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Abstract

Rubbers are commonly used in industry to reduce vibration transfer and, con-
sequently, reduce structural noise. The vibration transfer through rubber can
be modelled with finite elements; however, to achieve satisfactory results it is
necessary to know the viscoelastic properties of the rubber. This paper describes
the commonly used theory of vibration transmission through rubber modelled
as a single-degree-of-freedom (SDOF) system. Three simplified rubber models
are used to identify the constant Young’s modulus and damping factor from the
measurements of two different rubber specimens, and with the obtained results
the theoretical transmissibilities are calculated. The frequency-dependent
Young’s modulus and damping factor are also calculated from measurements.
The practical use of previous measurements of dynamic material properties
is presented in a finite-element analysis, where three different definitions
of the dynamic material properties are carried out for four different rubber
specimens, which corresponds to 12 analyses. The finite-element analyses
are then compared with the measurements, and general guidelines for using
dynamic material properties in ANSYS Workbench v.14 are given.

Introduction

Rubber materials are commonly used to control
structural vibrations and sound radiation. However,
to predict the vibration response of a system the
dynamic characteristics of rubber, such as the Young’s
modulus and the damping factor, must be accurately
identified.

Because of the viscoelastic behaviour of the rubber
material, its dynamic material properties, which
depend on many environmental and operating
conditions, but mainly on the static preload, vibration
amplitude, temperature and frequency,1 are difficult
to define. From the theory of viscoelasticity,2 it is
known that at least two parameters are needed to
completely define the mechanical behaviour of an
isotropic viscoelastic material. Usually these two
parameters are the Young’s and bulk moduli or one
modulus and the Poisson’s ratio of the viscoelastic
material.

In the literature, many authors have conducted
experimental research by directly measuring the
Young’s modulus and the damping factor. Sim and
Kim,3 for example, developed a technique to estimate
the material properties of viscoelastic materials for
use with finite-element method (FEM) applications.
They derived the Young’s modulus, the damping
factor, and the Poisson’s ratio from two different
rubbers with various shape factors (one with a small
factor and one with a large). A similar test method
for characterizing the dynamic behaviour of rubber
compounds was presented by Ramorino et al.4 and
their results were also compared using the dynamic
mechanical thermal analyzer (DMTA), which showed
good agreement. Additionally, Caracciolo et al.5,6

presented measurements of the complex Poisson’s
ratio and Young’s modulus versus frequency, which
were performed on simple, beam-like specimens. One
of the drawbacks of the mentioned test methods is

doi:10.1 /007 s40799-016-00 -727

235Experimental Techniques (2013) © 2013, Society for Experimental Mechanics;  Exp    Tech    (2016)       40:    2 2–35 44



Frequency-Dependent Young’s Modulus and Damping Factor D. Koblar and M. Boltežar

the inability to statically preload the test specimen to
whatever preload may be desired, because the only
way to preload the test specimen is to addmass, which
results in large loads on the shaker.

The dynamic stiffness was also studied instead of
the dynamic modulus through the receptance of the
specimen, where the impact hammer replaced the
shaker as the source of the vibration. Lin et al.7

developed a method to evaluate the frequency-
dependent rubber mount’s stiffness and damping
characteristics by utilizing the measured complex
frequency response function from the impact test. Ooi
and Ripin8 simultaneously measured the dynamic
driving-point stiffness and the dynamic transfer
stiffness and made a comparison with the previously
mentioned method developed by Lin et al.7 The
authors showed that in the low-frequency range
the dynamic driving-point stiffness can be used to
represent the dynamic transfer stiffness, but with an
increase of the frequency the inertial force gets bigger
compared to the elastic force in the system; therefore,
the dynamic stiffness starts to deviate significantly.
Nadeau and Champoux9 made a comparison of
engine mount complex stiffness in axial and lateral
direction using blocked transfer stiffness and Hao
et al.10 used dynamic stiffnessmeasurement for design
of suspended handles to reduce hand-arm vibration.
Basdogan and Dikmen11 measured dynamic driving-
point stiffness of vehicle door seal and modelled
viscoelastic response with generalized Maxwell solid.
A disadvantage of these methods is that a big, bulky
mass is necessary for ameasurement of the receptance
functions. Vahdati and Saunders12 described a high-
frequency test machine and measured the dynamic
rubber stiffness of an aircraft engine mount up to
2000Hz. The authors indicated that with a proper
design of the test fixture and the appropriate mass
selection a dynamic stiffness test on the rubber
mounts at frequencies as high as 5000Hz can be
performed. The downside of this method is that a
conventional test machine is still needed to obtain
the dynamic stiffness up to 250Hz, and like with
previous methods a big, bulky mass is needed.

This work reviews three theoretical models with
a single-degree-of-freedom (SDOF) system with a
ground excitation to describe the dynamic response of
the rubber. Equations for an estimation of a constant
Young’s modulus and a constant damping factor from
the transmissibility were developed. The response of
the SDOF system was then measured experimentally
and from it, with the developed equations, a constant
damping factor and Young’smodulus at the resonance
frequency were evaluated for all three theoretical

models. Additionally, estimated values were used to
calculate the response of theoretical SDOF systems
and compared with the measurements.

Furthermore, the experimentally measured res-
ponse of the SDOF system was used to identify
the dynamic material properties of the rubber; the
Young’s modulus and the damping factor were, in
this case, derived as a function of the frequency.
These frequency-dependent results were then used
in a finite-element analysis to predict the dynamic
response of the measured system.

Theoretical Background

A SDOF system with ground excitation that consists
of an element of mass M and a linear rubber-like
material, which separates the mass from a foundation
that vibrates sinusoidally with an angular frequency
ω, is shown in Fig. 1. The rubber is utilized so that its
behaviour is governed by the complex shear modulus
G∗

ω. Here, it is assumed that the temperature remains
constant with time, so that the shear modulus may
be written as13,14

G∗
ω = Gω

(
1 + iδGω

)
, (1)

where Gω is the real part and δGω is the ratio of
the imaginary to the real part of the complex shear
modulus G∗

ω, and is known as the damping factor and
i is equal to

√−1. Snowdon13 also reported that for
rubber-like materials we can write, with a negligible
error, that

Eω = 3Gω (2)

and
δEω = δGω (3)

Similar to Eq. 1, with Eqs. 2 and 3 in mind, expression
for the complex Young’s modulus E∗

ω can be written
in the form

E∗
ω = Eω

(
1 + iδEω

)
, (4)

where Eω is the real part and δEω is the ratio of the
imaginary to the real part of the complex Young’s
modulus E∗

ω, and is known as the damping factor.
Gent and Lindley15 proposed a relationship

between the apparent Young’s modulus Ea and the
Young’s modulus E for bonded rubber blocks, except
for those with large lateral dimensions (a large shape
factor), with the expression

Ea = E
(
1 + βS2

)
(5)

where β is a numerical constant and S is a
dimensionless shape factor. For samples of rubbers
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Figure 1 SDOF system with ground excitation.

that are circular, square or moderately rectangular in
cross-section, β = 213,15 and smaller values of β are
used for carbon-black-filled vulcanizates.15 The shape
factor is the ratio of the area of one loaded surface
to the other force-free area. The shape factor for a
rubber cylinder is D/4h, where D is the diameter and
h is the height of the cylinder,13 and the shape factor
for a cuboid is (d1d2)/(2h(d1 + d2)), where d1 and d2
are the dimensions of the rectangular cross-section
and h is the height of the cuboid.

The equation of motion for a system with
a frequency-dependent Young’s modulus can be
written in the frequency domain as

−ω2Mx∗
2e

−iωt = (A/h)E∗
aω

(
x1 − x∗

2

)
e−iωt, (6)

where x1 is the displacement of the foundation, x2 is
the displacement of the mass M, A is cross-sectional
area and h height of rubber-like material, and the
asterisk superscript denotes complex quantities.

From Eqs. 4 and 6 it is possible to derive the
transmissibility of the system, which is defined as the
magnitude of the displacement ratio

T =
∣∣∣∣x∗

2

x1

∣∣∣∣ =
√(

1 + δ2Eω

)
√(

1 − ω2 hM
AEaω

)2 + δ2Eω

(7)

This is a general transmissibility equation from which
the transmissibility of any linear, rubber-like material
may be obtained, if the dependence of Eaω and δEω on
the frequency is known.

In Ref.,13 certain assumptions were made about
the properties of rubber-like materials that simplify
the general transmissibility equation. For better
referencing of the general transmissibility, Eq. 7 is
written in the form

T =
√
1 + δ2Eω√(

1 − �2 Ea0
Eaω

)2 + δ2Eω

(8)

Here, �= ω/ω0 is the frequency ratio, ω2
0 =

(AEa0) / (hM) is the natural frequency of the SDOF
system, and Ea0 is the value of Eaω at the natural
frequency.

The first simplification of Eq. 8 is called damping of
the Solid Type I (sometimes referred to as hysteretic
damping). This simplification is used for low-damping
materials where the shear or Young’s modulus and
the damping vary only slowly with frequency and
may be considered as constants in the frequency range
of interest in vibration problems. Thus, Ea0/Eaω =1
and δEω = δE. With the use of this simplification, the
transmissibility becomes

TsolidI =
√
1 + δ2E√(

1 − �2
)2 + δ2E

(9)

The second simplification is called damping of the
Solid Type II and is used for high-damping materials,
where the shear or Young’s modulus increases very
rapidly with frequency, and for rubbers having
transition frequencies in the frequency range of
interest in vibration problems. Thus, the Young’s
modulus is assumed to be directly proportional to
the frequency and the damping factor is considered
to be independent of the frequency, as in the case of
damping of the Solid Type I. This can be written as
Ea0/Eaω =ω0/ω =1/� and δEω = δE. The expression of
transmissibility, Eq. 8, becomes

TsolidII =
√
1 + δ2E√

(1 − �)2 + δ2E

(10)

Third simplification is called damping of the Parallel
Spring and Dashpot, also known as damping of the
viscous type. In this case, the rubber-like material
is replaced by a spring of stiffness K and a parallel
dashpot with the coefficient of viscosity η, as shown
in Fig. 2. The transmissibility for this system is

Tviscous =
√
1 + (2�δR)2√(

1 − �2
)2 + (2�δR)2

(11)

where � is now defined as the frequency ratio with
the natural frequency, defined as

w2
0 = K

M
(12)

and δR is the damping ratio, defined as

δR = ηω0

2K
(13)

Expressions above were derived assuming that iso-
lator does not have any mass, but real-life isola-
tors have some mass and as a result, wave effects
may develop at high frequencies of transmitted
vibrations whereas the dimensions of the isolators
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Figure 2 SDOF system mass-spring-dashpot with ground excitation.

become commensurate with multiples of the half
wavelengths of the elastic waves passing through
the flexible elements of the isolators as reported
by Rivin16 and Snowdon.13,14,17 Wave frequencies
are intense high-frequency peaks resulting in dete-
rioration of transmissibility in the high-frequency
range and can be seen in Fig. 6. High-frequency
wave resonances in vibration isolators develop at
frequencies16

ωi = iπω0

√
M

ρAh
(14)

where ω0 is the fundamental natural frequency, i=1,
2, 3 is the sequential number of the resonance,
and the expression under the square root is the
mass ratio between the mass M of the supported
object associated with the flexible element, where
the total mass of the flexible element is calculated
from the density ρ, the cross-sectional area A and the
height h.

Experimental Set-Up

In the experimental set-up, a typical industrial rubber
with a cross-section of 20×30mm and height of
20mm was used. The rubber was tightly glued to
a cylindrical aluminium mass (83.9 g) on one end
and to the specially designed head expander of a
shaker on the other end, as shown in Fig. 3. In
this set-up, the aluminium mass represents the rigid
mass of the SDOF system in Fig. 1 and the rubber
specimen provides the complex Young’s modulus,
which includes the damping as shown in Eq. 4.
The head expander was fixed to an electromagnetic
shaker (B&K type 4809) that was driven by B&K

software PULSE v.13. Broadband white noise was
used for the excitation signal. The transmissibility
was measured with two accelerometers (B&K type
4507 B004): one was used for acquiring the input
signal and the other for acquiring the output signal,
x1 and x2, respectively. The measured transmissibility
function for two different rubber specimens is shown
in Fig. 6.

M2

1

Eω
∗

accelerometer 2

accelerometer 1

shaker

Figure 3 Experimental set-up.

Estimation of the Young’s Modulus and the
Damping of the Rubber from the Measurement

Constant Young’s modulus and damping

Damping governs the magnitude of the transmissi-
bility at resonance. So by using the derivative of
transmissibility, Eq. 7, it is possible to determine at
which frequency the maximum occurs, and with a
knowledge of the maximum magnitude of the trans-
missibility from the measurement, the damping factor
can be calculated.

From the derivative of the equation for the damping
of the Solid Type I, Eq. 9, we can determine that the
maximumof the transmissibility occurs at a frequency
ratio � =1, which is at the natural frequency of the
SDOF system. The magnitude of transmissibility at
the natural frequency is

Tmax =
√
1 + 1

δE
(15)

Thus by knowing themaximumof the transmissibility
from the measurement, the damping factor of the
Solid Type I can be calculated from Eq. 15,

δE = 1√
T2
max − 1

(16)

The same procedure can be repeated with Eq. 10
for the damping of the Solid Type II. In this case,
the maximum of the transmissibility also occurs
at the resonance frequency, �= 1. The magnitude
of the transmissibility and the damping factor at
the natural frequency can be calculated from Eqs.
15 and 16. For both cases, the apparent Young’s
modulus at the natural frequency Ea0 is calculated
from ω2

0 = (AEa0) / (hM) and is

Ea0 = ω2
0hM

A
(17)

where M is the total mass of the aluminium cylinder
and the accelerometer 2. With respect to Eqs. 5 and
17, a constant Young’s modulus is derived as

E0 = Ea0/
(
1 + βS2

)
(18)
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Table 1 Young’smodulus anddamping for rubber specimen1—rubber

of hardness 40 ShA

Solid Type I Solid Type II
Parallel Spring
and Dashpot

E0 (MPa) 4.297 4.297 4.315
δE (–) 0.0909 0.0909 —
δR (–) — — 0.0455

For the damping of the Parallel Spring and Dashpot,
Eq. 11, the maximum of the transmissibility occurs at
the frequency ratio

� =

√√√√√
8δ2R + 1 − 1

4δ2R
. (19)

Referring to Eqs. 11 and 19, the maximum of
the transmissibility can be calculated and then the
damping ratio of the Parallel Spring and Dashpot
system is given with the equation

δR =
√
2

2

√√√√ T

T3 − T +
√

1
T2−1

− 2T2
√

1
T2−1

+ T4
√

1
T2−1

.

(20)
The natural frequency of the Parallel Spring and
Dashpot system ω0 is calculated from Eq. 19, and the
spring stiffness K can be derived from Eq. 12. From
the spring stiffness K with respect to the definition of
the Young’s modulus and the equation of Hook’s law,
it is possible to deduce apparent Young’s modulus of
rubber at the natural frequency

Ea0 = KL0
A0

, (21)

where A0 is the original cross-sectional area through
which the force is applied and L0 is the original
length of the object. With Eq. 18, a constant
Young’s modulus is calculated from apparent Young’s
modulus.

The estimated values of the constant Young’s
modulus and the damping factor, from all three
theoretical SDOF systems, Eqs. 15–21, for two
different rubber specimens are presented in Tables 1
and 2.

Frequency-dependent Young’s modulus and damping

Like in Refs.3 and4 where the complex behaviour
of the rubber was written in a different form,
the frequency-dependent Young’s modulus and
damping factor of the rubber-like material can
be calculated from the real and imaginary parts
of the complex transmissibility. By writing the

Table 2 Young’smodulus anddamping for rubber specimen2—rubber

of hardness 63 ShA

Solid Type I Solid Type II
Parallel Spring
and Dashpot

E0 (MPa) 20.785 20.785 22.021
δE (–) 0.355 0.355 —
δR (–) — — 0.1775
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Figure 4 Young’s modulus as a function of frequency for specimen 1

(rubber of hardness 40 ShA) and specimen 2 (rubber of hardness 63

ShA).

real part Re(T)=Re(x2/x1) and the imaginary part
Im(T)= Im(x2/x1), the following relations for the
frequency-dependent apparent Young’s modulus and
damping factor of the rubber-like material can be
obtained

Eaω = hMω2

A

Im (T)2 + (Re (T) − 1)Re (T)

Im (T)2 + (Re (T) − 1)2
(22)

and

δEω = Im (T)

Im (T)2 + (Re (T) − 1)Re (T)
(23)

Re(T) and Im(T) can be obtained directly from the
measured transmissibility, while the massM has to be
measured.

With the use of the real and imaginary parts of the
measured transmissibility [Re(T) and Im(T)], as well
as Eqs. 5 and 22, it is possible to calculate the Young’s
modulus as a function of the frequency, as shown in
Fig. 4. To estimate the frequency-dependent damping
factor as a function of frequency, shown in Fig. 5,
in addition to the real and imaginary parts of the
measured transmissibility, Eq. 23 was also used.

Dynamic Response Calculation

Calculation with theoretical SDOF systems

Estimated constant values of the Young’s modulus
and the damping factors from theoretical SDOF
systems, presented in Tables 1 and 2, were used
to calculate the transmissibility for the damping of
the Solid Type I, Eq. 9, the damping of the Solid
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Figure 5 Damping factor as a function of frequency for specimen 1

(rubber of hardness 40 ShA) and specimen 2 (rubber of hardness 63

ShA).
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Figure 6 Comparison of different theoretical SDOF systems with

measurement for specimen 1 (rubber of hardness 40 ShA) and specimen

2 (rubber of hardness 63 ShA).

Type II, Eq. 10, and the damping of the Parallel
Spring and Dashpot, Eq. 11. Figure 6 shows measured
and calculated transmissibilities for two different
rubber specimens (one softer 40 ShA and one harder
63 ShA).

Finite-element analyses

Finite-element analyses were also made with ANSYS

Workbench v.14 to compare the numerically cal-
culated transmissibilities with the measured ones.
The finite-element model represents a cylindrical alu-
minium mass with a diameter of 50mm and a height
of 15mm, and a cuboid rubber with a cross-section of
20× 30mm and a height of 20mm, and a accelerom-
eter on the top surface of the aluminium mass, which
was modelled as a mass point of 4.6 g, shown in Fig. 7.
The mesh was generated with higher order 3D 20-
node solid element that exhibits quadratic displace-
ment behaviour, SOLID186 and element MASS21 for
mass point. Mesh contains 5014 elements and 22,981
nodes, shown in Fig. 7. The Young’s modulus of the
aluminium mass was 7.1× 1010 N/m2 and the Pois-
son’s ratio was 0.33. The density was calculated from

the measured weight of the aluminium mass (83.9 g)
and was 2848.7 kg/m.3 The densities of the rubber
specimens were also calculated from the masses of
14.4 g for specimen 1 and 15.1 g for specimen 2, which
corresponds to densities of 1200.0 and 1258.3 kg/m3,
respectively. The Poisson’s ratio for both rubbers was
chosen near the theoretical value of 0.5 and was
0.4999. The Young’s modulus and the damping fac-
tors were defined in three different ways regarding
the type of analysis.

In the analysis of the transmissibility for the
frequency-dependent Young’s modulus and damping
factor, the estimated frequency-dependent values,
shown in Figs. 4 and 5, were imported into
finite-element model and defined as TB,ELASTIC
for the Young’s modulus and TB,SDAMP for the
material structural damping coefficient as frequency-
dependent in commands under definition of a
harmonic analysis.

In the analysis of the constant values of the Young’s
modulus and damping factor, the values were defined
in software’s Engineering Data. Special attention
when defining the damping was needed for both
cases. A consideration of different vibration damping
using the software ANSYS is addressed in.18

In the first case with the values estimated from
the theory of damping of the Solid Type I or the
Solid Type II, Table 1, the damping was input as
the constant damping coefficient ζ where the value of
damping was half of the estimated damping factor
and was calculated with equation19,20

ζ = δ/2 = 0.0909/2 = 0.0455 (24)

In the second case with the constant values from
the theoretical SDOF system damping of the Parallel
Spring and Dashpot, Table 1, the damping was input
as the damping factor β of the Rayleigh damping, where
β was given by ANS21

β = 2δi

ωi
, (25)

where ωi is the ith natural angular frequency
and δi is the damping ratio at the ith natu-
ral circular frequency. In our case δi = δR = 0.0455
and ωi =1311.30 rad/s (208.7Hz), which from
Eq. 25 gives the stiffness matrix multiplier
β =6.9397× 10−5.

The harmonic analysis for the three cases was
analysed in the frequency band from 20 to 3000Hz,
with a frequency resolution of 1Hz. The measured
and calculated transmissibilities are shown in Fig. 8.

Furthermore, the numerical calculations for two
different shape factors for each specimen were made,
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Figure 7 Finite-element model in ANSYS Workbench v.14, model (left) and mesh (right).
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Figure 8 Comparison of transmissibilities calculated with frequency-

dependent Young’s modulus and damping, constant Young’s modulus

and damping obtained from Solid Type I and II model and from Parallel

Spring and Dashpot model with measurement for specimen 1 with a

horizontal orientation (cross-section 20× 30mm).

which were obtained by varying the orientation of
the rubber specimen. When the rubber specimen
was oriented horizontally (20×30× 20mm3) and
vertically (20× 20× 30mm3), the shape factors
were 0.1667 and 0.3, respectively. The numerically
calculated transmissibilities are shown in Fig. 9 for
specimen 1 and in Fig. 10 for specimen 2.

Discussion

Four rubber specimens were used in our experi-
ments. To determine the Young’s modulus and the
damping two rubber specimens with a cross-section
20× 30mm and a height of 20mmwere prepared and
in the experiments the orientation of the specimens
was changed to obtain four different transmissibilities.

First, the Young’s modulus and the damping fac-
tor were calculated from Eqs. 15 to 21 and were

10
2

10
3

10
−2

10
0

10
2

horizontal orientation
20 x 30 x 20

vertical orientation
20 x 20 x 30

Frequency [Hz]

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
si

bi
lit

y 
[−

] 

 

 

measurement
frequency dependent
Solid Type I and II

Figure 9 Comparison of transmissibilities calculated with frequency-

dependent Young’s modulus and damping and constant Young’s

modulus and damping obtained from Solid Type I and II model

with measurement for specimen 1 with a horizontal (cross-section

20× 30mm) and vertical orientations (cross-section 20× 20mm).

presented in Table 1 for specimen 1 and in Table 2 for
specimen 2. These values were then used to calculate
the transmissibilities of three simplified theoretical
models named the damping of the Solid Type I, Eq.
9, the damping of the Solid Type II, Eq. 10, and the
damping of the Parallel Spring and Dashpot, Eq. 11.
The results can be seen in Fig. 6. We can conclude
that in our case the damping of the Solid Type II
was completely inappropriate for modelling the the-
oretical response of the rubber for both specimens.
From a comparison of the results for specimen 1,
it is clear that the correlation between the damping
of the Solid Type I and the damping of the Parallel
Spring and Dashpot with the measurement was good
up to about 800Hz, that is, approximately four times
the natural frequency, and from here on both of the
theoretically calculated transmissibilities start to devi-
ate significantly from the measurement. Also, from
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dependent Young’s modulus and damping and constant Young’s
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with measurement for specimen 2 with a horizontal (cross-section

20× 30mm) and vertical orientations (cross-section 20× 20mm).

a comparison of the results of specimen 2 it is clear
that the damping of the Solid Type I does not agree
well with the measurement in the higher frequency
range, since the damping value was higher, but not
high enough to obtain good approximation of the
response with the damping of the Solid Type II; how-
ever the Parallel Spring and Dashpot model shows
better agreement in the considered frequency range.

At higher frequencies, the deterioration of the
measured transmissibility can be seen and is a
consequence of wave effects. While the natural
frequency of specimen 1 is 208.7Hz, the first
theoretical wave frequency, Eq. 14, is 1626.77Hz,
which is in good agreement with the measurement,
where an intense peak resulting in a deterioration of
the transmissibility can be seen at 1644Hz.

Second, the frequency-dependent Young’s modu-
lus and damping factor were calculated where the real
and imaginary parts of the measured transmissibility
and Eqs. 5, 22, and 23 were used. The frequency-
dependent values are presented in Figs. 4 and 5. The
conclusion can be drawn that the Young’s modu-
lus and the damping factor of specimen 1 may be
used only in the frequency range up to 1200Hz,
while in the higher frequency range the calculations
were not correct due to the wave effects, which the
SDOF system does not take into account, as well as
the measurement noise. The estimated values of the
Young’s modulus and the damping factor in the case
of specimen 2 seem to be in good agreement with our
expectations for the considered frequency range.

From this the general conclusion can be made
that the frequency range for which the frequency-
dependent values can be calculated mostly depends

on the Young’s modulus and the dimensions of the
rubber. The dimensions and the Young’s modulus
govern the natural frequency of the SDOF system
with the integrated rubber, and the higher the natural
frequency is, the higher in the frequency range the
values of the dynamic material properties can be
calculated.

Several finite-element analyses were carried out to
verify the use of the estimated values of the Young’s
modulus and the damping factor in the finite-element
model.

Three types of modelling with respect to damping
in ANSYS Workbench v.14 were presented in Fig. 8,
where good agreement of the finite-element analysis
with the frequency-dependent values and the
constant values obtained from the SDOF system
with damping of the Solid Type are shown, but
the numerically calculated transmissibility where the
damping was input as the damping factor β starts to
deviate significantly from themeasurements at higher
frequencies. The calculated values of the damping
factor for specimen 1, Fig. 5, were useful only up
to 1200Hz; therefore, the transmissibility was only
calculated up to this frequency. Consequently, it
was not possible to make any conclusions about the
transmissibility in the frequency range above 1200Hz.
It should also be noted that the numerically calculated
transmissibility, where the damping was defined as
a constant damping coefficient, shows good agreement
with the measurement also in the high-frequency
range where the internal natural frequencies of the
rubber occur.

A further four types of finite-element analyses were
made (two on each specimen), where two different
orientations of rubber were analysed (horizontal
and vertical). All the values were estimated for a
horizontal orientation of the rubber specimens and
applied to a finite-element analysis of the rubber
specimen in a horizontal and vertical orientations
and compared with the measurements. For the
analyses with specimen 1, Fig. 9, similar conclusions
could be made as for the previous analysis in
Fig. 8. Finite-element analyses with the rubber
specimen 2, Fig. 10, showed that the transmissibilities
calculated with frequency-dependent values showed
better agreement with the measurements than the
transmissibilities calculated with constant values, but
the transmissibilities for all cases were in good
agreement with the measurements.

On the basis of the presented finite-element
analyses, it can be concluded that the Young’s
modulus and the damping factor of rubbers with
a small variation of the dynamic material properties,
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like specimen 1 in our case, could be modelled as
constants, where the damping has to be input as a
constant damping coefficient not as β in the Rayleigh
damping.

To obtain the Young’s modulus and the damping
factor for the considered rubber up to the higher
frequency range, the natural frequency of the SDOF
system has to be high, meaning the dimensions of
the rubber have to be chosen accordingly. The use
of reduced-variables method,2 where experimental
curves gained at different temperatures are gathered
into a unique curve called the master curve for the
Young’s modulus is also an option.

A potential source of error is the 0.1mm variation
in the dimensions of the rubber, which is a result
of cutting the rubber to the desired dimensions.
This effect introduces some uncertainty in calculating
the shape factor S, on which the Young modulus
depends a great deal. A second potential source of
error is the lack of knowledge about the exact value
of the Poisson’s ratio of the rubber for the input
parameter in ANSYS. Theoretically, the Poisson’s ratio
of the rubber is 0.5, but as rubbers may contain
other additives the Poisson’s ratio is rarely equal
to 0.5, but is usually somewhat smaller. Sim and
Kim3 reported that for rubbers with large shape
factors the Poisson’s ratio has a great influence on
the Young’s modulus. In the literature, the effective
compression modulus was derived22–25 instead of the
apparent Young’s modulus and its dependence on
the Poisson’s ratio and the shape factor was shown.
Optimization process calculating natural frequencies
of plates in finite-element model solver were also
made, where values of the Young’s modulus and the
Poisson’s ratio were varied and natural frequencies
were compared with measured values,26 but with
this method only constant values of Young’s modulus
and Poisson’s ratio for natural frequency could be
determined.

Conclusions

The technique presented in this paper provides
a relatively quick and easy way to evaluate the
frequency-dependent Young’s modulus and damping
factor of rubber-like materials.

Three types of modelling for the dynamic material
properties of rubber-like materials in finite-element
analyses were presented. The results show that
the shear modulus and consequently the Young’s
modulus for these two studied materials change
only slightly with frequency and could eventually, in
finite-element analyses, also bemodelled as constants.

Two sources of potential errors were identified. The
first was due to the variation in the dimensions of the
rubber specimens and the second due to a lack of
knowledge about the Poisson’s ratio of the rubber.
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