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Abstract In this paper we present amultilayer networkmodel with contagion dynam-
ics which is able to simulate the spreading of information and the transactions phase of
a typical financial market. A rudimental order book dynamics is embedded in a frame-
work where the trading decisions of investors and the information dynamics occur in
two separated layers with different network topologies. The analysis addresses and
compares the behaviour of an isolated one-assetmarket and a corresponding two-assets
version, with different correlation degrees. Despite some simplifying assumptions,
results show compliance to stylized facts exhibited by density functions of true finan-
cial returns.

Keywords Financial market · Self organized criticality · Multilayer networks ·
Agent-based models · Informative contagion

JEL Classification G1 · G12 · G17 · C40

1 Introduction

Existing models of financial markets are often based on the interaction among het-
erogeneous interconnected agents. Trade decisions follow expectations and generally
depend on different behavioural rules of investors: several feedbackmechanisms deter-
mine both the complexity of the entire financial system and the unpredictability of
prices. In the last decades, the dynamics of financial markets has stimulated important
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theoretical contributions by several physicists and mathematicians like Mandelbrot,
Stanley, Mantegna, Bouchaud, Farmer, Sornette, Tsallis, among many others. In par-
ticular, statistical physics has provided the newborn field of Econophysics with new
tools and techniques that allow to model and characterize the operativeness of trading
activities. In this way, it is possible to implement in the economic analysis of financial
markets, methods and concepts coming from different contexts (Mantegna and Stanley
1999;Helbing 1995, 2012), in order to describe several features, such as agents hetero-
geneity, psychological and imitative dynamics, emergent phenomena (Simon 1957;
Tversky and Kahneman 1974; Kahneman and Tversky 1979; Barberis and Thaler
2003), which allow a realistic representation of the complexity in financial dynamics.

The consciousness about the complex nature of financial markets is not a novelty
among economists (Keynes 1936; Schumpeter 2003; Von Hayek 2015; Leijonhufvud
1993). Nonetheless, during the 1970s and the 1980s, the rational expectations (Lucas
1972; Sargent and Wallace 1976) theory sustained the microeconomic approach to
Macroeconomics that had, unfortunately, prevailed. Our view is that financial markets
should be studied by means of a macroeconomic approach, which puts the core analy-
sis on the relevance of informative signals and their distribution. We stress that not all
the relevant information can be known by investors. Because of this incomplete infor-
mation, agents try to look around in order to find useful suggestions to infer the future
evolution of markets. Like in the famous Keynesian metaphor of the “beauty contest”,
agents soon discover the ugly truth: one should never try to predict what will happen,
but what markets think that will happen, instead. Everyday history shows that mar-
ket crises are not just matter of perfect information described in models of efficiency
(Fama 1970): human interactions and individual psychology cannot be ignored, as
financial markets dramatically showed in many situations (Akerlof and Shiller 2010).
Financial integration on a global scale is nowadays so extreme that policy-makers
must learn how to set innovative policy designs (Delli Gatti et al. 2011), in a context
where the current “mainstream” economics approach has not shown, yet, the ability
to prevent wild market fluctuations that frequently occur.

The adoption of agent-based models (ABM) in the analysis of financial markets has
also given very useful insights in understanding the extraordinary relevance of het-
erogeneity and interaction among agents (LeBaron 2006; Lux and Westerhoff 2009).
In particular, models of traders with different informative sets and simple behavioural
rules have shown a quite strong attitude to describe the complex economic dynamics
(Brock and Hommes 1997a, b, 1998; Chiarella 1992; Chiarella and He 2001; Day
and Huang 1990; Franke and Sethi 1998; Hommes 2001; Lux 1995, 1998; Lux and
Marchesi 1999).

In this paper we put an emphasis on an emergent phenomenon involving the
agents of complex systems, which has been studied within the perspective of Self-
Organized-Criticality (SOC)models (Bak 1996), known as herding. Such an approach
is appropriate in studies about financial markets, since the imitation process in trading
assumes, at aggregate level, very peculiar features. Recent examples of this stream of
literature are Bartolozzi et al. (2005), Nirei (2008) and Biondo et al. (2015), among
others. Often, these models have adopted topologies like scale-free and small world
networks to describe the social interaction among agents. These topologies can be
further refined for a detailed and realistic description of several social systems. Consis-
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tent developments have been done, in last few years, by studying multilayer networks
(Vazquez 2006; Mucha et al. 2010; De Domenico et al. 2013, 2014; Cardillo et al.
2013; Yagan and Gligor 2012; Brummitt et al. 2012; Nicosia et al. 2013; Bianconi
2013; Cellai et al. 2013; Battiston et al. 2014; Horvát and Zweig 2012; Min and Goh
2013; Lee et al. 2012; Min et al. 2014). Our model relies on these relevant advances in
complex networks analysis: see, for example, Boccaletti et al. (2006, 2014) for very
detailed surveys.

The first goal of this paper is to model information and transactions dynamics
by means of the combined descriptive power of a SOC model and of a rudimental
order book. As far as we know, such an approach has not been used yet, for trading
agents. We also aim to provide a reliable framework which can further be developed
in terms of several aspects, such as the order book microstructure, the techniques of
portfolio optimization, and the expectations paradigms. Thus, the model will allow the
analysis of the complexity offinancialmarkets, in order to design adequate stabilization
policies. Such developments will be contained in forthcoming papers: at this stage,
the motivation of this paper is to show that the analysis of the informational cascades
gives a reliable description of the aggregate behaviour of markets, while building the
basis for the above described enhancements.

With regard to themodel here presented, in ourmultiplex network, nodes are traders
and links represent two different aspects of interaction among them in two layers: (1)
the first is the informative layer, which configures the global environment of social con-
tacts among market participants and it is built as a small-world network of investors;
(2) the second is the trading layer, which represents the trading opportunities for
purchases and sales and it is built as a fully connected network, (i.e., each investor,
in principle, can trade with any other in the market). Differently from other models
describing herding in financial markets (Alfarano et al. 2008; Kononovicius and Gon-
tis 2013), the first layer shows the information dynamics as a composite pressure,
which recalls some of the features of a Self-Organized Criticality (SOC) model of
earthquakes dynamics (Olami et al. 1992); the second layer adopts a rudimental order
book mechanism in order to determine the market price as the result of the matching
between supply and demand of heterogeneous traders.

Thus, the model accounts for different informative sets, imitation and prospective
utility of agents, whose orders are placed in the order book and consequently executed.
Different market mechanisms have been studied in the literature dealing with the mar-
ket microstructure (Garman 1976; Kyle 1985; Glosten 1994; Biais et al. 1997; O’Hara
1997; Hasbrouck 2007). The order book here presented considers just limit orders.
Moreover, the order quantity is always set at one share per transaction. A comparison
between the behaviour of an isolated one-asset market and of the corresponding two-
assets version (with different correlation degrees) is presented. Despite our toy-model
is very simplified from different points of view, it presents some novelties with respect
to the existing literature.

First, in order to highlight the specific role played by the information spreading
in determining actual trading choices and, more generally, by the awareness in con-
sumer behaviour (Biondo et al. 2013a, b, c, 2014, 2015), we focus on imitation. In a
large part of the ABM literature related to financial markets, traders are distinguished
in two heterogeneous groups, namely fundamentalists and chartists. The difference
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derives from the rationale behind trading activities: the former decide by referring to
a fundamental value (i.e. the supposed true value of an asset); instead, the latter, by
following the trend. The imitative behaviour of a trader has often been modeled by a
change of group: e.g., a fundamentalist imitating a chartist would become a chartists.
As initially proposed in Biondo et al. (2015), in the present model the imitation refers
only to the trading decision, no matter which group the trader belongs to. Indeed, it
is reasonable to presume that agents do not necessarily transform their “behavioural
root” because of a single trading decision.

Second, themodel dynamics shows self-organized criticality features, by exhibiting
herding as an emergent phenomenon deriving from the information cascades among
agents (Bikhchandani et al. 1992).

Third, a very elementary dividends dynamics is introduced as the main determinant
of the fundamental value of assets, which is in our model a sluggish variable instead
of being assumed as a constant, as it frequently happens in related literature.

Fourth, by considering information and trading ideally separated, this model com-
bines together the influence of contagion in the information diffusion and the orders
matching within the expressive potential of multilayer networks.

Summarizing, this paper aims to provide a simple model in order to describe the
following complex aspects of real financial markets: (a) the interactive dynamics that
constitutes the informative set of traders; (b) the impact of information timing on the
execution of orders; (c) the endogenous formation of the price series, generated by
means of a truly operating order book mechanism for limit orders placement; (d) the
occurrence of individual imitation and herding among agents due to informational
cascades; (e) the role played by the correlation among two separate asset markets (in
the most elementary setting in which the second market is just an extension of the first
one) in widening aggregate returns fluctuations.

The paper is organized as follows: Sect. 2 contains the description of the multilayer
model when a single-asset order book is addressed; in Sect. 3 a generalization of the
multilayer model to the case with two correlated assets, is considered and discussed;
finally, Sect. 4 presents some conclusion remarks.

2 The ML-CFP Model: One Asset

The model here presented extends the basic network framework contained in Biondo
et al. (2015). Several improvements have been applied in terms of the pricing of orders,
the individual status settings, the imitation definition, the existence of the order book.
In particular, the main update regards the introduction of a second layer, devoted
to very simplified order book mechanism where, at the beginning, only one asset
will be considered. In such a way, this order-book-driven Multi-Layer Contagion-
Financial-Pricing model (ML-CFP henceforth) results in a two-layers network, as
depicted in Fig. 1. More precisely, it is a multiplex, since the nodes (traders) are
the same in both the layers. The edges are, instead, representative of two different
activities involving traders: in the first layer—the informative one—they stand for the
information transmission; in the second layer—the trading one—they are intended as
the transactions possibilities. In particular, the social network that constitutes the first
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Fig. 1 The two-layers configuration of the ML-CFP model. The upper layer (or informative layer) is a 2D
Small World square lattice with N traders, connected by means of short and long-range links. The lower
layer (or trading layer) is a fully connected network where each trader is connected to all the others. In both
layers, different colors represent different levels of information: the brighter a trader is, the more informed
she is. Initial levels of information are distributed randomly

layer is a Small World (SW) network populated by heterogeneous traders Ai (with i =
1, . . . , N ).With respect to its first version, introduced inWatts and Strogatz (1998), we
consider here a two-dimensional regular square lattice (with open boundary conditions
and an average degree 〈k〉 = 4), where each node has been rewired with a probability
p = 0.02. Notice that, once the network is built, its topology remains always the same
for all simulations. In the second layer, instead, we adopted a complete graph, so that
the trading network is fully connected and gives each agent the opportunity to trade
with anyone else (see below for details).

The model operation follows a basilar info-trading dynamics, made of 2-phases
at each time-step t , which allows each trader to acquire information by means of
her linked neighbours in the first layer and then to set desired orders and possibly
to negotiate transactions with all other traders. In fact, the order book mechanism is
equivalent to consider a fully connected network for transactions.

2.1 The Informative Layer

Each market participant receives, uniformly at each time step, a global informative
pressure. This represent the common environment that traders live in everyday, which
characterizes the climate ofmarkets.A real variable Ii (t) (i = 1, 2, . . . , N ), associated
to each investor, represents individual information at time t , as a sort of container of
news resulting from her involvement in the market. At the beginning of simulations,
i.e. t = 0, the informative level of each trader is set at random, in such a way that
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Ii (t) ∈ [0, Ith], where Ith is the activation threshold, which will be referred to below,
assumed equal to 1 for all agents.

At any time-step t > 0, the information accumulated by each trader is increased
by a quantity δ Ii , different for each agent and randomly extracted within the inter-
val [0, (Ith − Imax (t))], where Imax (t) = max{Ii (t)} is the maximum value of the
agents’ information at time t . This process may cause a given trader Ak surpasses her
activation threshold value at a given time t = tav . In this case, the agent becomes
active and transmits information to other traders linked to her (i.e., her neighbours
in the network) about her status and order. Such a transmission, in turn, may cause
other activations if some of the neighbours overcome their threshold too: in this case
they are activated. They will imitate both the status and price of the first agent and,
also, transmit the same information to their neighbours, and so on. This is the way the
herding avalanche emerges and all involved traders imitate the same decision, while
the others act independently. Thus, in our model the term contagion is referred to
the informational cascade that may occur among market participants. In part of the
literature about interbank markets, the same term is instead used with other meanings,
e.g., default-driven contagion, illiquidity-contagion.

For the provided description of the informative pressure, our model is closely com-
parable to the one by Olami et al. (1992), which is devoted to resemble the energy
transmission in earthquake dynamics. Thus, traders receive two kinds of signal: a
global one, which reaches all agents, and an individual one, which starts from active
traders and involve their neighbours. This process of information spreading is engi-
neered in such a way that whenever a trader Ak overcomes her activation threshold,
Ith , she empties her collector and the level of information of each of her neighbours
is correspondingly increased. It, then, evolves according to:

Ik > Ith ⇒
{
Ik → 0,
Inn → Inn + α

Nnn
Ik,

(1)

where: nn denotes the set of nearest-neighbours of the active agent Ak , Inn is the level
of information of each of them, Nnn is their number, and the parameter α accounts
for asymmetries of information and/or partial communication. In particular, to set
α = 1 would mean that a perfect and complete transmission exists. Instead, we
believe that it is realistic to presume that part of the information content is lost during
communications among market participants, especially in financial markets where the
communication (almost always) relies on the word of mouth. Thus, we always set
α < 1 in all simulations. Further, we also assume that information is not perfectly
replicable. This is equivalent to assume that it is (at least partially) a rival good.
Thus, the amount of information that a trader can transmit is actually divided among
her nearest-neighbours: to communicate with others, especially in a very dynamic
context, is time-consuming. Therefore, if a conversation must be repeated with, for
example, four people, then either it must last four times the length of a one-to-one
speech or, conversely, it must be assumed that (in a given fixed time) a trader “splits”
her information in as many parts as the number of her neighbours. Since we did not
want to embed in the model any consideration for the time spent by each trader in
interpersonal dialogues, we opted for the latter choice. Finally, two remarks about a
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couple of very unlike cases. First, in case that two traders become active at the same
time and, simultaneously, both of them transmit their information to a commonnearest-
neighbour, all the above-illustrated dynamics remains true, with the sole exception
that the recipient trader will perceive just the signal of one of them, chosen randomly.
Second, in case that two linked traders, who are reciprocally nearest-neighbour of
each other, become active at the same time and, simultaneously, transmit to each other
their information exactly when both are, instead, transmitting, then that “inopportune”
informative stream is lost and their accumulation will start at the time immediately
successive, as explained above.

2.2 The Trading Layer

Possibly triggered by the herding process occurring in the informative layer, at each
time step, investors put their orders in the order book: these transactions happen in the
trading layer, which resembles the clearing house for negotiations where demand and
supply match and the next market price is determined.

For the sake of simplicity, the model does not include any formal portfolio anal-
ysis: traders Ai (with i = 1, . . . , N ) are simply endowed, at the beginning of each
simulation, with the same initial quantity of money Mi = M (∀i) and the same initial
quantity of shares Qi = Q (∀i). The total wealth Wi of each trader is then defined as:
Wi = Mi + Qi · pt , where pt is the market price of the asset at time t . Finally, notice
that money serves just for transactions regulation.

As a first operative hypothesis, let us imagine that the trading layer is autonomous
and independent of the informative layer. In this case, the status setting and price
formation phases for an individual agent is not affected by the behaviour of other
traders. As in many other contributions existing in related literature, we consider the
existence of two concurrent methodological approaches to trading decisions: market
participants are divided in two groups, namely fundamentalists and chartists.

Fundamentalists due their name to the fact that they presume the existence of a
fundamental value, FVt , of the asset. Such a fundamental value represents, for these
traders, the “correct” value of the asset. Therefore they think that the market price will
always tend to it. In related literature, it is quite common to assume that the fundamental
value is fixed. In our model, it is a sluggish variable, whose time variation happens
every t f time-steps according to:

FVt+t f = FVt + Dt (2)

where FV0 = 0 andDt is a random variable extracted from a normal distribution with
zero mean and standard deviation σ f . We simplistically assume that such a variable
represents the yearly yield of the asset, which is assumed to follow a random walk.
From a very simplified perspective, one could also interpret it as the dividend value,
which could be either positive or negative (in case of profits or losses, respectively).

The fundamental value is then used by each fundamentalist in order to build her
personal opinion: her fundamental price, pFt , is
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pFt = p0 + FVt + � (3)

where p0 is the initial global asset price and � is randomly chosen in the interval
(−θ, θ), in order to account for the heterogeneity of investors. Thus, fundamentalists
form their expected price for the asset according to

E[pt+1] = pt + φ(pFt − pt ) + ε (4)

where the parameterφ describes the expected speed of convergence to the fundamental
price and ε is a stochastic noise term, randomly chosen in the interval (−σ, σ ). The
value of φ is constant and equal for all fundamentalists.

Chartists’s name descends from the relevance of price charts in their behavioural
choice. In particular, they build a past reference value PRVt , computed at any t by
averaging prices included in a time window of length T , different for each chartist and
randomly chosen in the interval (2, Tmax ):

PRVt = 1

T

t∑
j=t−T

p j . (5)

Then, the expected price for the next time-step is determined by each chartist as

E[pt+1] = pt + κ

T
(pt − PRVt ) + ε (6)

where κ describes the expected speed of convergence to the past reference value and
ε is defined as in Eq. (4). The value of κ is constant and equal for all chartists.

Once the expectations have been determined, their comparison with the current
market price induces the trading decision of each agent. More precisely:

– if E[pt+1] > pt + τ traders will expect a rise in the market price and decide to
buy the asset, and their status Si will be bidder;

– if E[pt+1] < pt − τ traders will expect a fall in the market price and they will
decide to sell the asset, and their status will be asker;

– if pt − τ < E[pt+1] < pt + τ , traders will decide to hold on, without doing
nothing.

where the threshold parameter τ has been introduced so that expectations must be
sufficiently strong in order to induce a behavioural choice.

2.3 Order Book Operations

Let us describe the operativeness of the elementary limit order book included in the
model in order to establish the priority in negotiations and regulate transactions.

When active, according to her expectations, each trader sets her order in the book by
setting also the preferred price for the transaction. Such price will be a function of the
expectations that inspired the status of the trader. If the trader is a bidder, her chosen
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bid price will be extracted (with uniform probability) from a range whose minimum
is the best ask and the maximum is the trader’s expectation. The economic intuition
behind this procedure is twofold. Consider first the minimum: since the best ask is
the lowest willingness to accept that the bidder is facing, it would not be convenient
to set a bid price lower than that, because in such a case no asker would sell. Then,
consider the maximum: the expectation of the bidder is the highest price that the
asset is going to assume in her opinion, thus no bidder would pay more than that.
Conversely, if the trader is an asker, the chosen ask price will be extracted (with
uniform probability) from a range, whose minimum is the expected price and the
maximum is the expected price plus twice the difference between the current price
and the expected one. Here, the rationale for the minimum is basically that no asker
would ever sell at a price lower than the worst scenario that she can predict, whereas
the maximum is determined as a chance to exploit the potential willingness to pay of
possible bidders. Once the individual price has been set, each trader posts her order in
the book and the negotiations may (possibly) start.

The interaction between the trading and the informative layer may now play a role:
actually, if a herding avalanche is going on, all the traders involved in it, no matter
whether fundamentalists or chartists, will imitate both the status and the price of the
agent who was firstly activated and started the avalanche itself. Indeed, when a frantic
contagion starts in true financial markets, this is exactly what happens: if a trader gets
involved in the herding, no matter which her expectation or status was, she will obey
to the market!

Both sides (buy and sell orders) of the book are ranked accordingly with their
associated prices. Bid prices are ranked in decreasing order of willingness to pay: in
such away, the trader who has set the highest bid price (namely the best-bid, pBbest ) will
be the top of the list and will have the priority in transactions. Conversely, ask prices
are ranked in increasing order of willingness to accept: the trader with the lowest
willingness to accept (who sets the so-called best-ask, pA

best ) will be the top of the
list and will have the priority in transaction execution. Then, in this very simplified
toy-model of order book, the matching is done by simply comparing the best ask and
the best bid. The number of transactions NT that actually does occur between askers
(whose total number is Na) and bidders (whose total number is Nb) strictly depends
on such a comparison: actually, only if pBbest ≥ pA

best best-ask we have NT > 0,
i.e. a given number of transactions occur. Notice that when a transaction is executed,
it is negotiated at the best ask, which is the desired price set by the seller, also in
case the best bid is greater, i.e., the buyer is willing to pay even more. After the first
transaction, occurring among traders who posted their own order at the best price, both
from the demand or the supply side, transactions continue following the order in the
book (ascending for the ask list and descending for the bid list) until the bid price is
greater than the ask price and all the transactions are regulated at the ask price. Finally,
the new global asset price will be pt+1 = pL , where pL is the ask price of the last
negotiated transaction.

Notice that no short-selling or borrowing activities are allowed. Therefore, a feasi-
bility check is always executed before an order is posted in the book. For example, if
a bidder (respectively an asker) has not money (assets) to buy (to sell), she will not be
allowed to post any order. Finally, recall that for the sake of simplicity, only 1-share
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transactions are allowed. As in other prototypical models of order book (Chiarella
and Iori 2002), the reliability of the mechanism is firstly checked by the simplest
operativeness. In a forthcoming paper, this restriction will be relaxed.

2.4 Simulations Results

We now turn to present simulation results of the ML-CFP model with one asset,
aimed to see the model at work. Since we present here the dual layer version with
order book of the CFP model firstly introduced in Biondo et al. (2015), the first step
is the validation of the model by ensuring that this new enriched version can replicate
the most relevant stylized facts of financial markets, as described in Chakraborti et al.
(2009). In particular, we will focus on the fat tails of the returns density functions
(PDFs), the absence of autocorrelation in returns series, and the existence of volatility
clustering, i.e., the positive autocorrelation of the absolute values of the returns series.

Consider a network of N = 900 traders, equally divided in 450 fundamentalists
and 450 chartists. The (typical) initial setup for the values of the control parameters of
the model is the following: p0 = 500 (initial price), α = 0.95 (level of conservation of
information), σ f = 2 (standard deviation of the normal distribution for the fundamen-
tal value FVt ), t f = 10 (time increment for FVt ), � = 30 (range of variation for the
fundamentalists’ heterogeneity), φ = 0.5 (sensitivity parameter for fundamentalists),
Tmax = 100 (maximum extension of the window for chartists), κ = 2 (sensitivity
parameter for chartists), σ = 30 (maximum intensity of the stochastic noise for the
expectation values), τ = 15 (sensitivity threshold for the status setting), M = 40,000
(initial quantity of money) and Q = 200 (initial quantity of the asset).

In the top panel of Fig. 2 we show a typical time evolution of the market price.
After a transient of 5000 time-steps, which is needed for the system to enter in the
SOC regime (i.e., the system approaches the critical state and power-law distributed
avalanches appear in the informative layer), agents start to trade and the values of the
asset price are plotted for the next 10,000 time-steps, starting from the initial price
p0 = 500.

Fat tails distribution of returns Sometimes, very strong fluctuations are visible in
the price series (and, consequently in the returns series), due to the effects of herding
avalanches. It iswell known that financial returns distributions are non-Gaussian curves
and that, in particular, they exhibit so-called fat tails, proving that extreme events exist
and are not bounded within any fixed standard deviation. These events, of course,
affect the volatility of the price, as emerges from the normalized returns time series,
reported in the middle panel. Consequently, the PDFs of normalized returns, plotted
in the bottom panel of Fig. 2, shows the asymmetric fat tails characteristic of financial
markets, a sort of signature of the presence of extreme events. In panel (a) of Fig. 3
we present also the QQ-plot of the simulated returns obtained from the ML-CFP
price series. This kind of graph compares quantiles of a distribution with quantiles
of a Gaussian. The straight line y = x is the test benchmark, since it represents the
case of a distribution that behaves normally. The cross shapes curve, clearly deviating
from linearity, confirms the presence of fat tails and therefore of a non-Gaussian
behaviour. On the other hand, the distribution is just slightly leptokurtic, as visible
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Fig. 2 Top panel Typical time series for the market price. Middle panel Normalized returns of the same
price series. Bottom panel Probability density distribution (PDF) of the normalized returns compared with
a Gaussian distribution of unitary variance

from the comparison with a Gaussian curve with zero mean and unitary variance.
This is probably a consequence of the strong approximation adopted in the ML-CFP
model, where only one asset is considered and the orders are limited to one. Under
these conditions, the system evidently is able to self-organize itself, maintaining a
dynamical balance between purchase orders and sales.

Absence of auto-correlations of returns The absence of autocorrelations of returns is
sometimes referred to as the absence of simple arbitrage possibilities: i.e., on average,
it is not possible to predict the price variation from t to t + 1. Thus, profits may derive
just from risky investments. Such a feature is documented for true financial time series
by Pagan (1996) and in Cont et al. (1997), among others. In panel (b) of Fig. 3, the
plot of the autocorrelation function (ACF) gives evidence that the simulated returns
series does exhibit absence of autocorrelation.

Volatility clustering The third important fact that validates the presented model is
the circumstance that absolute returns exhibit a long-range slowly decaying autocor-
relation function. This property of financial time series has been named “volatility
clustering” and described in Mandelbrot (1963), and it means that the size of the vari-
ations in the returns is autocorrelated: high volatility is followed by high volatility
and low volatility is followed by low volatility. In panel (b) of Fig. 3, where we have

123



354 A. E. Biondo et al.

F
ig
.3

St
yl
iz
ed

fa
ct
s
of

si
m
ul
at
ed

da
ta
:
1
as
se
t.
a
Q
–Q

pl
ot

of
si
m
ul
at
ed

re
tu
rn
s
PD

F
cl
ea
rl
y
sh
ow

s
th
at

th
e
m
od
el

ge
ne
ra
te
s
pr
ic
e
se
ri
es

w
ho
se

re
tu
rn
s
ar
e
ev
id
en
tly

fa
t

ta
ile
d.
b
T
he

au
to
co
rr
el
at
io
n
fu
nc
tio

n
of

si
m
ul
at
ed

re
tu
rn
s
an
d
of

th
ei
r
ab
so
lu
te
va
lu
es

sh
ow

s
th
at
th
e
m
od

el
ge
ne
ra
te
s
un

co
rr
el
at
ed

re
tu
rn
s
w
ho

se
vo
la
til
ity

is
cl
us
te
re
d,
i.e
.,

th
e
A
C
F
of

ab
so
lu
te
re
tu
rn
s
sl
ow

ly
de
ca
ys

to
w
ar
ds

ze
ro

re
m
ai
ni
ng

po
si
tiv

e
fo
r
al
lc
on

si
de
re
d
la
gs

123



Informative Contagion Dynamics 355

shown the ACF of returns (see above), we also plot the ACF of absolute values of the
same simulated returns series, showing that a persistent autocorrelation exists and that
it decays quite slowly, exactly as it reported for true markets in related literature.

Final distributions In Fig. 4 we plot the final distributions of the asset quantity, money
and wealth for all the traders (left column) and, separately, for the fundamentalists
(central column) and chartists (right column). The initial values of the three quantities,
equal for all the traders, are also reported as dashed vertical lines. Recall that the
presentedmodel is a closed system, then, this will naturally separate traders in winners
and losers. As one could expect, the final distributions appear to be widespread around
their initial values but, in terms of money and asset quantity, the trading dynamics
seems to balance well between gains and losses. The only source of asymmetry is
the small difference between the average number of buyers and sellers that changes
its sign for fundamentalists and chartists, leading the former group to slightly favor
purchases and the latter to slightly favor sales. This, in turn, induces fundamentalists
to sell their assets, thus increasing their money, and chartists to buy new assets, thus
decreasingmoney. These two variables and the fluctuations in the asset price, evidently
compensate in producing a similar final wealth distribution for the two groups.

Robustness of the results In order to test the robustness of the results, we initially per-
formed 10 repetitions of the dynamics with the same simulation setup adopted up to
now, but with different initial conditions, averaging some interesting final quantities.
For example, we considered the average number of extreme events during the whole
time period, identified by the occurrence of normalized returns whose value exceed
three standard deviations: in this case we found 29 events of this type. We also calcu-
lated the average number of askers and bidders during the same period, which were,
respectively, Na = 229.61 and Nb = 220.42. Furthermore, over an average number
of transactions equal to NT = 88.65, the average numbers of buyers and sellers were,
respectively, 52.02 and 52.49 for fundamentalists, and 51.2 and 50.75 for chartists,
indicating a strong average equilibrium among the competing forces in the market.

All these values, together with the actual setup of the global control parameters, are
reported (in bold) in column A of Table 1. In columns from B to L, the same quantities
have been calculated in different scenarios (averaging again over 10 realizations),
each one with a different value of a single global control parameter (in italics). As
visible comparing all these scenarios with the first one, the simulation results are
quite robust and remain substantially unchanged if one varies the relative proportion
of fundamentalists and chartists (B–C), the initial asset endowment (D), the initial
money quantity (E), the initial value of the asset price (F) or the sensitivity parameter
for the expectation prices of chartists (G).

On the other hand, they are quite sensitive with respect to variations in other control
parameters, like the sensitivity parameter for the expectation prices of fundamental-
ists (H), the sensitivity threshold for the status setting (I) or the maximum intensity
of the stochastic noise (L): in these cases, the observed equilibrium between bidders
and askers can become unstable and, typically, one of the two trading groups, fun-
damentalists or chartists, start to buy the asset much more than the other one, thus
generating a spiral effect that leads fundamentalists or chartists to spend all its money
thus being pushed, in fact, out of the market. In this respect, it is worth noticing that in
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this model we did not add any dynamics that affects the composition of the population
of investors. Therefore, should a category vanish, the simulations would continue by
means of transactions due to the heterogeneity within the surviving group. A control
for the population dynamics will be added in the next release of the model. Such an
augmentation will also allow to induce a natural selection among traders, who will die
when gone out of money or assets.

3 The ML-CFP Model: Two Assets

In this section we generalize ML-CFP model by considering an order book with two
assets, aiming to explore how the presence of correlations among the assets could affect
the features observed in the previous section. In order to implement such a generaliza-
tion, we only need to modify the dynamics of the trading layer, while the informative
layer rules remain unchanged (since the exchange of information in this layer can be
considered as regarding both the assets). Then, we will show the compliance to the
stylized facts and, finally, the simulation exercise with its results.

3.1 The Trading Layer

In this generalized version of order book, traders Ai (with i = 1, . . . , N ) are endowed,
at the beginning of each simulation (i.e. at t = 0), with an equally valued portfolio,
composed by the same initial quantity of money Mi (0) = M (∀i) and the same
initial quantities of the two assets Q1i (0) = Q1 and Q2i (0) = Q2 (∀i). At each
time step, the total wealth of each trader is therefore defined as: Wi (t) = Mi (t) +
Q1i (t) · p1(t) + Q2i (t) · p2(t), where p1(t) and p2(t) are the market prices of the
two assets at time t . At t = 0, of course, all traders will have the same initial wealth
Wi (0) = Mi (0) + Q1 · p1(0) + Q2(t) · p2(0), being p1(0) and p2(0) the initial asset
prices.

Two groups of traders do exist in the market, as in the mono-asset case: fundamen-
talists and chartists, with unchanged behavioural attitudes. Fundamentalists presume
the existence of a fundamental value for each asset, FV1 for asset 1 and FV2 for asset
2, as:

FV 1(t + t f ) = FV 1(t) + D1(t) (7)

FV 2(t + t f ) = FV 2(t) + D2(t) (8)

where FV1(0) = 0 and FV2(0) = 0, while D1(t) and D2(t) are random variables
extracted from two normal distributions with zero mean and standard deviations σ1 f
and σ2 f , respectively. Individual fundamental prices, pF 1(t) and pF 2(t), are com-
puted as:

pF 1(t) = p1(0) + FV 1(t) + � (9)

pF 2(t) = p2(0) + FV 2(t) + � (10)
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where � is a parameter randomly chosen in the interval (−θ, θ), in order to account
for the heterogeneity of investors. Finally, personal expected prices for the two assets
are:

E[p1(t + 1)] = p1(t) + φ · [pF 1(t) − p1(t)] + ε (11)

E[p2(t + 1)] = p2(t) + φ · [pF 2(t) − p2(t)] + ε (12)

where all parameters are defined as the mono-asset case.
Chartists consider, in this case, two past reference values PRV 1(t) and PRV 2(t),

computed at any t by averaging the previous prices over a time window of length T ,
different for each chartist (supposed equal for both assets) and randomly chosen in
the interval (2, Tmax ):

PRV 1(t) = 1

T

t∑
j=t−T

p1( j) (13)

PRV 2(t) = 1

T

t∑
j=t−T

p2( j) (14)

Then, the expected prices of each chartist are

E[p1(t + 1)] = p1(t) + κ

T
· [p1(t) − PRV 1(t)] + ε (15)

E[p2(t + 1)] = p2(t) + κ

T
· [p2(t) − PRV 2(t)] + ε (16)

where all parameters have the same meaning as in the single asset case.
The phases of the status, price, and quantity settings are totally homologous to the

mono asset case. Now, if pL1 and pL2 are, respectively, the ask prices of the last
transactions occurred in the two order books, the new global asset prices for the two
assets will be determined as

p1(t + 1) = pL1 + δ · ω2 (17)

p2(t + 1) = pL2 + δ · ω1 (18)

where ω1 and ω2 are the market imbalances for the two assets, defined as

{
ω1 = Nb1 − NT 1 if Nb1 ≥ Na1 > 0
ω1 = −(Na1 − NT 1) if 0 < Nb1 < Na1

(19)

{
ω2 = Nb2 − NT 2 if Nb2 ≥ Na2 > 0
ω2 = −(Na2 − NT 2) if 0 < Nb2 < Na2

(20)

while δ is a parameter which quantifies the degree of correlation between the two
asset prices. In such a way, we introduce a feedback mechanism that, according to
the unsatisfied side of the market (i.e. either bidders or askers who could not trade for
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missing counterparts) for a given asset, do influence the price of the other asset, which
receives a proportional shift δ · ω. Thus, for example, in case of an excess of demand
for, say, asset 2 (i.e. bidders are greater in number than askers and therefore some of
them cannot trade the asset 2 at the desired price), the price of asset 1 will be increased
proportionally to the excess itself. Conversely, if askers are greater in number than
bidders for asset 2, the price of asset 1 is decreased proportionally to the excess of
supply. Of course, the same happens by inverting the labels of the two assets.

3.2 Simulations Results

Consider, also in this case, a network of N = 900 traders, with 50%of fundamentalists
and 50% of chartists. The (typical) initial setup for the values of the control parameters
of the model is the following: p1(0) = p2(0) = 500 (initial asset prices), α = 0.95
(level of conservation of information), σ1 f = σ2 f = 1 (standard deviations of the
normal distribution for the fundamental values FV 1(t) and FV 2(t)), t f = 10 (time
increment for FV 1(t) and FV 2(t)),� = 30 (range of variation for the fundamentalists’
heterogeneity), φ = 0.5 (sensitivity parameter for fundamentalists), Tmax = 100
(maximum extension of the window for chartists), κ = 2.0 (sensitivity parameter for
chartists), σ = 30 (maximum intensity of the stochastic noise for the expectation
values), τ = 15 (sensitivity threshold for the status setting), M = 40000 (initial
quantity of money) and Q1 = Q2 = 200 (initial endowment of the two assets).

In the top panel of Fig. 5 we show a typical time evolution of the two global asset
prices p1(t) and p2(t), and of the weighted average price p(t) defined as

p(t) = p1(t) · β1 + p2(t) · β2 (21)

where theweightsβ1 = Q1/(Q1+Q2) andβ2 = Q2/(Q1+Q2) are fixed by the initial
endowment of the two assets. According to our parameter’s choice, β1 = β2 = 0.5,
therefore p(t) is simply the average of p1(t) and p2(t). We also set δ = 0.03 in
Eqs. (17) and (18) to study the effect of correlations between the two assets.

In this panel we plot the first 10,000 time-steps after a transient of 5000 time-steps,
starting from the common initial price (500), which is highlighted by an horizontal
dashed line. The fluctuations of the two prices p1(t) and p2(t), due to the effect
of the herding avalanches, characterize the whole time series. Furthermore, the time
evolutions of both the prices appear to be strongly coupled: reversals in the price
values can be observed at 2000 and 6500 time-steps, where sudden price falls of,
respectively, p2 and p1, take place. Such a dynamics, due to the presence of prices
correlation, induces in turn a higher volatility in the weighted average price p(t),
as shown in the time series of normalized returns shown in the middle panel. As a
consequence, fat tails appear in the corresponding PDF of the bottom left panel, thus
confirming the presence of extreme events. Notice that, at variance with the analogous
PDF of the model with only one asset (shown in the bottom panel of Fig. 2), here
the central part of the distribution also deviates from a Gaussian behavior (a Gaussian
curve is plotted as full line for comparison).
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Fig. 5 Top panel Simulated time series of market prices of the two assets (p1(t) and p2(t)) in presence of
correlations (δ = 0.03) and of the weighted average price p(t) (1+ 2). The initial price is also indicated as
an horizontal dashed line. Middle panel Normalized returns of the weighted average price series. Bottom
panel Corresponding probability distribution (PDF). A Gaussian distribution of unitary variance (full line)
is also reported for comparison

We can now to test the compliance of these results with the above-mentioned
stylized facts. Immediately after we will look to the details of the final distributions
of assets, money and wealth.

Fat tails distribution of returns Such a feature is successfully replicated by the model,
as already said commenting the bottom left panels of Fig. 5. Further, in panel (a) of
Fig. 6we show theQQ-plot of the normalized returns.As in the 1-asset case, previously
described, the cross shapes curves clearly deviates from linearity, thus confirming the
presence of fat tails.

Absence of auto-correlations of returns The model confirms its compliance also with
regard to this second stylized fact. In fact, as it is shown in the panel (b) of Fig. 6, the
simulated returns series does exhibit absence of autocorrelation, since the ACF curve
oscillates around the zero line (also plotted for comparison).

Volatility clustering Finally, in the same panel (b) of Fig. 6, we also report the ACF of
the absolute values of the normalized returns (i.e. the volatility clustering). Its behavior
shows that a persistent autocorrelation does exist, since the curve decays quite slowly
staying above zero for any lag size, that is the evidence of the compliance of the model
to the third stylized fact.
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Fig. 7 Final distributions of asset quantity, money and wealth for, respectively, fundamentalists (left col-
umn) and chartists (right column). The initial values of the three quantities, equal for all the traders, are also
reported as dashed vertical lines

Final distributions Let us now look to the microscopic details of some interesting
quantities as they appear at the end of the simulation presented in Fig. 5. In Fig. 7, the
final distributions of asset quantity, money and wealth for, respectively, fundamental-
ists (left column) and chartists (right column), are plotted. The initial values of the
three quantities, equal for all the traders, are also reported as dashed vertical lines. As
one could see, fundamentalists accumulate a great quantity of asset 1, while mainly
tend to sell asset 2: as a consequence, at the end of the simulation all of them have
less money with respect to the beginning, but their total wealth stay always above the
initial value. On the other hand, chartists mainly tend to sell asset 1, while have a
quite neutral behaviour with respect to asset 2: in such a way, many of them increase
their initial capital in terms of money, even if their total wealth always remain well
below the initial value. Such a scenario is consistent with the details about the average
percentage of fundamentalists and chartists who buy or sell, calculated over the whole
simulation. In this respect, at a first sight, the situation does appear quite equilibrated:
actually, for fundamentalists, we have 26% of buyers and 24% of sellers, while, for
chartists, 25% of buyers and 26% of sellers. However, although very small, in the long
term these slight discrepancies account for the different attitude of the two kind of
traders and, in turn, for their different wealth and portfolio.

Finally, as in the 1-asset version of the model, also in this case we tested the
robustness of the results by performing 10 repetitions of the dynamics with different
scenarios of the control parameters. Again, we found that the main features of the
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model remain substantially unchanged—from a statistical point of view—with respect
to the variation of some parameters (as the relative proportion of fundamentalists and
chartists, the initial asset endowment, the initial money quantity, the initial value of
the asset price and the sensitivity parameter for the expectation prices of chartists),
while they are more sensitive to the others (like the sensitivity parameter for the
expectation prices of fundamentalists, the sensitivity threshold for the status setting
and the maximum intensity of the stochastic noise).

4 Conclusions

In this paper we have presented a multilayer order-book model of financial market
with an informative contagion dynamics. The model is inspired by self-organized crit-
icality phenomena and, despite it relies on simplifying assumptions about assets and
orders, as described above, it shows significative compliance to the most acknowl-
edged statistical features of real financial markets. This result allows concluding that
the characterization of the informative dynamics among traders can fruitfully help
explaining the aggregate behaviour of markets. This conclusion is also supported by
a reinforcing effect played by existing correlations among assets. In order to show
it, two different global settings have been discussed: a mono-asset and a two-assets
setting.

Themodel showed robust compliance tomost acknowledged stylized facts observed
in true financial markets, such as fat tailed distribution, absence of autocorrelation and
volatility clustering for the returns time series. These statistical regularities are cor-
rectly generated by the model in all configuration. Therefore, this version generalizes
and complete the previous release described in Biondo et al. (2015), by means of
several advances above described.

Nonetheless, at the present stage, this model can still be improved and it is currently
being studied as a basis for forthcoming updates. In particular, it was build in order
to provide a reliable framework to be developed with several refinements regarding
portfolio analysis, assets volatility, and market configuration. Further, from a policy
perspective, the presented framework will reveal very useful in order to build possible
interventions aimed to stabilize market fluctuations. In previous studies, the presence
of a small percentage of random traders in themarket, has shown to have a decisive role
in dampening financial fluctuations (see Biondo et al. 2013a for details). One of the
first extensions of this model will embed such a third kind of traders in the community
of investors, while setting a more appropriate portfolio analysis for fundamentalists
and chartists.
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