra and auto power spec-
tra of the d3 envelope signals. In Fig. 17, peaks occur at half of
and twice the inner race fault feature frequency of 163.5 Hz,
and another peak is visible at 160 Hz. Compared with the
spectrum from RSSD in Fig. 9(c), these two spectra display
additional burrs, the main peak in the spectrum is not domi-
nant, and the side bands on both sides of main peak are not
obvious. One reason for this observation is that because of the
small frequency resolution of the traditional wavelet, it is dif-
ficult to accurately extract the natural frequency oscillation
component from the fault signal, and the error of fitting com-
plex signals with a single wavelet is more significant. In
Fig. 18, peaks exist at one time, and triple the outer race fault
feature frequency (107 Hz), especially at one time. Compared
with Fig. 12(c), there are more burrs in Fig. 18, although the
feature frequency can be also observed.

To sum up, compared with the wavelet analysis, RSSD has
been proven more advantageous in fault information extrac-
tion for rolling element bearing.

Discussion

(1) Rolling fault transient shock and vibration signals were
generated by rolling bearing fault coupling spread
through multiple interfaces such that the impulse re-
sponse of the signal detected by sensors is an oscillating
exponential decay. Therefore, it is improper to denote
fault impact composition by the low-resonance compo-
nent in RSSD. In fact, due to the complexity of the signal
and selection of TQWT, both the high- and low-
resonance components contain a wealth of fault informa-
tion. This paper proposes the use of RSSD, which com-
bines high- and low-resonance components in the rolling
bearing fault signal.

(2) For the existing fault diagnosis method with RSSD, the
low-resonance components are envelope decomposed
directly after RSSD without an analysis of the different
sub-bands. This method can decompose fault informa-
tion only in the case of small noise signals. Additional
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Fig. 16 Wavelet decomposition result of the outer race fault signal
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noise will exacerbate the decomposition effect due to the
low-resonance component, which contains the fault im-
pact signals but also contains the noise impact signals. In
this paper, the summation of the sub-bands with center
frequencies that are near the natural frequencies of the
bearing is defined as the main sub-band, decompose the
main sub-band of the high- and low-resonance compo-
nents, and increase the signal-to-noise ratio of the fault
vibration effectively.

(3) According to the comparison of the auto power spectra
of the envelope signals of the rolling bearing high- and
low-resonance components, it indicates that the peak val-
ue at the fault frequency in the auto power spectrum of
the low-resonance component’s main sub-band envelope
signal is the smallest, and the peak is not the most dom-
inant in the auto power spectrum of the low-resonance

component main sub-band envelope signal. The failure
information contained in low-resonance component is
smaller and more easily interfered with by noise. In con-
trast, the high-resonance component contains additional
failure information, the main sub-bands can be more pre-
cisely positioned near the natural frequency, and the
high-resonance component is less easily interfered with
by noise.

(4) In contrast to the envelope analysis and wavelet analysis,
RSSD expresses a signal using two wavelet basis func-
tions. These two different types of wavelet basis func-
tions can express different types of rolling bearing vibra-
tion signal components. According to specific objects,
the Q-factor of the two wavelet basis functions can be
altered to adjust the waveform, which greatly increases
the adaptability and flexibility of RSSD.
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Auto power spectrum of the envelope signal
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Conclusions

To address the disadvantage of using envelope decomposition
of the low-resonance component in fault diagnosis with
RSSD, this paper proposed a new method based on RSSD
that combines the high- and low-resonance components and
applied this method to rolling bearing fault diagnosis. The
bearing fault signal is decomposed into three components by
RSSD: the high-resonance component containing the
sustained oscillation cycle signal, the low-resonance compo-
nent containing the impact transient signal, and the residual
component. The concept of resonance of the main sub-band
was introduced. Envelope decomposition was applied to the
main sub-band of the high and low resonances. The analyzed
examples demonstrated that this method was able to extract
the impact element for bearing fault diagnosis and highlight
the fault features effectively. The proposed method in this
paper provides a new solution for feature extraction of rolling
bearing fault signals.
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