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Abstract
We review the implications of an intertemporal representative consumer model for the
analysis of housing prices, describing the choice between non-housing and housing
consumption, and provide an explanation for the excess return of housing over the risk-
less rate based on weakly separable preferences. Further considerations are presented
regarding the role of liquidity constraints. A Bayesian structural vector autoregression
predicts relations between real rent growth, interest rates and housing prices consis-
tently with the representative consumer model. The orthogonalized impulse response
functions show, that housing prices are relatively unresponsive to shocks to fundamen-
tal value. The logarithmic rent/price ratio increases or does not significantly change
following shocks to the real rent growth and relative bill rates. The dynamics of hous-
ing prices over the business cycle is mainly determined by financial factors. A shock to
the natural logarithm of the rent/price ratio does not have significant predictive prop-
erties for subsequent real rent growth and relative bill rates. Moreover, the logarithmic
rent/price ratio is a highly persistent variable displaying momentum and long term
reversal.
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1 Introduction

Housing is an important component of household wealth. Estimates released by the
Italian National Institute of Statistics (Istat) and the Bank of Italy imply, that in the
2005–2021 period dwellings on average represented a fraction of 53.9 per cent of net
household wealth. In the same period the average ratio between net household wealth
and gross disposable income was equal to 8.6.

In the field of the consumption function studies have traditionally described the role
of disposable income and household wealth as conditioning variables. Further, for the
purposes of the analysis of the business cycle, gross disposable income can bemodelled
as a function of aggregate consumption. As shown in contributions by Campbell and
Cocco (2007) and Case et al. (2013), the modelling of aggregate consumption can be
improved distinguishing between financial and housing wealth.

Housing price dynamics is an important factor for the determination of housing
wealth. Moreover, it may have an impact on the business cycle also through its effects
on residential investment. Further, housing wealth may be deployed as collateral in
lending operations. Therefore, housing price changes over the business cycle entail
corresponding variations in the collateral value of dwellings and in this way contribute
to the definition of the borrowing constraints faced by households in the real estate
lending market. Some important features of the real estate market, as those relating to
mortgage choice, are described in Campbell and Cocco (2003), Fabozzi et al. (2008)
and Shiller et al. (2019) among other works.

In the present work we analyse the implications of an intertemporal represen-
tative consumer model. We follow an approach that has formerly been applied in
Lustig and Van Nieuwerburgh (2005) and Piazzesi et al. (2007) for the study of asset
prices, who consider the consequences of the assumptions regarding the separability of
preferences and collateral constraints. We model the representative consumer choice
between non-housing and housing consumption and provide an explicit formulation
of the cross-equation restriction that must hold in the housing market, due to the no
arbitrage condition, when rentals and owner occupied housing services are not perfect
substitutes.

Our approach is also related to the long tradition of research in consumer behaviour
reviewed in Muellbauer (2012, 2022), where housing prices are viewed as the result
of market equilibrium, relating the user cost of housing to consumption through an
inverted demand function. The user cost of housing is the cost incurred by economic
agents for the consumption of housing services in each time period. In turn, the cost
of housing services may be defined as proportional to the housing price and accounts
for the opportunity cost of equity, mortgage interest, maintenance and repair of the
dwelling and the capital gains due to housing price changes over time.

In the econometric application quarterly housing prices data for the 1996Q1-
2019Q3 period support an explanation of housing risk premia based on weakly
separable preferences, because of the relatively low variance of consumption. We
provide some further discussion on the additional effects that may result from finan-
cial market imperfections.

The main propositions holding in the representative consumer economy allow us
to identify a Bayesian structural vector autoregression (BVAR) model of the relation
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between real rent growth, interest rates and housing prices. Following recent research
in Baumeister and Hamilton (2015, 2018) we estimate the model from the struc-
tural form. Prior assumptions are made with regard to the contemporaneous relations
between the endogenous variables, according to the predictions of the representative
consumer model. The posterior distributions compiled on the basis of the 1996Q1-
2019Q3 sample imply, that our priors are relatively informative for some parameters,
while for the remaining ones more information is provided by the available observa-
tions.

The orthogonalized impulse response functions deliver robust evidence with regard
to the informational content of housing prices for the patterns of future real rent growth
and interest rates. Housing prices are a persistent variable, relatively unresponsive to
real rent growth and interest rate shocks. Moreover, there is excess sensitivity to the
news regarding fundamental value conveyed by shocks to the logarithmic rent/price
ratio.

The results overall suggest that financial factors have a significant role for the
business cycle, through their effects on housing price dynamics. This consideration
acquires even more relevance with reference to the sample period of the present study,
which features several periods of economic expansion followed by crises and contrac-
tions.

The remainder of the work is structured as follows. Section2 describes the repre-
sentative consumer model. Section3 presents the data. Section4 reviews the relations
between excess returns in housing markets and the volatility of the stochastic discount
factor. Section5 analyses the consequences of assumptions regarding separability of
preferences and collateral constraints. Section6 defines the Bayesian structural vector
autoregression model. Section7 illustrates the estimation results. Some conclusions
are drawn in Sect. 8.

2 A Representative Agent Economy

We review the intertemporal model that was introduced in Lustig and Van Nieuwer-
burgh (2005) and Piazzesi et al. (2007) for the analysis of asset prices. In the
representative agent endowment economy, consumer preferences are defined as a
function of non-housing and housing consumption: Xct and Xht . Agents optimize
consumption subject to a dynamic budget constraint. The assumptions regarding the
separability of preferences between non-housing and housing consumption imply a
multiplicative form for the stochastic discount factor and have consequences for the
relation between real gross asset returns and riskless rates. An explanation for the
excess return of assets over the riskless rate can be provided for values of the intertem-
poral elasticity of substitution consistentwith the estimates resulting from econometric
studies of the consumption function. Further, in the presence of financialmarket imper-
fections and collateral constraints the stochastic discount factor compounds the effects
of an additional multiplicative term, which entails lower riskless rates.

Denoting with u (Xct , Xht ) the single period utility function, we assume it is
increasing and quasiconcave: uXc (Xct , Xht ) ≥ 0 and uXh (Xct , Xht ) ≥ 0. In each
time period housing consumption is a function of rentals and services from the
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housing stock: Xnt and Xst . We assume an homothetic housing aggregator function
Xht = h (Xnt , Xst ) increasing and quasiconcave in its arguments: hXn (Xnt , Xst ) ≥ 0
and hXs (Xnt , Xst ) ≥ 0.1

The analysis of the intertemporal optimization problem proceeds first under the
assumption of perfect financial markets, describing the relation between the dynamic
equations of the optimization model and the no arbitrage conditions in the housing
market.

In each period the representative agent maximizes expected utility over an infinite
horizon, we assume the utility function is additively separable in the time dimension:

U = Et

+∞∑

τ=0

ρτu (Xct+τ , Xht+τ ) (2.1)

where 0 < ρ < 1 is the intertemporal rate of time preference and Et defines expecta-
tions conditional on period t information.

We denote with Yt the representative consumer income and suppose the economy
has N financial assets to be used for savings, whose traded quantities in period t are
Xit for i = 1, . . . , N . The consumer budget constraint is:

Xct = Yt +
N∑

i=1

(Pit + Dit ) Xit−1

+Pst Xst−1 (1 − δ) − Pnt Xnt

−Pst Xst −
N∑

i=1

Pit Xit (2.2)

where 0 < δ < 1 is the constant housing depreciation rate, Pnt and Pst are the housing
rental and stock prices, Pit and Dit are the price and dividend of asset i in period t .
Representative consumer income, housing rental and stock prices, asset prices and
dividends are measured in non-housing consumption units.

In each period of time consumer wealth is composed of income, the sum of the
value and dividends of financial assets carried forward from the previous period and
the value of housing stock holdings. Representative agent wealth is allocated between
consumption and savings. The role played by housing as an asset and a consumption
good introduces an important form of temporal dependence in the economy, which
can be described analysing the solution to the optimization model.

The first order conditions include the equality of themarginal utility of consumption
in periods t and t + 1:

uXc (Xct , Xht ) Pit = ρEt
[
uXc (Xct+1, Xht+1) (Pit+1 + Dit+1)

]
(2.3)

1 The assumption of quasiconcavity requires the single period utility and the housing aggregator functions
to have convex upper contour sets. The assumption of homotheticity requires the housing aggregator function
to be an increasing transformation of a linearly homogeneous function. This in turn implies that themarginal
rate of substitution between services from the housing stock and rentals is constant along a ray from the
origin. In the text partial derivatives are denoted using subscript indices representing the function arguments.
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Equation (2.3) holds for i = 1, . . . , N , as each asset i can be used to discount utility
between time periods.

Moreover, a condition equating the marginal rate of substitution between non-
housing and housing rental consumption and the relative price of housing rents applies:

uXc (Xct , Xht ) Pnt = uXh (Xct , Xht ) hXn (Xnt , Xst ) (2.4)

In addition, an equality between the marginal utility of non-housing consumption
in period t and the sum of the marginal utility of owner occupied housing and of
non-housing consumption in period t + 1 is satisfied:

uXc (Xct , Xht ) Pst = uXh (Xct , Xht ) hXs (Xnt , Xst )

+ρEt
[
uXc (Xct+1, Xht+1) Pst+1 (1 − δ)

]
(2.5)

Following the analysis of the consumption function in Deaton (1992) we note, that
the systemof dynamic equations (2.3)–(2.5)with the optimizationmodel transversality
conditions admits two interpretations. Conditional on the representative agent income
and non-housing consumption, housing and asset prices (2.3)–(2.5) represent a system
of stochastic non-linear first order difference equations, which can be used to study the
dynamics of the real consumption variables Xct , Xnt and Xst . Conversely, conditioning
on the stochastic processes for the real variables the system describes the dynamic
motion of the non-housing consumption, housing and asset price variables.2

In the present work we take the second perspective and analyse the system of
equations (2.3)–(2.5) as a pricing model. The N equations in (2.3) correspond to
the ones that usually feature in the consumption based capital asset pricing model
(CCAPM). Dividing both sides of (2.3) with the term on its left-hand side, defining the
real gross return of asset i as 1+Rit+1 = (Pit+1 + Dit+1) /Pit , the stochastic discount
factor as Mt+1 = ρuXc (Xct+1, Xht+1) /uXc (Xct , Xht ) and rearranging yields:

Et
[
Mt+1 (1 + Rit+1)

] = 1 (2.6)

for i = 1, . . . , N .
Equation (2.6) is essentially a no arbitrage condition. From a fundamental result

for the analysis of asset markets reviewed in Hansen and Richard (1987) it follows,
that no arbitrage implies the existence of a stochastic discount factor Mt+1 and of a
system of equations equivalent to (2.6). The stochastic discount factor is a process
positive with probability one in each time period and it is defined almost everywhere
in its domain of definition.

Assuming asset N is riskless, from (2.6) we obtain:

1 + RNt+1 = 1/Et (Mt+1) (2.7)

2 A formal derivation of the system of equations (2.3)–(2.5) and the optimization model transversality
conditions are provided in Online Appendix A.
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Equation (2.7) states that the conditional expected value of the stochastic discount
factor is equal to the inverse of the riskless real gross return between periods t and
t + 1.

Further, due to the timing convention for housing and assets, we may define the
real gross housing return as: 1 + Rht+1 = Pst+1/ (Pst − Pnt ). The assumption that
the no arbitrage condition holds in the housing market, results in a pricing equation
analogous to (2.6):

Et
[
Mht+1 (1 + Rht+1)

] = 1 (2.8)

In Eq. (2.8) the housing stochastic discount factor accounts for depreciation:
Mht+1 = Mt+1 (1 − δ).3

In the representative agent economy the stochastic discount factor is equal to the
ratio between non-housing consumption marginal utility in periods t + 1 and t . Equa-
tions (2.4), (2.5) and (2.8) therefore imply the following cross-equation restriction
between rentals and services from the housing stock:

hXn (Xnt , Xst ) = hXs (Xnt , Xst ) (2.9)

From Eq. (2.9) and the assumption of homotheticity of the housing aggregator
function it follows, that in equilibrium the ratio between rentals and services from the
housing stock Xnt/Xst must be constant.

In order to interpret this result notice, that no arbitrage implies that the consumer
does not make utility gains by trading rentals for owner occupied services in any
time period. When the cross-equation restriction (2.9) holds, Eq. (2.5) defines an
equivalence in each time period between rents and the user cost of owner occupied
housing: Pnt = Pst − Et (Mht+1Pst+1).

3 Descriptive Statistics

The econometric application employs the residential property price index series for
Italy released on a quarterly basis by the Bank of Italy, which is based on transaction
values for both new and existing dwellings. Rents are measured with the actual rentals
for housing component of the harmonised index of consumer prices (HICP) released
by the Italian National Institute of Statistics (Istat). We use the overall HICP series as
a deflator for both the housing price and rent indices. The HICP series have a monthly
frequency, comparable quarterly series are compiled as simple arithmetic means of
the monthly indices for each quarter in the sample period. The sample period for the
analysis runs from 1996Q1 to 2019Q3.

We employ the quarterly estimates of non-durable and services consumption and of
actual and imputed rentals for housing in the national accounts series of final consump-

3 The representative consumer can substitute rentals for owner occupied housing services and while owner
occupied services are available from the stock purchase period, asset dividends accrue in the subsequent
one. Therefore, asset prices are measured ex dividend in any time period, whereas housing stock prices are
cum rent. Accounting for these differences the definitions of the real gross returns for assets and housing
are comparable. The no arbitrage condition in addition requires the stochastic discount factor Mt+1 to be
identical with probability one in the two markets.
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tion expenditure of households, to producemeasures of real non-housing consumption,
the ratio between non-housing and housing consumption and the corresponding non-
housing expenditure share.

Finally, we use Treasury bill and bond rates taken from the Bank of Italy Statistical
database (BDS) as indicators of riskless rates. The Treasury bill rate is measured with
the monthly gross yield at issue of 12 month BOTs (Buoni ordinari del Tesoro). For
the Treasury bond rate we use the gross yield to maturity of 10 year BTPs (Buoni del
Tesoro poliennali). The Treasury bill and bond rate series are aggregated at quarterly
frequency taking simple arithmetic averages of the monthly figures.4

We adopt continuous compounding throughout and, denoting natural logarithms
of variables with lower case letters, let pnt = log (Pnt ), pst = log (Pst ) and xct =
log (Xct ). In addition, defining the expenditure ratio between non-housing and housing
consumption as Xzt = Xct/ [Pnt (Xnt + Xst )] and the non-housing expenditure share
Xwt = Xzt/ (1 + Xzt ), we let xzt = log (Xzt ) and xwt = log (Xwt ). Moreover, we
denotewith rht+1 = log (1 + Rht+1) the real continuously compounded gross housing
return rate, with rbt+1 and r10yt+1 the real continuously compounded Treasury bill
and bond rates. We define the real continuously compounded excess return of housing
over the Treasury bill and bond rates as erbt+1 = rht+1 − rbt+1 and er10yt+1 =
rht+1 − r10yt+1 and the term spread as srt+1 = r10yt+1 − rbt+1. Finally, we denote
with relt+1 the relative bill rate, defined as the difference between the Treasury bill rate
and its four quarter moving average, and with pnt − pst the logarithmic transformation
of the housing rent/price ratio.

Table 1 and Figs. 1, 2, 3 provide descriptive statistics for the main variables of
interest.While real housing prices and rents have remained relatively stable on average,
as shown in Fig. 1 there have been significant cyclical movements of the logarithmic
transformation of the rent/price ratio. The log rent/price ratio increased in the years
leading to the adoption of the Euro currency. Subsequently, the ratio decreased in the
economic growth years lasting until the first half of 2007. Following the crisis in the
USA subprime mortgage market in the second quarter of 2007, which later led to the
worldwide great recession, the log rent/price ratio reversed its course. The increase in
the log rent/price ratio continued after the sovereign debt crisis in the second quarter
of 2011. In the last few years of the sample period the ratio has remained relatively
stable.

In the 1996Q1-2019Q3 period real non-housing consumption expenditure has
grown at an average quarterly pace of 0.2 per cent. The real quarterly housing rate of
return has been on average equal to 2.7 percentage points, respectively about 10 and
5 times greater than the average Treasury bill and bond rates.

Figure 2 reveals, that the excess returns of housing over the Treasury bill and bond
rates have been greater than average in the economic growth years until the first half

4 While aggregate measures have some limitations, due to the heterogeneity of the housing services
produced from several different property types, both the housing price and rent indices are compiled applying
procedures that account for quality changes. The Bank of Italy housing price series aggregates individual
quotations controlling for dwelling size, type and location. The HICP actual rentals for housing series
applies standard quality correction procedures. We find it convenient to introduce the statistical sources
at this stage, in order to present some important stylized facts regarding housing price dynamics in Italy
that will inform the interpretation of the econometric evidence in the following sections. Some further
description of the statistical sources is given in Online Appendix D
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Fig. 1 Logarithmic rent/price ratio. Note: Natural logarithm of the real housing rent/price ratio. Sample
period 1996Q1-2019Q3

Fig. 2 Real gross housing excess return rate. Note: The bold and dashed lines depict the real gross housing
excess return rate with respect to the Treasury bill and bond rates. Sample period 1996Q1-2019Q3

of 2007 and lower than average in the great recession period and in the sovereign debt
crisis years. In the last years of the sample period excess returns have turned above
average. Figure3 depicts an increase of the term spread in the sample period following
the USA subprime mortgage crisis.

4 Risk Premia

In order to analyse the relation between real gross housing returns and Treasury bill
and bond rates, we find it convenient to use log-linear transformations of (2.6)–(2.8).
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Fig. 3 Term spread. Note: Spread between Treasury bond and bill rates. Sample period 1996Q1-2019Q3

For this purpose assume, that the stochastic discount factor Mt+1 and the real gross
return 1+Rit+1 of asset i = 1, . . . , N have a joint conditional log-normal distribution.
Equation (2.6) then implies:

Et (rit+1) = −Et (mt+1) − 1

2

(
σ 2
i + σ 2

m + 2σim
)

(4.1)

for i = 1, . . . , N − 1.
In (4.1) we denote with rit+1 = log (1 + Rit+1) and mt+1 = log (Mt+1) the

real rate of return of asset i and the logarithmic transformation of the stochastic
discount factor and with σ 2

i = V ARt (rit+1), σ 2
m = V ARt (mt+1) and σim =

COVt (rit+1,mt+1) their conditional variances and covariances, for i = 1, . . . , N−1.
In addition, Eq. (2.7) implies the riskless rate relation:

rNt+1 = −Et (mt+1) − σ 2
m

2
(4.2)

Moreover, assuming the housing stochastic discount factor and the real gross hous-
ing return have a joint conditional log-normal distribution, Eq. (2.8) implies:

Et (rht+1) − δ = −Et (mt+1) − 1

2

(
σ 2
h + σ 2

m + 2σhm
)

(4.3)

where rht+1 = log (1 + Rht+1) , σ 2
h = V ARt (rht+1) andσhm = COVt (rht+1,mt+1)

denote the real gross housing return rate, its conditional variance and covariance with
the stochastic discount factor and we use the first order approximation log (1 − δ) =
−δ.
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Subtracting (4.2) from (4.1) we obtain the real excess return relation for assets:

Et (rit+1 − rNt+1) + σ 2
i

2
= −σim (4.4)

for i = 1, . . . , N − 1.
According to Eq. (4.4), the excess return of stock i = 1, . . . , N − 1 adjusted for

the effect of Jensen’s inequality should be equal to the opposite of its covariance with
the stochastic discount factor.

Similarly, subtracting (4.2) from (4.3) we obtain the housing real excess return
relation:

Et (rht+1 − rNt+1 − δ) + σ 2
h

2
= −σhm (4.5)

Equation (4.5) predicts, that the excess return of housing, adjusted for both depre-
ciation and Jensen’s inequality, should be equal to the opposite of its covariance with
the stochastic discount factor.

The Cauchy–Schwarz’s inequality implies that |σim | ≤ σiσm and |σhm | ≤ σhσm .
Substituting in (4.4) and (4.5)we obtain the following bounds on the standard deviation
of the stochastic discount factor:

σm ≥ Et (rit+1 − rNt+1) + σ 2
i
2

σi
(4.6)

for i = 1, . . . , N − 1 and:

σm ≥ Et (rht+1 − rNt+1 − δ) + σ 2
h
2

σh
(4.7)

which hold provided real gross excess returns in both asset and housing markets are
positive.

Volatility bounds of this typewere advanced inShiller (1982) and further analysed in
Hansen and Jagannathan (1991). Following Eqs. (4.6) and (4.7) the standard deviation
of the stochastic discount factor should be greater than or equal to the logarithmic
Sharpe ratio, defined as the ratio between the real gross excess return with respect to
the riskless rate corrected for Jensen’s inequality and the standard deviation, of each
asset i = 1, . . . , N − 1 and of housing. For housing the excess return accounts for
depreciation.

Table 2 reports estimates of the housing logarithmic Sharpe ratio, compiled using
either the Treasury bill or the bond rate as measures of the riskless rate. For this
calculation we assume, that government bills and bonds trade in the asset market with
constant term premia of the same order of magnitude as the depreciation rate. The
table also displays the Sharpe ratio calculated using the term spread as a measure of
the excess return of bonds over bills. The reported bounds imply, that the stochastic
discount factor should have a very high volatility to be consistent with the predictions
of the asset pricing model.
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Table 2 Sharpe ratios Excess return Std. dev Sharpe ratio

erbt 0.0247 0.0126 1.9656

er10yt 0.0204 0.0130 1.5683

srt 0.0043 0.0022 1.9105

Ratios between the real gross housing excess return with respect to the
Treasury bill and bond rate or the term spread, corrected for the effect
of Jensen’s inequality, and their standard deviations. Sample period
1996Q1-2019Q3

5 Separability and Collateral Constraints

In the representative agent economy real gross excess returns in asset and housing
markets may be explained from characteristics of consumer preferences and other
aspects of the intertemporal optimization problem. We describe the consequences of
separability between non-housing and housing consumption and liquidity constraints.

5.1 Constant Elasticity of Substitution Specification

Piazzesi et al. (2007) analyse the constant elasticity of substitution (CES) single period
utility function:

u
(
X̃t

) = X̃
1− 1

σ
t − 1

1 − 1
σ

(5.1)

with the consumption aggregator:

X̃t =
[
αX

ε−1
ε

ct + (1 − α) X
ε−1
ε

ht

] ε
ε−1

(5.2)

where σ > 0 and ε > 0 represent the intertemporal and intratemporal elasticities of
substitution and 0 < α < 1 is a consumption weight parameter.5

In Eqs. (5.1) and (5.2) non-housing and housing consumption are weakly separable,
the utility function is additively separable when σ = ε. The stochastic discount factor
is equal to the ratio between non-housing consumption marginal utility in periods t+1
and t . The CES specification implies:

Mt+1 = ρ

⎡

⎢⎣
α + (1 − α)

(Xht+1
Xct+1

) ε−1
ε

α + (1 − α)
(Xht
Xct

) ε−1
ε

⎤

⎥⎦

σ−ε
σ (ε−1) (

Xct+1

Xct

)− 1
σ

(5.3)

5 The functions in (5.1) and (5.2) are not defined when either the intertemporal or the intratemporal
elasticity of substitution is equal to one, although it can be shown that u

(
X̃t

) → log X̃t for σ → 1 and

X̃t → Xα
ct X

1−α
ht for ε → 1. The logarithmic or Cobb-Douglas specifications of the intertemporal and

intratemporal aggregators should be used when σ = 1 or ε = 1.
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Moreover, provided the housing aggregator function is linearly homogeneous, the
first order conditions of the representative consumer optimization problem yield the
following expression for the expenditure ratio between non-housing and housing con-
sumption:

Xzt = α

1 − α

(
Xct

Xht

) ε−1
ε

(5.4)

Equation (5.4) may be derived from the expenditure ratio definition, using the
first order condition (2.4) and the cross-equation restriction (2.9), and noticing that
Euler’s theorem implies h (Xnt , Xst ) = hXnt (Xnt , Xst ) Xnt + hXst (Xnt , Xst ) Xst ,
due to the linear homogeneity of the housing aggregator function. Substituting (5.4)
in (5.3) simple algebra shows, that the stochastic discount factor takes the following
multiplicative form:

Mt+1 = Mct+1Mwt+1 (5.5)

where Mct+1 = ρ (Xct+1/Xct )
−1/σ and Mwt+1 = (Xwt+1/Xwt )

(ε−σ)/[σ(ε−1)].
The first term on the right hand side of (5.5) will be recognized as the stochastic

discount factor usually featuring in the CCAPM, a function of the growth rate of
non-housing consumption. The second term is a consequence of weak separability
between non-housing and housing consumption and is defined as a function of the
ratio between the non-housing consumption expenditure shares in periods t + 1 and t .
When preferences over non-housing and housing consumption are additively separable
Mt+1 = Mct+1, because Mwt+1 = 1.

Defining mct+1 = log (Mct+1) and mwt+1 = log (Mwt+1) and taking the
natural logarithm of both sides of Eq. (5.5), we can show that the conditional vari-
ance of the logarithmic transformation of the stochastic discount factor is equal
to the sum of the variances of mct+1 and mwt+1 and of twice their covariance:
V ARt (mt+1) = V ARt (mct+1) + V ARt (mwt+1) + 2COVt (mct+1,mwt+1). As the
elasticity term (ε − σ) / [σ (ε − 1)] and its square are multiplicative factors in the
definition of COVt (mct+1,mwt+1) and V ARt (mwt+1), their asymptotic properties
allow to replicate any required volatility for the natural logarithm of the stochas-
tic discount factor mt+1. The conditions limε→1+ (ε − σ) / [σ (ε − 1)] = +∞
and limε→1− (ε − σ) / [σ (ε − 1)] = −∞ hold for σ < 1, or limε→1+ (ε − σ) /

[σ (ε − 1)] = −∞ and limε→1− (ε − σ) / [σ (ε − 1)] = +∞ are fullfilled for σ > 1.
In order to further asses the properties of this model it is useful to provide a descrip-

tion for the case of additively separable preferences. The natural logarithm of the
stochastic discount factor reduces to mt+1 = log ρ − γΔxct+1 when σ = ε, where
γ = 1/σ denotes the coefficient of relative risk aversion. This in turn implies, that
the covariance of the excess real gross housing return rate with the stochastic discount
factor is equal to the opposite of the product between the coefficient of relative risk
aversion and the covariance of the excess real gross housing returnwith the growth rate
of non-housing consumption: σhm = −γ σhc, where σhc = COVt (rht+1,Δxct+1).
Table 1 shows that the excess real gross housing returns, compiled using either Trea-
sury bills or bonds as riskless assets, are positively correlated with the growth rate of
non-housing consumption. We can therefore substitute in Eq. (4.5) and estimate the
coefficient of relative risk aversion as the ratio between the real excess gross hous-
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ing return rate, corrected for the effect of Jensen’s inequality, and its covariance with

the non-housing consumption growth rate: γ =
[
Et (rht+1 − rNt+1 − δ) + σ 2

h
2

]
/σhc.

This criterion results in estimates of the coefficient of relative risk aversion of the order
of 200. Similar results are obtained using the corresponding computations for the term
spread.

Moreover, we can use the riskless rate relation (4.2) to derive an estimator of
the intertemporal rate of time preference. When σ = ε substituting the logarithmic
transformation of the stochastic discount factor in (4.2) yields: log ρ = −rNt+1 +
γ Et (Δxct+1) − (γ σc)

2 /2, where σ 2
c denotes the conditional variance of the non-

housing consumption growth rate: σ 2
c = V ARt (Δxct+1). With additive separable

preferences σ 2
m = (γ σc)

2. Taking either the Treasury bill or bond rates as measures
of the riskless rate yields estimates of the natural logarithm of the intertemporal rate
of time preference of the order of -30.

Since in our sample the growth rates of non-housing consumption and of the non-
housing expenditure share are positively correlated, the implausibly high estimates for
the coefficient of relative risk aversion obtained with additive separable preferences
could be corrected assuming non-separable preferences, with either ε → 1+ and
σ > 1 or ε → 1− and σ < 1. We finally note that with non-separable preferences the
estimates of the natural logarithm of the intertemporal rate of time preference remain
in the range observed in the case of additive separability, when using either Treasury
bills or bonds as riskless assets.6

5.2 Liquidity Constraints

A possible solution is to introduce additional features in the model. Market imper-
fections as the presence of liquidity constraints could be of relevance, because the
estimated Sharpe ratios suggest financial and housing markets are incomplete in our
sample.

The role of liquidity constraints for the determination of household savings is
described in Deaton (1991). More recently, Lustig and Van Nieuwerburgh (2005)
have analysed the relation between consumption and risk premia in the asset mar-
ket, in a model featuring both non-housing and housing consumption and collateral
constraints.

In the present framework collateral constraints may be introduced with two types
of restrictions. The first one rules out short sales in the asset market:

Pit Xit ≥ 0 (5.6)

6 Comparable results regarding the implications of observed excess returns for the coefficient of relative
risk aversion and the intertemporal rate of time preference are usually obtained in financial markets, as for
instance reviewed in Mehra (2003). In order to address the equity premium puzzle Lettau and Ludvigson
(2001a, b) following Campbell andMankiw (1989) have suggested modelling the stochastic discount factor
as a function of the consumption-asset-income ratio (cay), which is defined as a cointegrating residual
between the logarithmic transformation of aggregate consumption, assetwealth and labour incomevariables.
Similarly to more traditional indicators as the natural logarithm of the dividend/price ratio, the cay has good
predictive properties for financial market returns.
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and holds for each risky asset i = 1, . . . , N − 1.
The second limits the amount of borrowing on the riskless asset:

− PNt XNt ≤ θ Pst Xst (5.7)

where the parameter 0 < θ < 1 represents the maximum allowable loan to value ratio.
With these constraints the stochastic discount factor takes the multiplicative form:

Mt+1 = Mct+1Mwt+1Mλt+1 (5.8)

In Eq. (5.8) Mλt+1 = uXc (Xct , Xht ) /
[
uXc (Xct , Xht ) − λi t

]
and λi t ≥ 0 denotes

the Lagrange multiplier for constraint i = 1, . . . , N .
Moreover, the housing stochastic discount factor has the form:

Mht+1 = Mt+1Mθ t+1 (1 − δ) (5.9)

where Mθ t+1 = [
uXc (Xct , Xht ) − λNt

]
/
[
uXc (Xct , Xht ) − λNtθ

]
.

The collateral constraints and the no arbitrage condition in the real estate market in
addition imply the following cross-equation restriction:

hXn (Xnt , Xst ) = hXs (Xnt , Xst ) Mλt+1Mθ t+1 (5.10)

which generalizes the one holding without liquidity constraints.7

In order to interpret the above results note, that in equilibrium each Lagrange multi-
plier λi t represents themarginal increase in consumer utility resulting from a reduction
of the i-th constraint by an amount equivalent to one non-housing consumption unit.
When the collateral constraints are non binding, λi t = 0 for i = 1, . . . , N and hence
Mλt+1 = Mθ t+1 = 1. The stochastic discount factor with non binding constraints is
equivalent to the one holding in the model without liquidity restrictions.

Since the stochastic process for Mt+1 is defined up to a set of probability measure
equal to zero in its domain, the no arbitrage condition in the asset market and Eq. (5.8)
moreover imply, that either all collateral constraints are binding and λi t = λ ≥ 0 for
all i = 1, . . . , N , or the constraints are non binding.

Although the terms Mλt+1 and Mθ t+1 contribute to the volatility the stochastic
discount factors defined in (5.8) and (5.9), they perform a different andmore important
function. As Mλt+1 ≥ 1 with equality when (5.6) and (5.7) are non binding, the
presence of collateral constraints determines an increase of the equilibrium financial
asset prices Pit , for i = 1, . . . , N , and of the housing stock price Pst , other conditions
being held constant. The termMθ t+1 has a similar additional role for the housing stock
price, since Mθ t+1 ≥ 1 with equality when (5.6) and (5.7) are non binding. When the
collateral constraints are binding financial and real assets are more valuable, because
they can be deployed to ease the restrictions.

7 We analyse the representative agent dynamic optimization problem with collateral constraints in Online
Appendix B. Equations (5.8)–(5.10) are obtained rearranging (B.3) and (B.4).
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6 Bayesian Vector Autoregression

The predictive ability of the asset pricing equations and the stochastic properties of
the housing price and return series can be further studied in a multivariate statistical
framework. We analyse a structural vector autoregression model with the following
form:

Ayt = Bxt−1 + ut (6.1)

where yt is an n × 1 vector of endogenous variables, xt−1 = (
y′
t−1, . . . , y

′
t−m, d ′

t

)′ is
a k × 1 vector, k = mn + l, defined by m lagged values of the endogenous variables
and an l × 1 vector of deterministic terms dt .

In Eq. (6.1) A is an n × n structural matrix, representing the contemporaneous
relations between the endogenous variables, B is an n × k parameter matrix and ut is
an n × 1 vector disturbance term, independent and identically distributed over time:
Et−1 (ut ) = 0 and Et−1

(
utu′

t

) = . We assume the elements of ut are contempora-
neously uncorrelated and hence that  is an n × n diagonal matrix.

We define the vector of endogenous variables as to include the real rent growth
rate, the relative bill rate and the logarithmic transformation of the housing rent/price
ratio: yt = (Δpnt , relt , pnt − pst )′. Moreover, we include in dt an intercept and three
seasonal indicator variables, one for each of the quarters from second to fourth.

The reduced form corresponding to the structural model (6.1) is the following:

yt = �xt−1 + εt (6.2)

where � = A−1B and εt = A−1ut .
The structuralmatrix A has full rank equal ton by assumption and is therefore invert-

ible. The reduced form disturbance vector in Eq. (6.2) is independent and identically
distributed over time: Et−1 (εt ) = 0 and Et−1

(
εtε

′
t

) = � where � = A−1
(
A−1

)′
.

We estimate the model with an order of three lags.8

We adopt a Bayesian approach to identification and estimation of the econometric
model in (6.1) and (6.2). For this purpose two issues need to be addressed, regarding
the prior restrictions on the matrix A following from economic theory and the methods
of estimation of the structural and reduced form parameters.

Following Sims and Zha (1998), when the structural matrix A is identified, estima-
tion can in principle proceed from either the structural or the reduced form. Bayesian
algorithms of estimation based on the reduced form are proposed in Rubio-Ramírez
et al. (2010) and Arias et al. (2018). Reduced form methods are based on the classi-
cal identification problem in structural models. The structural and reduced forms have
respectively n (n + 1)+nk and n (n + 1) /2+nk parameters. Therefore, for any value
of the reduced form matrices � and �, n (n + 1) /2 restrictions are required in order
to identify the structural matrices. The unit normalization of the structural variance

8 In order to specify the model lag length, we exploited the property that Bayesian posterior distributions
converge to ordinary least squares (OLS) estimates as the sample size grows. Selection criteria applied to
OLS estimates of the reduced form model suggest a lag of order three. With this specification the model
is stable and therefore the endogenous variables may be assumed to be stationary. Furthermore, Lagrange
multiplier tests of residual serial correlation and heteroskedasticity tests support the assumption that the
model disturbances are independent and identically distributed over time.
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matrix  = In yields n restrictions. The remaining n (n − 1) /2 restrictions could be
provided by the Cholesky decomposition of the variance matrix �. Since by defini-
tion � is symmetric positive definite, there exists a unique lower triangular matrix H
that makes � = HH ′. Identification may therefore be obtained imposing a recursive
form on the n structural equations describing the relations between the endogenous
variables, letting A = H−1 and εt = Hut . More generally, defining εt = HQut and
A = Q′H−1 where Q is any n × n orthogonal matrix results in an exactly identified
model, because Et−1

(
εtε

′
t

) = HH ′ as QQ′ = Q′Q = In .9

In Bayesian estimation it is usually assumed that the reduced form disturbance
has a normal distribution, with zero mean and variance �: εt | �,� ∼ N (0, �).
The vector of endogenous variables conditional on its own lags, deterministic terms
and the parameters is therefore normally distributed with mean �xt−1 and variance
�: yt | xt−1,�,� ∼ N (�xt−1, �). In a natural conjugate inference framework a
choice for the prior distribution for � and � is the normal-inverse Wishart, defined
as the product of a normal distribution for the coefficient matrix � conditional on �

and an inverse Wishart distribution for the variance �: � | � ∼ N
(
�,� ⊗ V

)
and

� ∼ IW
(
�, ν

)
with mean and scaling parameters �, V and � of order n × k, k × k

and n×n and ν > n−1. These assumptions entail a normal-inverseWishart posterior
distribution for the parameters, which can be simulated to yield estimates for the
statistics of interest. The computation of structural statistics proceeds through random
sampling from the space of orthogonal matrices Q. Identification of the structural
form in each simulation is usually obtained combining sign and zero restrictions on
the matrix A.

In the present work we apply the methods advanced in Baumeister and Hamilton
(2015, 2018) and estimate the BVARmodel from the structural form. In order to spec-
ify the restrictions on the structural matrix A = [

ai j
]n
i, j=1, we use the normalization

conditions aii = 1 for i = 1, . . . , n and consider the following equation, relating the
logarithmic housing rent/price ratio to expectations on forthcoming changes in real
rent growth and housing return rates:

pnt − pst = − ι

1 − η
− Et

+∞∑

τ=1

ητΔpnt+τ + Et

+∞∑

τ=1

ητ rht+τ (6.3)

where η = 1− exp (pn − ps), pn − ps is the mean value of the logarithmic rent/price
ratio and ι = −η log η − (1 − η) log (1 − η). We assume 0 < η < 1, the mean
values of the real rent growth and relative bill rates to be lower than its reciprocal
and rule out housing rational speculative bubbles imposing the limiting condition
limτ→+∞ ητ Et (pnt+τ − pst+τ ) = 0.10

9 We should recall, that in the classical approach to identification the ordering of the variables in the
vector yt plays a key role, as both the structural and the Cholesky matrices A = H−1and H are lower
triangular. In the recursive system resulting from application of the Cholesky decomposition each variable
is contemporaneously related to the preceding ones in the variable ordering. The orthogonal transformation
of a recursive system requires additional information for identification, for instance long run restrictions as
in Blanchard and Quah (1989) and Galí (1999).
10 An explicit derivation of Eq. (6.3) is included in Online Appendix C.
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Equation (6.3) implies, that the natural logarithm of the real housing/rent price
ratio is respectively negatively and positively related to expected forthcoming real
rent growth and housing return rates in each time period. Moreover, from (4.5) it
follows that the real gross housing return rate is equal to the riskless rate plus a con-
stant risk premium. Assuming that the Treasury bill rate is equal to the riskless rate
plus a constant term premium, the asset pricing framework rules out contemporane-
ous relations between the real rent growth and relative bill rates and the logarithmic
transformation of the rent/price ratio. We therefore set a13 = a23 = 0.

In addition, we assume that the real rent growth rate is contemporaneously nega-
tively related to the relative bill rate, the relative bill rate conversely responds positively
to the real rent growth rate and the logarithmic transformation of the housing rent/price
ratio is positively related to both variables. We therefore impose the following sign
restrictions on the structural matrix elements: a12 ≥ 0, a21 ≤ 0, a31 ≤ 0 and a32 ≤ 0.

The sign restrictions may be supported with the representative consumer model.
We use the relative bill rate as a measure of the long term movements of the riskless
rate. The effect of the riskless rate on the real rent growth rate follows from Eqs. (2.4)
and (2.7), the single period utility function in (5.1)–(5.2) and the stochastic discount
factor in (5.5). From Eqs. (2.7) and (5.5) an increase of the riskless rate, implies a
decrease of period t non-housing consumption. In turn, from Eqs. (2.4) and (5.1)–
(5.2) the reduction in non-housing consumption determines a decrease of housing
consumption and of the real rent price and growth rate. Moreover, we assume interest
rates perform a stabilization role and the relative bill rate increases after a positive real
rent growth shock. Finally, the impacts of the real rent growth and relative bill rates on
the logarithmic rent/price ratio follow from previous assumptions and Eq. (6.3). The
effect of the real rent growth rate is due to the definition of the logarithmic rent/price
ratio.Wemight suppose in addition, that an increase of the relative bill rate determines
expectations of forthcoming reductions in real rent growth rates.11

For the purposes of Bayesian estimation we assume, that the structural disturbance
term has a normal distribution with zero mean and variance : ut | B,, A ∼
N (0,). The endogenous variables vector Ayt conditional on the explanatory vari-
ables xt−1 and the parameters is therefore normally distributed with mean Bxt−1 and
variance : Ayt | xt−1, B,, A ∼ N (Bxt−1,). These assumptions are equivalent
to the ones made above for the reduced form.

A natural conjugate framework is employed to define the prior distributions for
the parameters conditional on the structural matrix A. Following Baumeister and
Hamilton (2015, 2018) we assume, that the prior distribution for the matrices B and
 conditional on A has the normal-inverse Gamma form, defined as the product of
independent normal distributions for each row of B conditional on  and A and of
independent inverse Gamma distributions for each diagonal element of  conditional
on A. Denoting with b′

i the i-th row of B we suppose bi | , A ∼ N (mi , ωi i Vi ),

11 In order to envisage the effect of the relative bill rate on the real rent growth rate, it is useful to first
consider the additively separable single period utility function case: σ = ε and Mwt+1 = 1. The result
then follows from the definition of the stochastic discount factor component Mct+1. For weakly separable
preferences we suppose the ensuing changes in the non-housing consumption good share do not have a
consequence for the direction of change of the real rent growth rate. Finally, we assume the identification
restrictions are robust to the presence of collateral constraints.
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Table 3 Prior distribution parameters for contemporaneous structural coefficients

Description Mode Scale Sign restriction

a12 Effect of relt on Δpnt 0.6 0.6 ≥ 0

a21 Effect of Δpnt on relt −0.6 0.6 ≤ 0

a31 Effect of Δpnt on pnt − pst −6 6 ≤ 0

a32 Effect of relt on pnt − pst −6 6 ≤ 0

Prior structural parameters distributed as independent truncated Student’s t variables with the defined mode
and scale and 3 degrees of freedom. Each distribution is truncated according to the reported sign restrictions

where mi is a k × 1 vector, Vi is a k × k matrix and ωi i is the i-th diagonal element
of , for i = 1, . . . , n. Moreover, we assume: ω−1

i i | A ∼ � (κi , ϕi ) for i = 1, . . . , n.
The mean vector mi , the variance matrix Vi and the Gamma distribution parameters
κi and ϕi are functions of A. These assumptions ensure that the posterior distribution
of B and  conditional on A has the normal-inverse Gamma form.

Finally, since the posterior distribution of the structural matrix A has a non-standard
form for any choice of the prior, it is simulated using Markov chain Monte Carlo
methods. The compilation of the statistics of interest is then performed in amulti-stage
approach: a draw is taken from the normal-inverse Gamma posterior distribution of
the parameter matrices B and  conditional on each of the retained draws for the
structural matrix A.12

7 Estimation andModel Simulation

For the purposes of Bayesian estimation we assume that the elements of the structural
matrix A are distributed as independent truncated Student’s t variables, with location
and scale parameters μi j and σi j for i, j = 1, . . . , n and ν = 3 degrees of freedom:
ai j ∼ t+

(
μi j , σi j , ν

)
if ai j ≥ 0 and ai j ∼ t−

(
μi j , σi j , ν

)
if ai j ≤ 0. Table 3

summarizes our assumptions about the location and scale parameters of the elements
of A for which a prior is formed and the sign restrictions.13

We use a version of the Minnesota prior of Litterman (1986) and Doan et al.
(1984) for the structural matrix B. With reference to the reduced formwe assume each
endogenous variable could be modelled as a first order autoregression. Defining the
n×k vector autoregressionmatrix� = [In, 0],where In is the n×n identitymatrix and
0 is the n×(k − n) zero matrix, we suppose that the prior mean for the i-th row of B is

12 An advanced discussion of the subject of Bayesian inference, with emphasis on the analysis of dynamic
models, can be found in Bauwens et al. (1999).
13 We denote with t+ (μ, σ, ν) or t− (μ, σ, ν) a Student’s t random variable with location, scale and
degrees of freedom parameters μ, σ and ν restricted to be either positive or negative. The properties of the
Student’s t distribution are a function of the degrees of freedom parameter ν. The Student’s t is equivalent
to a Cauchy distribution for ν = 1 and converges to the normal distribution for ν → +∞. The mean of a
Student’s t variable is equal to the location parameter μ for ν > 1 and its variance is equal to σ 2ν/ (ν − 2)
for ν > 2. Our choice of a degrees of freedom parameter ν = 3 implies a higher degree of uncertainty
on the assumptions about the location than specified by the scale parameters. An overview of statistical
distributions and their properties can be found in Rao (1973).
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equal to 0.75a′
i�, where a′

i denotes the i-th row of A:mi = 0.75�
′
ai . We set the prior

mean of each autoregressive parameter equal to 0.75, assuming that the endogenous
variables are most likely to be stationary. The variance matrix Vi is assumed to assign
greater confidence to the prior assumptions made for higher lags in the BVAR model
and to normalize for the variance of the dependent variables. To this end we estimated
an autoregression of order three for each endogenous variable, including an intercept
and seasonal indicator variables.Denotingwith sii the error sample variance for the i-th
variable and defining them×1 and n×1 vectors v1 = (

1/12γ1 , 1/22γ1 , . . . , 1/m2γ1
)′

and v2 =
(
s−1
11 , s−1

22 , . . . , s−1
nn

)′
, we assume Vi is a diagonal matrix withmain diagonal

equal to the k × 1 vector v3 = γ 2
0

[
(v1 ⊗ v2)

′ , v′
3

]′, where v3 = (γ 2
3 , . . . , γ 2

3 )′ is an
l × 1 vector representing the confidence in the prior for the deterministic terms in the
BVAR model and γ0 is a constant summarizing the overall confidence. In estimation
we remain relatively non informative on the deterministic terms, assume γ1 = 1 and
γ3 = 100. We scale the overall confidence with γ0 = 0.1.14

The Minnesota prior is a parsimonious model, as it assumes the process for each
endogenous variable takes the form of an autoregression. Furthermore, in order to
account for differences in volatility between variables, the variance of each element in
the parameter matrix is rescaled with the ratio between the corresponding dependent
and independent variable variances in the structural form. The increasing degree of
confidence for parameters at higher lags in the BVAR model improves the precision
of the estimates, because in the posterior distribution a greater weight is given to the
sample information at lower lags and to the prior assumptions at higher ones. The
first and third lag of each endogenous variable in the BVAR model are weighted in
proportions of five to fifteen observations.

With regard to the prior for the structural variance matrix , each Gamma distri-
bution has mean kiϕi and variance kiϕ2

i , we set ki = 2 for all i = 1, . . . , n. Letting
S denote the sample variance matrix of the residuals from the estimated autoregres-
sions for the endogenous variables, we define each parameter ϕi in order to let the
mean of ω−1

i equal to the reciprocal of the structural variance of the i-th equation:

ϕi = (
kia′

i Sai
)−1. These assumptions assign a weight equivalent to four observations

to the prior distribution for the variance .
As the posterior distribution of the structural matrix A is non-standard, it is sim-

ulated using a random walk Metropolis-Hastings algorithm. In order to describe our
application, let a = (a12, a21, a31, a32)′ denote the vector of the elements of A whose
distribution is to be simulated. The algorithm runs in the following steps: (i) for an
initial draw of a generate a new candidate a′ = a + ψPυ, where υ, ψ > 0 and P
are a vector of independent standard Student’s t variables with 2 degrees of freedom
of the same size as a, a scaling parameter and a square matrix of order equal to the
size of a; (ii) compute the acceptance ratio π

(
a, a′) = min

{
p

(
a′) /p (a) , 1

}
, where

p(·) denotes the posterior density of A evaluated at a and a′; (iii) accept the candidate
draw or retain the initial one with probability π

(
a, a′) or 1 − π

(
a, a′). The scaling

parameter and matrix are defined as to optimize the draws and ensure an acceptance

14 The choice of the lag order in the estimated autoregression for each endogenous variable is consistent
with the VAR model specification and the Minnesota prior.
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rate equal to 30 per cent, we run the algorithm with 1,000,000 pre-simulation and
500,000 simulation draws.15

For each simulation draw for the matrix A, draws are then computed from the
posterior Gamma distributions of the structural variance . Finally, simulation draws
are compiled from the posterior normal distributions of each row of the parameter
matrix B.

Figure 4 presents a graphical depiction of the prior and posterior distributions of
the structural matrix A. In panel (a) the bold lines draw the prior distributions for
each element of A, the histogram plots represent the posteriors. Panel (b) reproduces
the histogram plots of the posterior distributions. The model simulations show that
the prior and posterior distributions for the response of the real rent growth rate to
the relative bill rate are roughly equal. Conversely, the posterior distributions for
the remaining contemporaneous coefficients are much more concentrated around the
mode. The posteriors for the response of the the logarithmic transformation of the
rent/price ratio to the real rent growth and relative bill rates are distributed near zero.

The simulation draws for the parameter posterior distribution may be used to com-
pile the impulse response functions of the BVAR model. The orthogonalized impulse
response function describes the response of each endogenous variable to each struc-
tural shock for variable time horizon:

∂ yt+τ

∂u′
t

= �τ A
−1 (7.1)

where �τ is the non orthogonalized impulse response function matrix for τ ≥ 0:
∂ yt+τ /∂ε′

t = �τ .16

Figure 5 reproduces four quarter moving averages of the orthogonalized impulse
response functions compiled according to (7.1). Each panel displays the median
response and the 68 and 95 per cent credibility sets. A shock to the real rent growth rate
raises it initially, the response remains positive in the subsequent periods decreasing
to zero in an horizon of five years. Conversely, a shock to the relative bill rate entails a
contemporaneous significant decrease of the real rent growth rate, the response returns
subsequently gradually towards zero. A shock to the logarithmic transformation of the
rent/price ratio does not have a significant effect on the real rent growth rate over the
simulation horizon. The median impact response of the real rent growth rate is greater
than 0.15 per cent for an own 1 per cent shock and lower than −0.40 per cent for a
relative bill rate shock of the same order.

The contemporaneous response of the relative bill rate to a real rent growth rate
shock is positive and significant. The relative bill rate shows negative autocorrelation
at higher lags, the response returns to zero in an horizon of five years. A shock to the

15 In actual computations the posterior density of A is defined up to a normalizing multiplicative constant.
More details on the application of the Metropolis-Hastings algorithm are specified in Baumeister and
Hamilton (2015), for an overview of Markov chain Monte Carlo methods we suggest Tierney (1994) and
Chib and Greenberg (1995).
16 The reduced form model (6.2) implies �0 = In and �τ equal to the block composed from the first n

rows and columns of the mn ×mn matrix
[ �1
I(m−1)n 0

]τ
, where �1 is the n ×mn matrix formed from the

first mn columns of �.
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Fig. 4 a Prior and posterior distributions for contemporaneous structural coefficients. Note: The top-left,
-right, bottom-left, -right charts represent the densities of the structural parameters a12, a21, a31 and a32
respectively. The bold lines depict the prior truncated Student’s t distributions, the histogram plots reproduce
the posterior distributions. The prior and posterior densities are measured in the right and left axes. The
posterior distributions are compiled using a random walk Metropolis-Hastings algorithm with 1,000,000
pre-simulation and 500,000 simulation draws and a 30 per cent acceptance rate. b Posterior distributions
for contemporaneous structural coefficients. Note: The top-left, -right, bottom-left, -right charts represent
the densities of the structural parameters a12, a21, a31 and a32 respectively. The posterior distributions are
compiled using a random walk Metropolis-Hastings algorithm with 1,000,000 pre-simulation and 500,000
simulation draws and a 30 per cent acceptance rate

relative bill rate raises it initially, the response declines gradually to zero in the follow-
ing periods. Conversely, a shock to the logarithmic transformation of the rent/price
ratio does not have significant effects on the relative bill rate. The median response of

123



Bayesian Inference in a Structural Model...

Fig. 5 Impulse responses to unit structural shocks. Note: Rows reproduce the responses of the real rent
growth rate, the relative bill rate and the logarithmic rent/price ratio. Columns display the responses to the
real rent growth rate, relative bill rate and logarithmic rent/price ratio shocks. The bold lines depict median
four quarter moving averages of the orthogonalized impulse responses, the shaded areas and dashed lines
delimit 68 and 95 per cent credibility sets

the relative bill rate is on impact greater than 0.05 per cent for a 1 per cent real rent
growth rate shock and greater than 0.3 per cent for an own shock of the same size.

A shock to the real rent growth rate is followed by an increase of the logarithmic
transformation of the rent/price ratio over the simulation horizon, while a shock to the
relative bill rate does not have significant effects. The logarithmic transformation of
the rent/price ratio increases significantly and persistently following an own shock.

The impulse response functions allow us to assess the rational expectations con-
straint in Eq. (6.3). Subtracting from both sides of (6.3) the expectation of each term
conditional on information available in period t − 1 we obtain:

(pnt − pst ) − Et−1 (pnt − pst )

= −
[
Et

+∞∑

τ=1

ητΔpnt+τ − Et−1

+∞∑

τ=1

ητΔpnt+τ

]

+
[
Et

+∞∑

τ=1

ητ rht+τ − Et−1

+∞∑

τ=1

ητ rht+τ

]
(7.2)

Following Eq. (7.2) a shock to the natural logarithm of the rent/price ratio in period
t should be related to a change in expectations between periods t−1 and t , concerning
forthcoming real rent growth and housing return rates. An increase of the log rent/price
ratio, relative to its expected value conditional on period t − 1 information, should be
followed by either a decrease of real rent growth rates or an increase of forthcoming
real housing return rates.
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Fig. 6 Cumulative impulse responses to unit structural shocks. Note: Rows reproduce the cumulative
responses of the real rent growth rate and the relative bill rate. Columns display the cumulative responses
to the real rent growh rate, relative bill rate and logarithmic rent/price ratio shocks. Cumulative responses
are calculated discounting with the factor η = 0.9737 estimated at the sample mean value of the natural
logarithmof the rent/price ratio. The bold lines depictmedian four quartermoving averages of the cumulative
orthogonalized impulse responses, the shaded areas and dashed lines delimit 68 and 95 per cent credibility
sets

Figure 6 reports four quarter moving averages of the cumulative impulse response
functions for the real rent growth and relative bill rates, compiled with the estimated
BVAR model from the first two rows of the sum:

∑T
τ=1 ητ�τ A−1. We let the time

horizon run from 1 to 40 quarters. Each panel reproduces the median cumulative
impulse response and the 68 and 95 per cent credibility sets. The cumulative response
of the real rent growth rate is positive following an own shock and negative as a
consequence of a relative bill rate shock. Conversely, the cumulative response of the
relative bill rate is negative following a real rent growth rate shock and positive after
an own shock. For both the real rent growth and the relative bill rate the cumulative
response to a logarithmic rent/price ratio shock is not significantly different from zero.

The cumulative impulse response functions deliver further evidence regarding
the persistence of the logarithmic rent/price ratio. The increase of the logarithmic
rent/price ratio following a real rent growth rate shock is consistent with our prior
assumptions and shows that real housing prices are relatively unresponsive to changes
in fundamental value. The cumulative responses of the real rent growth and relative
bill rates imply at the same time, that the logarithmic rent/price ratio should decrease
following a real rent growth rate shock. Similarly, the logarithmic rent/price ratio does
not react to the relative bill rate, although consistently with our assumptions it should
increase following a relative bill rate shock. Furthermore, there is evidence of over-
shooting of the logarithmic rent/price ratio to own shocks, which do not seem to be
related to subsequent real rent growth and relative bill rate changes. In addition, the
logarithmic rent/price ratio displays momentum and long term reversal, as the ini-
tial response following an own shock increases in subsequent quarters and return to
equilibrium occurs in a long period of time.

These results are consistent with a large amount of evidence on the behaviour of
asset and housing markets. For the purposes of the present study they can be taken as
evidence, that the dynamics of housing prices has been determined mostly by financial
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factors in Italy over our sample period. This in turn implies, that financial factors have
played a relevant broader role for the business cycle.

8 Concluding Remarks

Excess returns of housing relatively to the riskless rate have been substantial in Italy
in the 1996Q1-2019Q3 sample period. The quarterly figures imply annualized excess
returns of the order of eight to ten per cent, when the riskless rate is measured by either
the Treasury bill or the bond rate. In an asset pricing perspective no arbitrage in the
residential propertymarket entails a relation between the excess return of housing over
the riskless rate and the volatility of the logarithmic transformation of the stochastic
discount factor. The observed excess real housing returns imply a very high volatility
of the logarithmic transformation of the stochastic discount factor.

With an intertemporal representative consumer framework a weakly separable
structure of preferences provides an explanation for the observed excess real housing
returns.Weakly separable preferences between non-housing and housing consumption
imply, that the stochastic discount factor is equal in each time period to the product
of the term usually appearing in the CCAPM, defined as a function of the real non-
housing consumption growth rate, and a term in the ratio between the non-housing
consumption expenditure shares in periods t+1 and t . The volatility of the logarithmic
transformation of the stochastic discount factor is therefore a function of the variance
of the logarithmic transformations of both terms and of their covariance. The required
volatility can in general be obtained for values of the elasticities of intertemporal and
intratemporal substitution in the neighbourhood of one. We have argued at the same
time, that these assumptions do not provide a solution for the riskless rate puzzle, since
estimates of the intertemporal rate of time preference are in a very low range.

With the representative consumer framework we identify a structural vector autore-
gression model of the relation between real rent growth, interest rates and housing
prices. The results of Bayesian estimation allow us to assess the consistency of the
relations between the endogenous variables with the predictions of economic theory.
Most importantly, our prior assumptions have been based on the evidence from many
past econometric studies, that investor expectations in stock and housing markets are
often not related to fundamental value.

In an interesting review of the properties of survey based expectations of stock
market returns Greenwood and Shleifer (2014) for instance show that expectations
of stock market returns are respectively positively and negatively correlated to past
and future returns. In the present study the impulse response functions reveal that real
housing prices are relatively unresponsive to real rent growth and interest rate shocks.
Moreover, there is overshooting to financial shocks and the logarithmic rent/price ratio
is a persistent variable displaying momentum and long term reversal.

We have argued, that the above results show that the dynamics of housing prices in
Italy in the sample period is mainly explained by financial factors. This in turn implies
that asset and housing prices have a most relevant role as conditioning variables for
the modelling of aggregate consumption, disposable income and the business cycle.
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Finally, alternative explanations for excess real returns in financial markets have in
the past been provided from different perspectives. The results obtained in the present
work for the case of weakly separable preferences and our analysis of the conse-
quences of collateral constraints for the form of the stochastic discount factor imply,
that complementarity between the explanatory mechanisms resulting from different
assumptions should be sought in further research.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s40797-023-00259-x.

Data Availability The datasets analysed in the present study are available in the Mendeley Data repository
at https://doi.org/10.17632/db2s7rj27g.1.
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