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Abstract The paper presents an Agent-Based model to analyze the reciprocal influ-
ence between industry structure and industry innovation patterns. This topic was
originally investigated through the seminal models of Schumpeterian competition
developed by Nelson and Winter (Am Econ Rev 67:271–276, 1977, An Evolutionary
Theory of Economic Change. Harvard University Press, Cambridge, 1982), Winter (J
Econ Behav Organ 5:287–320, 1984), and Nelson (National innovation systems. A
comparative analysis. Oxford University Press, Oxford, 1993). However, the knowl-
edge accumulation process depicted in these models was extremely simplified. In
particular, they did not provide any insight about the direction of firms’ technological
advancement, within the range of possible alternative technological paths. This aspect
is instead of topical importance for the generation of sectoral spillovers affecting the
diffusion of innovations and the evolution of the industry structure. Our model aims at
filling this gap by amending the framework proposed in Nelson and Winter (An Evo-
lutionary Theory of Economic Change. Harvard University Press, Cambridge, 1982)
so to to account for different characterizations of the ‘technology structure’ of the
industry, and their possible influence on the process of Schumpeterian selection. More
precisely, technology is represented as a directed network where each node constitutes
a batch of technological skills to be learned by firms. Themodel shows that firms’ abil-
ity to imitate competitors generates spillover effects whose relevance depends upon the
topological structure of Technology Network and firms’ specialization trajectories. In
turn, by influencing the process of Schumpeterian competition, these spillovers exert
a fundamental impact on both the industry innovative performance and the evolution
of the industry structure.
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1 Introduction

The paper presents an Agent-Based model to analyze the determinants and conse-
quences of firms’ selection process in amarket where firms do not only take short-term
production and investment decisions, but are also engaged in the search for new
technologies (Andersen 1996). This process of ‘Schumpeterian competition’ was orig-
inally investigated byNelson andWinter in a series of computationalmodels developed
throughout the seventies and eighties. Nelson and Winter (1977) wished to examine
the evolution of an industry characterized by multiple firms with different innovative
behaviors. They considered an industry composed of imitators (investing only in imita-
tiveR&D) and innovators (investing both in imitative and innovativeR&D).According
to the efficacy of their innovative strategies firms experimented different innovative
performances, determining different paces of capital accumulation, and different eco-
nomic performances. The ensuing selection process, in turn, drove the evolution of
the sector market concentration. This framework was then further refined in chapters
12 and 13 of Nelson and Winter (1982), where the Schumpeterian trade-off between
‘static’ and ‘dynamic’ efficiency was investigated. Winter (1984) then analyzed the
process of Schumpeterian competition under different technological regimes, affect-
ing the dynamics of productivity gains.1 This later version of the model introduced
an endogenous firms entry-exit mechanism. Furthermore, it provided on of the first
examples—if not the very first—of adaptive heuristics in the field of computational
economics as firms were allowed to adaptively change their innovative strategies,
based on their past results. Finally, Nelson (1993), building upon this later version,
investigated the impact of patents–preventing imitation from competitors during their
lifespan—on the process of Schumpeterian selection and industry evolution.2

Although the relevance of these contributions is widely recognized, all these
models—as we extensively discuss in Sect. 2.2—just focused on the quantitative
productivity gains associated to innovation, while totally neglecting the direction of
firms’ technological advancement, and its repercussions on the innovation process
itself. Instead, based on a endlessly growing empirical literature, the Evolutionary-
Neo Schumpeterian school of thought has stressed that technological change takes
place along ordered and selective patterns shaped by technological and scientific prin-
ciples, as well as by economic and other societal factors (Verspagen 2007). Concepts
such as incremental and radical innovations, technological paradigms and techno-
logical trajectories (Dosi 1982), natural trajectories (Nelson and Winter 1982), and

1 In particular, they considered a science-based regime, where the average of the distribution of the ‘latent
productivity’ grew at an exogenous rate, determined by the progresses of science, and a ‘cumulative’ regime,
where the distribution was centered on the on the ’prevailing’ productivity of firms.
2 For an extended literature review on this stream of research see also Cohen (2010).
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techno-economic paradigms (Perez 2009) have been developed to capture the patterns
of innovation and diffusion across sectors (Breschi et al. 2000), and over time. The
analysis of the relationship between sector knowledge base, industry structure, and
economic dynamics is thus at the core of the evolutionary approach (Bottazzi et al.
2001; Malerba 2005; Cantner and Malerba 2007) and has allowed to identify typical
patterns of industry evolution (Dawid 2006; Malerba 1992).

Our model aims at filling this gap by amending the framework proposed in Nelson
and Winter (1982) so to take into account different possible characterizations of the
industry ‘technological space’ in which firms operate (and innovate), and their possi-
ble influence on the process of Schumpeterian competition. Firms in our model can
experiment different economic performances as a result of their decision to specialize
along certain technological paths among all possible ones. In fact, we show that the
direction of firms’ technological specialization affects their ability to exploit sectoral
spillovers through imitation.

The model stresses the relevance of the knowledge structure and knowledge accu-
mulation process: the achievement of an innovation requires the prior acquisition
of an ordered sequence of technological skills. Knowledge is cumulative and path-
dependent. Each piece of technological knowledge represents at the same time the
output and the input of firms’ innovative activity. This idea is implemented in the
model by representing the industry technology as a directed graph, where different
nodes represent technological skills that firms can learn and accumulate, thus allowing
them to achieve subsequent innovations.

Our choice of employing a network structure to represent the industry technology
brings several advantage (as discussed in Sect. 2.2), in particular for its consistency
with the analysis of ‘patent citation networks’, which opens the possibility of cali-
brating the network employed in the model so to reflect the actual patterns of specific
sectors. However, in this work we present a ‘proof of concept’ prototype model,
employing a set of artificial TechnologyNetworkswith different topological structures
to highlight their impact on the industry innovation dynamics and evolution process.

2 The Model

Following Nelson and Winter (1982) and later versions, we focus on a single homo-
geneous product industry.

In each period of the simulation, firms produce using the best production technique
at their disposal. All techniques are characterized by constant returns to scale and
fixed input coefficients. Firms always produce their output at the full capacity level,
this latter being constrained by their current stock of capital Ki,t . Given the stock
of capital, firms then purchase the quantities of complementary inputs required. For
simplicity reason, the model assumes that all factors supplies are perfectly elastic,
so that all factors prices are constant. Given that each technique requires the same
amount of complementary inputs per unit of capital (as input coefficients are fixed),
this implies that costs per unit of capital, indicated by c, are constant and equal across
firms.What differs is the productivity of capital Ai,t which determines, given the stock
of capital, the unitary costs of production. Capital productivity varies across firms and
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over time as new combinations are carried out. Therefore firms’ productivity and their
production costs depend on the efficacy of their R&D activity, by which they come to
learn new technological skills.

The state of the generic firm i at period t can thus be summarized by the binary
{Ki,t , Ai,t }. which determines her output through Eq. 2.1:

Qit = Ait · Kit (2.1)

Total output is then given by: 2.2:

Qt =
∑

i

Qit =
∑

i

Ait Kit (2.2)

The industry faces a downward sloping demand curve with unitary elasticity of
prices to quantities. The price is then determined through the product demand-price
function as:

Pt = D (Qt ) = δ/Qt (2.3)

where δ is an exogenous constant parameter representing nominal demand. Firms’
profits are given by revenues on sales minus production and innovation costs. By
dividing for firms’ capital stock, we obtain that firms’ rate of profit is equal to the
market price multiplied by firms’ capital productivity, minus production costs per unit
of capital c, minus R&D costs per unit of capital. Innovative and imitative R&D costs
per unit of capital, in turn, are given by (rin , rim) respectively, so that the profit rate
for firms performing both types of R&D can be expressed as:

πi t = Pt Ait − c − rin − rim (2.4)

Conversely, firms spending only on imitative R&D have a profit rate equal to:

πi t = Pt Ait − c − rim (2.5)

In each period, based on the set of technological skills already in her possession, which
are collected in a firm-specific list called ‘Skill Profile’ (SP hereafter), each firm set
a ‘target’ skill to learn (i.e. a target ‘innovation node’). However, this may require to
set also ‘sub-targets’ if the firm does not already possess all the prior technological
knowledge required to learn it (see Sect. 2.2). Firms can try to learn targets and sub-
targets either through innovative R&D activity or by imitating competitors.

The probability of success of innovative R&D is an increasing function of the firm’s
current expenditure in this activity:

Pr {success} = αrinKit (2.6)

Alternatively, a firm can try to learn a node through imitation, that is by observing the
technology in use among her competitors and trying to copy it. For this sake, she first
samples a batch of competitors to ‘imitate’, and then check if the (sub)target node she is
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targeting belongs to the SP of anyone of them. If this is the case, imitation is successful
and the target node is added to the firm’s SP . Otherwise, she tries again in the following
period, sampling a different set of competitors. The number of competitors that firms
can try to imitate in a given period, Nim

it , is defined as the maximum between 1 and
the value extracted from a Binomial distribution having number of trials equal to the
number of competitors in business, and probability of success in each Bernoullian trial
increasing with firm’s current expenditure on imitation:

Nim
it = Max

{
1, Nim∗

i t ∼ Binomial
(
N f irms − 1 , βrimKit

)}
(2.7)

where N f irms
t is the total number of firms. Needless to say, the higher this number, the

greater should be the probability of success. Since both policies towards innovation are
defined in terms of spending per unit of capital, a firm’s total expenditure on innovation
and imitation grows or declines according to her size: large firms spend more on R&D
than small firms do. In turn, this greater spending implies a greater chance of success.
The rationale and the features of the directed network employed to model the industry
technological space are discussed, respectively, in Sects. 2.1 and 2.2, whereas firms’
behavioral rules related to the choice of the target nodes are outlined in Sect. 2.3.

For each firm, we can then calculate the ‘price-cost’ ratio ρi t = Pt/(c/Ait ), which
provides an ex-post measure of firm’s realized mark-up over unit costs, given the
prevailing market price. This ratio concurs to determine, together with firms’ market
shares sit = Qit

Qt , firms’ desired expansion (or contraction) (Eqs. 2.8 and 2.9). Firms’
ability to fund investment is constrained by their profitability πi t : the greater firms’
profitability the greater their ability to persuade capital markets to provide the required
funds (Eqs. 2.9 and 2.10).3

Since firms produce a homogeneous product and prices are market clearing, firms
can only decide the amount of goods they want to produce and sell. In turn, given
that they always produce at their full capacity level, this choice depends on their
current stock of capital, determined by investment decision which is described by
Eq. 2.9. A detailed explanation of this investment function is provided in Appendix
A.1. Intuitively, firms’ market share enters in the investment function because firms
are afraid of ‘spoiling’ their own market: if they excessively increased their scale
of production the market price for their output would shrink, eventually squeezing
their profit margin. Therefore, the higher a firm’s current market share, the greater the
risk of spoiling the market by further increasing production; and then, the higher the
price-cost ratio required to induce a given level of expansion. The degree of wariness
of firms in taking their investment decision, in turn, fundamentally depends on their
assessment of the demand curve elasticity.When firms believe the elasticity of demand
to be low, the expected effect on the market price of a further increase in production
will be negligible. As a consequence, they tend to invest more for given values of ρi t .
The opposite happens if they consider demand elasticity to be high. For simplicity

3 Notice that, since the rate of profit depends on rim and rin , R&D outlays reduce the funds available to
finance investment
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reasons, we assume that firms have a correct evaluation of the unitary elasticity which
characterizes the demand curve faced by the industry.

Formally, firms’ capital stock evolves according to the following first order differ-
ence equation:

Ki(t+1) = I (ρi t , sit , πi t ) Kit + (1 − δ) Kit (2.8)

where δ is the physical depreciation rate of capital, and investment I (·) is nonnegative
and determined by:

I (ρ, s, π) = Max

{
0, Min

[
(1 + δ) − 2 − s

ρ (2 − 2s)
, f (π)

]}
(2.9)

In Eq. 2.9 f (π) indicates firms’ financial constraint, which is determined by:

f (π) =
{

(δ + π), if π ≤ 0(
δ + Bregimeπ

)
, if π > 0

(2.10)

Bregime > 1 is a parameter defining the financial regime: when the rate of profits is
nil, firms are able to raise funds just sufficient to replace depreciated capital; when the
rate of profit is negative they can replace only a portion of their depreciated capital;
finally, if π > 0 firms can finance a rate of expansion of the stock of capital up to a
multiple Bregime of their profit rate.

2.1 The Path-Dependent, Firm-Specific Nature of Technological Advance

The generation of knowledge is characterized by specific attributes: knowledge is at
the same time the output of a learning process and an input for the generation of new
knowledge. In other words, innovation and knowledge creation are highly cumulative
and path-dependent.

Firms can enrich their knowledge base by mobilizing both internal knowledge, e.g.
through R&D labs, and knowledge located externally, derived from other economic
and social actors. Innovation and its diffusion are thus regarded as processes involving
the systematic interaction of a wide variety of actors in order to generate and exchange
the knowledge relevant to innovation and its commercialization (Cassiers and Forey
2002; Antonelli 2009).

According to Dosi (1982), technology is a broad concept encompassing ‘a set of
pieces of knowledge, both directly practical (related to concrete problems and devices)
and ‘theoretical’(but practically applicable, although not necessarily already applied),
know-how, methods, procedures, experience of successes and failures and also, of
course, physical devices and equipment’. Pushing on a parallel with Khun’s ‘scientific
paradigms, he then proposed the notion of ‘technological paradigm’, defined as a
‘pattern’ of solution of selected technological problems, based on selected principles
derived from natural sciences, and on selected material technologies. In a nutshell, a
technological paradigm is then identified by the generic tasks to which it is applied, the
materials it selects, the chemical-physical properties it exploits, and the technological
and economic trade-offs it focuses upon. Therefore, technological paradigms shape the
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basic structure of the technology at stake, delimiting the boundaries in which different
‘technological trajectories’ can arise.

The notions of ‘technological trajectories’ plays a central role in our analysis of the
Schumpeterian competition process. In Nelson and Winter (1982) model, as well as
in its later versions (Winter 1984; Nelson 1993), the final outcome of innovation and
imitation processes, when successful, was simply to provide the firm with a ‘number’
that added up to its current level of productivity. No insight of the ‘direction’ of tech-
nological change by the single firm and the whole industry was provided. Technology
was thus described in purely quantitative terms, just focusing on the absolute value of
the productivity gains generated by innovations.

This clearly appears if we look at the way imitation was treated. The model implic-
itly assumed that firms had perfect knowledge of the techniques in use among their
competitors, and that they were able to rank them unequivocally in order to iden-
tify the best practice of the industry. In reality firms’ activity dedicated to ‘scan’ the
technology of competitors is costly and time-demanding, and in most cases it does
not allow to attain an unambiguous assessment of the advantages and disadvantages
associated to each technique. Even more important, the model assumed that firms
doing imitation, when successful, were always and immediately able to adopt the
industry best practice, regardless their current gap and the potential discrepancies
between their own technological specialization and technology underlying the best
practice.

Instead, firms’ technological evolution in realworld is affected by path-dependency,
implying that today’s innovative choices not only affect the firm’s current performance
but, to some extent, ‘constrain’ her future innovative possibilities, delimiting the paths
of technological development that can be feasibly explored. Even within the same
industry, firms can experience different technological trajectories, according to their
original endowment of technological competences, their past technological path, the
set of opportunities and constraints defined by the technological, legal, institutional,
and social environment in which they operate, and stochastic factors as well. These
trajectories exert a powerful exclusion effects since they tend to restrict innovative
efforts in rather precise directions, while being blind to other technological possibil-
ities. Although there might be some complementarity between different trajectories,
the more firms are specialized, the more difficult and costly becomes switching from
one trajectory to an alternative one.

The paper presents a simple framework to fill the gap discussed abovewhich explic-
itly considers the topological structure of the technology employed in the industry by
modeling the technological space as a directed graph where nodes-representing skills
to be learned by firms-are distributed over alternative technological trajectories. In
accordance with the empirical observation, in our simulations firms tend to specialize
along particular technological trajectories through a search process which goes from
less to more specialized technological skills (an in-depth search process). Firms are
boundedly rational (Simon 1947) and are not able to evaluate ex ante in a precise way
the complete set of technological opportunities (i.e. the complete sequence of produc-
tivity gains) enabled by each feasible trajectory. Hence, as they face strong substantive
uncertainty (Dosi and Egidi 1991), they tend to follow simple heuristics: firms’ choice
of the trajectory to specialize upon crucially depends on the set of technological skills

123



314 A. Caiani

already in their possession, thus stressing the path-dependent and firm-specific nature
of technological advance.

Furthermore, the extent and speed at which firms can explore each trajectory is also
affected by the presence of spillovers effects, related to the process of imitation and
depending on the number of firms specializing along the same trajectory. The success
(or failure) of an innovative strategy thus depends not only on the intrinsic technical
‘goodness’ of the trajectory chosen, but also on other firms’ technological choices,
and then on the dynamic of the whole system.

2.2 Modeling a Technological Space as a Network

In order to assess the role of spillovers and to analyze how firms’ choices about the
direction of their innovative efforts affect the selection process within the industry, we
provide an explicit representation of the technological space in which firms operate.
Indeed, the industry is initially endowed with a ‘Technology Network’ (T N ): nodes
can be thought of as the set of technological skills to be learned in order to achieve a
particular innovation while links between them define the dependencies between the
pieces of technological knowledge they represent. Indeed, in order to learn a given
node firms must already manage all the technological skills embedded in nodes which
point to it; that is, they should already have learned all its ‘parents’ nodes.

Admittedly, the focus on firms’ technological specialization and the analysis of
the process of ‘competition for adoption’ between alternative technologies is not a
novelty. Arthur (1988a, b), Silverberg et al. (1988), andArthur (1989) have stressed the
self-organizing and non-ergodic nature of the technology diffusion process, possibly
generating multiple equilibria and lock-in phenomena. Since then, several types of
models have been proposed to study how spillover effects, learning economies, and
network externalities affect the process of adoption of competing technologies.Among
the recent refinements of this stream of literature we find history-friendly models
(Malerba et al. 1999, 2008; Malerba and Orsenigo 2002) and percolation models of
innovation diffusion (Silverberg and Verspagen 2005; Hohnisch et al. 2006; Cantono
and Silverberg 2008).

The core of these models still relies on the same fundamental intuition of traditional
epidemic models: on the one hand, technology and innovations spread as potential
adopters come into contact with existing users of an innovation; on the other hand,
the adoption by a larger number of users increases the attractiveness of the technology
thanks to increasing returns to adoption of some type. Most of the modeling sophisti-
cation proposed in the literature thus relate to how potential users communicate with
each other, and how their adoption decisions impact the structure of payoffs associated
with competing technologies. The focus in thus on the relationships between inno-
vators, rather than on the relationships between pieces of technological knowledge
which are required to manage a technology or to achieve an innovation.

The framework proposed in the present work can be seen as complementary-rather
than alternative—to these approaches in that we keep as simple as possible the rela-
tionships between technology users, whereas we assign a topology to technology, by
placing technological skills on a network structure. This choice may bring several
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potential advantages. First, most of diffusion models just focus on the case of two
alternative technologies competing for a market of adopters, or on the diffusion pro-
cess of an innovation striving to replace an incumbent technology. The network-based
approach proposed here instead allows to consider a wider variety of situations where,
for example, several technologies compete and possibly come to coexist. In addi-
tion, it also allows to consider possible complementarities or dependencies between
competing technologies. Finally, a network-based representation of the technological
space has the further potential advantage of being naturally suitable for an empirical
calibration based on the evidence provided by the growing literature on ‘patent citation
networks’ (Jaffe et al. 1993; Hall et al. 2001). Over the last decade this literature has
continued to grow (Verspagen 2007; Nomaler and Verspagen 2007; Schettino 2007;
Fontana et al. 2009; Krafft et al. 2011), allowing to identify several industry-related
stylized facts, and to map the main paths of technological evolution of several sectors.
Such an empirical foundation of the Technology Network would thus possibly help to
enhance the explanatory power of ‘history friendly models’, which aims at investigat-
ing and replicating the actual patterns of evolution of real world industries (Malerba
and Orsenigo 2002; Malerba et al. 2008; Garavaglia 2010).

Admittedly, these possibilities are far from being exhaustively exploited in the
present work where we present instead a ‘proof of concept’ prototype model, employ-
ing a set of artificial Technology Networks, with different topological structures, to
highlight their relevance for the process of Schumpeterian competition and industry
evolution.

These networks are generated through a stochastic algorithm,4 designed to reflect
the general features of ‘technological paradigms’ and ‘technological trajectories’, as
they emerge from the evolutionary literature.

First, the dimension of the network is set equal to an exogenously given parameter
N . The origin of the network is represented by the ‘root node’ N0. This can be thought
of as the set of technological skills shared by all firms and representing the basic
knowledge of the T N . Other nodes have indexes going from 1 to N − 1. Then, we
draw n direct links from the root node to n initial nodes N1 to Nn , n being an exogenous
parameter.

These nodes represent the first technical skills stemming from the basic knowl-
edge contained in the root node. Remaining nodes (Nn+1 to NN−1) are sequentially
embedded into the T N trough the following procedure:

(i) First, each node samples a List of Potential Parents (LPP) among all the possible
one. Point ii. explains how the LPP are constructed. Then, each node randomly
samples its actual parents from the LPP, their number being equal to a random
integer between 1 and the dimension of the LPP. Direct parents are collected in the
Parents List (PL) whereas its Genealogy List (GL) collects its entire genealogy,
i.e. the complete list of ‘ancestors’, from the root node to its ‘direct’ parents. The
genealogy provides the complete list of nodes that must be learned before being
able to learn the node under consideration.

4 A similar algorithm can be found in Morone and Taylor (2010).
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(ii) In order to construct the Lists of Potential Parents we first split the list of the n
initial nodes into j parts. j is randomly extracted from a Binomial Distribution
having number of trials equal to n and probability of success PSpli t , with PSpli t
exogenously given. As nodes are progressively embedded in the network, they
are attached to the LPP from which they had sampled, thus becoming themselves
the potential parents of following nodes. Therefore, the Lists of Potential Parents
change as new ‘children’ nodes are attached to them. However, before adding
new nodes to the network, a random split in a randomly chosen LPP may occur,
with probability Pspli t .5

By repeatedly splitting the Lists of Potential Parents, as explained in point ii.,
the Technology Network acquires a branched structure. The higher Pspli t , the more
branched the resulting network will tend to be. Different branches can be thought
as representing alternative technological paths that firms can explore through their
search activity. By branching the network we are then introducing the possibility of
having-within the boundaries of a technological paradigm (i.e. the T N )-different and
relatively independent technological trajectories.

Figure 1 shows an example of T N generatedwith this algorithm.Thefigure displays
the root node, marked by index 0 and the n = 10 initial nodes radially arranged around
it. The branching of the network subdivides it into different and partially independent
area, representing different technological trajectories.

2.3 The Direction of Innovation

Once the T N is generated, nodes are endowedwith a given productivity gain that firms
can obtain by learning the node. For reasons explained in Sect. 3 and related to the pur-
pose of the present work, we assume that all nodes provide the same productivity gain.

Each firm is then endowed with an exogenously given initial number Nskill of
skill nodes-randomly chosen among the n initial ones-which represent her initial Skill
Profile. This also implies that firms have the same initial productivity. Firms in the
industry then strive to lower their unit costs of production by increasing their capital
productivity. For this sake, they need to enhance their technological knowledge by
learning new innovation-nodes. Nodes learned by firms are then attached to their Skill
Profile. Firms can try to learn a target node only if they already possess the technology
contained in its genealogy, that is only if they have already learned all its ‘ancestors’.

The choice of the target node fundamentally depends on the firms’ current SP ,
since they choose the direction of their innovative efforts by comparing the set of nodes
already in their possession with the list of nodes required to adopt each ‘candidate’
node. More precisely:

(i) Firms can choose the target only among the ‘children’ of the nodes already in
their SP .

5 As a final step, we ‘clean’ the network by eliminating from the Parents List of each node, parents who
are already the ancestors of another parent, so to avoid redundancies.
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Fig. 1 Technology Network: Nnodes = 100, I ni tialNodes = 10, Pspli t = 25%

(ii) Firms set as target the nearest node, where the distance from each candidate is
given by the number of nodes that are in the candidate’s genealogy but not yet in
the firms’ SP .6

Unless the firm already possesses all the nodes in the target’s genealogy, she must
also choose a ‘sub-target’ for the current period.7

Notice that, since we assumed that every node provides a productivity gain, both
targets and sub-targets represent ‘innovations’. However, the target determines the
overall direction of firms’ technological specialization. The procedure by which the
target is chosen allows the firm to identify the linkages between different pieces of
technological knowledge, i.e. different nodes, in a neighborhood of her current SP . By
choosing the target the firm moves forward in the exploration of the network structure
that represents the technological paradigm prevailing in the industry.

Given these simple behavioral rules, we expect each firm to specialize along partic-
ular trajectories.8 Which ones depends fundamentally on firm’s initial technological

6 If more than one, they chose the deeper one (i.e. the one with the longer genealogy). Hence they prefer
more specialized skills (in-depth search).
7 For simplicity reasons we assume that firms chose as sub-target the node with the lowest index among
those required to implement the target. This trivial rule, while not affecting at all the dynamics of the model,
is sufficient to assure that firms will always choose as sub-target nodes that they are actually able to learn
directly, given their current SP .
8 When a firm exhausts all the possibilities of a trajectory, she is allowed to start exploring another one.
The choice of the new target is based on the same procedure explained above.
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skills but, if more than one possibility are still open, it may also be determined by
chance. Therefore, during the simulation, different firms will generally explore dif-
ferent technological trajectories. As a result of the firms’ selection process connected
to the process of Schumpeterian competition, some of these trajectories will become
dominant while others will remain marginal.

It must be stressed that in our model, every innovation produces two effects: first,
it raises firms’ productivity as in Nelson–Winter models.9 But in addition, every
innovation concurs in defining the direction inwhich firms aremovingwithin the Tech-
nologyNetwork, prompting the firm to specialize along a particular technological path,
thereby constraining also the direction of future technological advance by the firm.

As mentioned before, firms can try to learn innovation nodes through either inno-
vative or imitative R&D. At the beginning of each simulation run, imitators select the
competitors to imitate randomly. Indeed, at this stage they have no idea of other firms’
technological profile. However, a successful imitation may signal that the imitated
firm is specializing in a similar region of the Technology Network, thus being likely
to provide further opportunities for imitation in the future. Therefore, firms assign to
competitors that they have successfully imitated a ‘priority’ for the next periods: hence,
these will be the first competitors to be selected in the firm’s next imitative attempts.10

This priority is scrapped if the imitated firm does not yield any further skill for a given
number of subsequent attempts (2 in our experiments).When firms have not succeeded
in learning the target node, they sample a different batch of competitors to imitate in
the next period.

It is important to notice that imitation generates spillover effects related to the
process of diffusion of technological innovations. These spillovers are fundamentally
affected by the topological structure of the network which shapes the relationships
between different technological skills, and their dimension is largely dependent upon
the directions of firms’ technological specialization, in away thatwas almost neglected
in Nelson and Winter’s models. Indeed, the probability of learning a target node
through imitation of competitors increases when more firms are specializing upon the
same technological trajectory on which the node is located. Therefore, firms specializ-
ing along densely populated trajectories may have a relative advantage with respect to
firms specializing along less densely populated trajectories. On the other hand, firms
which also invest in innovative R&Dmight be disadvantaged if it becomes to easy for
competitors to imitate their skills. Our results show that the dimension of spillovers
and the shape of these trade-offs significantly vary in relation with the industry struc-
ture (i.e. the number of firms operating) and the features of the technology network
characterizing the industry (more or less ‘branched’ networks).

Given that spillovers have a different strength on different technological trajectories,
the success or failure of firms’ innovative efforts can be fundamentally affected bywhat
competitors do, that is, by the direction of their innovation efforts. This also implies

9 The increased productivity, in turn, can increases future R&D outlays via profit, investment, and capital
accumulation.
10 In case Nim

it , the maximum number of competitors a firm can look at when imitating (see Sect. 2), is
greater than the number of competitors with ‘priority’, the remaining ones are randomly sampled. In the
opposite case the firm extracts randomly the Nim

it competitors to imitate among those with priority.
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that even firms startingwith identical strategies towards innovation and identical initial
endowments can experiment very different economic performances as a result of their
decisions to specialize along certain trajectories, and not along others.

3 The Setting

The relationship between firms’ dimension,market structure, and innovation dynamics
was at the very core of Schumpeter’s analysis, in particular in Capitalism, Socialism,
and Democracy (Schumpeter 1950) where he identified in large firms with substantial
market power the fundamental engine of technological advance. As stressed byNelson
andWinter (1982), themarket structure is endogenous to an analysis of Schumpeterian
competition, with the causal link going in both directions. Large firms may have
innovative advantages with respect to small firms due, for example, to managerial
and R&D economies of scale and to their greater access to credit. In our model large
firms spend more on R&D and consequently have a higher probability of carrying
out innovations. Furthermore, they also have appropriability advantages, since they
can exploit innovations on a larger scale of production. Still, the market structure
can influence the ability of innovators to exploit the gains of technological change,
affecting the speed at which imitators can catch up and erode innovators’ advantage.
If there are only few competitors, it is likely that an innovating firm will be able to
maintain her technological advantage for a longer period than it would be in a market
with more incumbents and more competitive pressure. In turn, successful innovators
and imitators can invest their higher profits to increase their dimension so to enhance
their primacy in the market, thereby affecting the evolution of the market structure.

In an evolutionary perspective, the study of the connections between market struc-
ture and innovative performance has been also fundamentally connected to the analysis
of struggle between innovative and imitative strategies. Firms compete in the market
and, according to the efficacy of their innovative strategies, they grow or decline, pos-
sibly pushing the market towards a more concentrated structure with multiple possible
outcomes in terms of imitators’ and innovators’ shares. The probability to survive and
grow of a firm following an imitative strategy mainly depends on her ability to exploit
spillover effects. In turn, the dimension of these spillovers is influenced by the number
of firms specializing in each feasible trajectory, and hence by the initial market struc-
ture. As a consequence, while Nelson and Winter (1982) model—in particular in its
‘science-based’ technological regime version—depicted a situation where innovative
R&D activities were always somewhat unprofitable on average, here different initial
market structures may determine a context more or less favorable for either innovative
or imitative policies.

For this reason we run several experiments with different initial industry structures:
four structures are examined, with respectively 4, 8, 16, and 32 firms. In order to
provide the clearest possible explanation of the mechanisms underlying the process
of Schumpeterian competition and industry evolution, we set the initial conditions
and the parameter values looking for some kind of symmetry across firms’ initial
situation. For the same reason, we also rule out entry by new firms and we assume
that half of firms follow a pure imitative strategy while the other half spend both on
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innovative and imitative R&D. As already mentioned, in order to give an account of
the role played by the network structure in shaping technological spillovers, we assign
to every innovation node the same productivity gain.11 The initial stock of capital is
the same for all firms. Each firm is also given the same number of initial skills, chosen
randomly among the n initial nodes of the Technology Network. Furthermore, firms
have the same initial level of capital productivity. As a consequence, in the first period
of the simulation, the levels of production, the market shares, the mark-up ratios, and
the desired net investment are also the same for all firms.

Firms’ initial capital stock is determined so to ensure that firms’ desired net-
investment in the first period is equal to zero under each scenario.12 The parameters rin
and rim are then adjusted compensating for the differences in initial levels of capital
so to ensure that the initial total expenditure on imitative and innovative R&D is the
same in all scenarios. More precisely, following Nelson and Winter, rin is chosen in
order to maintain constant the ratio between R&D spending and sales at a level of
0.12.13 The coefficient α, governing the probability of success in innovating is set so
to give, on average and at initial conditions, 1 innovation for the whole system every
4 periods (i.e. a year). Following Nelson and Winter (1982), in order to highlight the
cost of doing innovative R&D, we set rim = 1

10rin and in order to ensure the symmetry
between initial conditions for all simulation runs, we then set β so that the expected
value of the Binomial distribution in Eq. 2.7 at initial conditions is equal to one under
all scenarios. Therefore, the parameter β depends on the initial number of firms and
their initial capital stocks: β = 1/(rimKi0). This set-up thus assigns to the model
roughly the same degree of ‘progressiveness’ under each scenario. Finally demand
elasticity is set equal to 1, formally: Pt = 67/Qt , costs per unit of capital c are set
equal to initial capital productivity, and the parameter bregime, defining the finance
regime, is set equal to 2.5.

The set-up for the Technology Network generating algorithm employed in the
baseline is the following: the network is made up of N = 100 nodes, with n = 10
initial nodes beside the root one. In each stage of the network generation process the
probability Pspli t of splitting one of the Potential Parent Lists is set equal to 25% for
the baseline.

Table 1 provides a summary of the parameter values employed for each of the four
‘industry structure’ scenarios.

Each simulation lasts 100 periods, each period representing a quarter of year, hence
for a total of 25 years.

11 In this way we rule out any disturbing factor possibly arising from an asymmetric distribution of gains
across different branches of the Technology Network. Therefore, the dimension of the spillovers along each
possible trajectory does not depend on a pre-determined and arbitrary distribution of productivity gains
across nodes. Instead, it depends on the topology of the network representing the industry technological
space—which shapes the interdependencies between different technological skills—and on firms’ choices
about the direction of their search process.
12 This implies that the initial stock of capital is lower the higher the initial number of firms is.
13 This value seems to be fairly realistic even today. Some examples: in the previous decade the R&D
expenditure as a percentage of sale was about 13.5% for the software and Internet industry, 13,5% for
the healthcare industry, 7% for the computer and electronics industry, 5% for the aerospace and defense
industry, while it was signifcantly lower for the chemicals and energy industry, about 1%.
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Table 1 Initial values under
four different initial market
structures

Number of firms

4 8 16 32

K 89.73214 48.85417 25.32762 12.87822

rin 0.0224 0.0206 0.01984 0.01951

rim 0.00224 0.00206 0.001984 0.001951

α 0.06219 ” ” ”

β 1.6584 1.4216 1.3267 1.2839

c 0.16 ” ” ”

δ 0.03 ” ” ”

In order to check the robustness of our results under different realizations of the
same network generating stochastic algorithm, we consider 5 different Technology
Networks obtained with the same specification of the algorithm. For each of these five
specifications, we run 100 Monte Carlo simulations under each scenario. The average
results and the standard deviations for these simulations are collected in Table 2 in
Appendix A.2.

Finally, we also aim at analyzing how different Technology Networks impact the
evolution of industry structure, the patterns of innovations, and consequently indus-
try performance. Indeed, as the empirical literature on Sectoral Systems of Innovation
has stressed, “Sectoral systems differ in terms of technologies. [...] These technologies
affect the nature, boundaries and organizations of sectors. [...] Links and complemen-
tarities among technologies, artifacts and activities play a major role in defining the
real boundaries of a sectoral system. [...] Then there are dynamic complementarities,
which take into account interdependencies and feedbacks. They greatly affect a wide
variety of variables in a sectoral system: firms’ strategies, organization and perfor-
mance, the rate and direction of technological change, the type of competition and
the networks among agents.” (Malerba 2004, pp. 18–19). In order to perform such an
analysis we change the parameter governing the branching of the network, assuming
a probability Pspli t respectively equal to 10 and 40%. For each of these two spec-
ifications, we generate 5 different Technology Networks, and re-executed the same
experiments of the baseline.

These two further specifications of the stochastic algorithmunderlying the construc-
tion of the Technology Network affect the degree of complementarity/independence
between innovation nodes, generating, respectively, more and less branched networks.
Our results show that these changes affect the selection process undergoing in the mar-
ket and the relative efficacy of imitative and innovative R&D strategies, eventually
affecting also the innovative dynamics at the industry level.

4 Results of the Simulations

Our analysis starts by considering aTechnologyNetworkwith ten initial nodes (besides
the root one) and Pspli t = 25%. In order to analyze how industry initial concentration
affects the industry performance we compare the results of the simulations under
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Fig. 2 a Average (blue) and best practice (red) productivity. b Total (blue) number of innovations in the
industry and maximum (red) number of innovations by a single firm (color figure online)

the four different experimental scenarios with 4, 8, 16, and 32 firms, taking for this
purpose the averages and standard deviations of the end-of-simulation values of the
100Monte Carlo simulations. These values are displayed in Table 2 in Appendix A.2).
For simplicity reasons, the values plotted in figures refer to the network marked by
index 1. However, it is easy to verify that results are very robust under the 5 different
realizations of the Technology Network for the baseline.

Figure 2a displays theMonte Carlo averages of the end-of-simulations best practice
and average productivity. Bothmarkedly decrease aswemove frommore concentrated
to less concentrated industry initial structures: the best practice and the average pro-
ductivity rise more rapidly when less firms are in business. This result seems to be
consistent with the famous Schumpeter Mark II argument according to which a more
concentrated market structure is the price to pay for a better innovative performance.

In all these cases, the dynamics of the productivity associated to the best practice
depends crucially on the innovative R&D activity. Indeed, imitation allows to learn
only nodes that have already been discovered through innovation. Therefore, only
innovation allows tomove forward along technological paths yet to explore, expanding
the boundaries of what can be learned through imitation. When the network presents
a significant number of independent trajectories, as it happens when the value Pspli t is
high enough, imitation exerts a negligible influence on the best practice.14 Therefore,
it is not surprising that the decline observed in the best practice productivity level, as
we move towards less concentrated industry initial structures, is accompanied by a
fall in both the average number of innovations obtained by the industry as a whole,
and the maximum number of innovations obtained by a single firm (see Fig. 2b).

The drop of the industry average number of innovation in scenarios characterized
by less concentratedmarket structures can be explained as a result of the role played by
spillover effects in our model: when the number of firms is higher, imitators have less
difficulties in finding innovators to imitate. Or rather, it is more likely that innovating
firms will be soon imitated by some competitor. This shortens, on average, the time
span over which innovators can exploit the quasi-rents deriving from innovations
and recover the higher costs incurred for doing innovative R&D. As a consequence,

14 On the contrary, as we will show in Sect. 4.1, imitation plays a central role when the network is poorly
branched and its nodes are more interrelated.
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Fig. 3 a Ratio between imitators’ and innovators’ average productivities. bCapital (blue) and market (red)
shares of imitative firms (color figure online)

innovators’ performance worsen and the deterioration of their profitability negatively
impacts on their capital accumulation. Eventually, this reduces the amount of resources
devoted to innovation, thereby dampening their innovative performance.

This mechanism can be appreciated by comparing the performance of innovative
and purely imitative firms across the four scenarios. In Fig. 3a we plot the average
ratio of the end-of-simulation average productivities of imitative and innovative firms.
The plot shows that moving towards less concentrated industries imitators are able ‘to
track” innovators’ productivity closer and closer.

By recalling our previous discussion on spillovers in the model it is intuitive that
the probability of success for an imitative firm is positively affected by the number of
firms initially in business. When the number of firms is low, it is more difficult for an
imitator to find an innovator specializing along her same trajectory. Consequently, on
average, imitative firms find more problematic to enhance their Skill Profile through
imitation and they cannot keep up the pace with innovators. On the contrary, when the
number of firms is high it should be easier, at least for some imitators, to find someone
to copy. Therefore, their performance tends to improve relatively to that of innovators.
Figure 3a shows that in the 32 firms case the ratio between imitators’ and innovators’
average productivities is closed to one.

The observed fall in average productivity can thus be primarily explained as a result
of the dampening of innovators’ performance. However, it must be noticed that this
is also a consequence of the fact that the productivity gains associated to innovations
are automatically applied to the firm’s entire capital stock. Therefore, the average
productivity might also decrease as a consequence of the smaller share of capital
affected by each innovation, when the number of firm is higher.15

The improved performance of imitative firms is also testified by the inverse rela-
tionship between their average capital share and the industry initial concentration
(Fig. 3b): imitators’ capital share is almost equal to that of innovative firms in the
scenario with 16 firms and even higher in the last scenario with 32 firms, despite

15 In Nelson and Winter (1982) this was the only reason explaining the drop in average productivity levels
in less concentrated scenarios whereas the best practice productivity was not affected at all by the industry
initial structure under the investigated science-based technological regime which exogenously determined
the growth of ‘latent productivity’. The impact of different initial market structures under a cumulative
regime, instead, was not investigated at all.
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Fig. 4 Herfindahl numbers equivalent end-of-simulations values (a) and % reduction (b)

the fact that imitators’ productivity is still slightly lower than innovators’ one. This
apparent discrepancy can be explained as follows: according to the desired investment
function defined by Eq. 2.9 in Sect. 2, for two firms with the same market share, the
firm with the lower production costs (i.e. higher productivity) will have a higher target
output and, in turn, an higher target investment. However, investment is constrained
by the rate of profit. While imitators spend only on imitative activity, innovators face
both innovative and imitative R&D costs, with rim = 1/10rin to highlight the greater
financial effort required to perform innovative R&D. This in turn lessens imitators’
financial constraint in Eq. 2.9 and stimulates capital accumulation. Therefore,when the
ratio between imitative and innovative firms’ productivity is close to 90% or higher-as
it happens in the last two scenarios—imitative firms’ capital share balances or even
exceeds innovators’ one, on average.

Finally, also the variation of the average market shares of innovators and imitators
across the four scenarios shows a similar tendency: in the last scenario with 32 firms,
pure imitators outperform innovators. This result is a straightforward implication of
the evolution of their productivity and capital shares, discussed above.

While previous results focus on the impact of different industry structures on the
industry performance, we also have a reverse causation since the selection mechanism
underlying the process of Schumpeterian competition affects the evolution over time
of the market structure. Figure 4 displays the average end-of-simulation values of
the Herfindahl Numbers Equivalent.16 When all firms have equal market shares, the
Herfindahl Numbers Equivalent is simply equal to the number of firms in the industry.
Instead, when firms have unequal shares, it gives the number of equal-sized firms in a
hypothetical industry characterized by the same degree of concentration as the actual
industry, according to the Herfindahl-Hirschman Index. Results show that in all the
scenarios examined, market competition operates as a selection mechanism determin-
ing a clear tendency towards higher concentration over the simulation timespan. If
we look at the average percentage decrease of the Numbers Equivalent between the
beginning and the end of the runs17 (Fig. 4) we can observe that in the two scenarios

16 The Herfindahl Numbers Equivalent is formally defined as the inverse of the Herfindahl–Hirschman
Index: HH I = ∑

i s
2
i .

17 Note that at the beginning of the simulation total output is equally distributed among firms. Hence the
Herfindahl Numbers Equivalent in the first period of each run simply equals the number of firms initially
in business.
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with 16 and 32 firms the process of Schumpeterian competition results in an end-of-
simulation market structure characterized, on average, by a degree of concentration
comparable with a market in which more than 70% of the firms have disappeared and
the survivors are equally sized. Such a tendency towards increasing market concen-
tration was highlighted also in Nelson and Winter’s models. However, in our model it
seems to be exacerbated compared to both the science-based and cumulative techno-
logical regimes investigated, for example, in chater 12 and 14 of Nelson and Winter
(1982). This can be explained by two considerations: first, imitation in our model
allows to copy just specific skills (i.e. nodes) of competitors, not their overall level of
productivity, so that catching up through imitation is more difficult. Secondly, firms
specializing (by bad luck) on very isolated trajectories, are prevented from exploiting
spillovers thereby being more likely to suffer a productivity gap which tends to widen
over time, causing a rapid fall of their market shares.

Finally, the relatively high values of the standard deviations across Monte Carlo
simulations presented in the tables of Appendix A.2, tell us that different stochastic
distributions of initial skills among firmsmay greatly affect the final results of the sim-
ulations: although on average different initial market structures determine a situation
more or less favorable for the two types of firms, the final outcome of each simulation
run is not easily predictable. Even in the less favorable case for imitators (i.e. higher
initial concentration-lower number of firms), these latter may have the chance to keep
up with innovators if the initial stochastic distribution of skills induce them to spe-
cialize upon the same technological trajectories of innovators. In these cases, the final
values of best practice productivity and average productivity would be relatively low.
Accordingly, the ratio between the average productivities of imitators and innovators
would be closer to one, imitators’ capital and market shares would be higher, and the
final structure of the industry would remain less concentrated. Conversely, even in the
large number cases generally more favorable to imitators, an unlucky distribution of
initial skills may induce imitative and innovative firms to specialize in different tech-
nological areas, making imitation more difficult, reducing the competitive pressure on
innovators, and thereby boosting their performance.

This suggests that small stochastic events, here represented bydifferent distributions
of initial skills across firms, can exert a huge impact on the outcome of the process of
Schumpeterian competition. This impedes to identify ex ante both an optimal strategy
for the individual firm and the system outcome in terms of final market structure and
innovative performance. Given the inherent cumulative nature of firms’ technological
advance, even firms with identical initial capital stocks and productivity levels, and the
same strategy towards innovation, may experiment radically different technological
paths and economic performance due to a different initial distribution of skills. This
result is in linewith the arguments proposed byArthur (1988a, b, 1989), demonstrating
that small stochastic events can exert a huge impact on technology diffusion patterns
when path-dependency, network externalities and spillover effects are at stake.

To conclude this section, let us notice again that the results obtained under the five
realizations of the Technology Network generated with Pspli t = 25% (displayed in
Table 2) are consistent, suggesting that the trends highlighted are robust under different
realizations of the same network generating algorithm.
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Fig. 5 Ratio between imitators’ and innovators’ average productivities (a) and imitators’ market shares
(b) with different T Ns obtained with Pspli t equal to 10% (red), 25% (blue), and 40% (green) (color figure
online)

4.1 The Influence of the Technology Network Topological Structure

In order to analyze the possible effects of different characterizations of the Technology
Network on the dynamics of innovation and the evolution of industry structure, we
re-execute the previous experiments with 5 networks obtained by setting Pspli t at 10%,
and 5 networks obtained by setting Pspli t at 40%. As for the baseline, the results of
these simulations are presented in Appendix A.2, and collected in Tables 3 and 4.

The outcome of these experiments confirms the tendencies already discussed in the
previous section: a greater number of firms initially in business generates, on average,
a drop of the average and best practice productivities. As the number of firms increases,
the situation gradually changes in favor of imitators. Finally, in all the scenarios we
observe a clear-cut increase in the industry concentration.

By repeatedly splitting the Lists of Potential Parents in the network creation phase,
greater values of Pspli t generate relatively more branched Technology Networks.
Therefore, the higher Pspli t , the greater the number of possible technological trajec-
tories on which firms can specialize. In turn, the lower Pspli t , the greater the number
of links between nodes, implying a greater complementarity between technological
skills and therefore a greater homogeneity of firms’ Skill Profiles. Indeed, the average
degree is around 3,4 for the 5 networks generated with Pspli t = 10%, around 2.6
for the networks generated with Pspli t = 25%, and 2.3 for the networks generated
with Pspli t = 40%. The greater or lower complementarity between technological tra-
jectories can also be appreciated by looking at Fig. 9 which graphically displays the
community structure based on edge betweenness (Girvan–Newman) for three types
of netowrks: cluseters tend to be less numerous and wider for low values of Pspli t ,
whereas they increase in number and decrease in dimension for higher value of the
paramater.

As a consequence, networks built with Pspli t = 10% depict a situation rela-
tively more favorable to imitators, while the opposite happens for networks obtained
with Pspli t = 25%. This can be appreciated by looking at Fig. 5 which displays
the ratio between imitators’ and innovators’ average productivities, and imitators’
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Fig. 6 Best practice (a) and average productivity (b) with different T Ns obtained with Pspli t equal to
10% (red), 25% (blue), and 40% (green) (color figure online)

market shares.18 A more connected network thus seems to exert an effect on the rel-
ative performance of innovators and imitators qualitatively similar to that observed
in the scenarios characterized by a reduction of the initial market concentration (i.e.
greater number of firms), favoring imitators over innovators.

However, while in the baseline scenario a deterioration of innovators’ position
relatively to imitators’ was associated with a reduction of the best practice and average
productivities, since it exacerbated the competitive pressure on innovators, here the
opposite happens: networks having a less branched structure tend to favor imitators
while being also characterized by higher levels of productivity.

When the Technology Network is highly branched, the number of possible trajecto-
ries to explore is relatively higher. These trajectories tend to be clearly distinguishable
as they displays very few links between each other, which become even fewer as we
move ‘in depth’ along each trajectory. This appears evident by looking at Fig. 8b, dis-
playing an example of network obtained with Pspli t = 40%. Firms exploring such a
network will thus choose one among the many possible trajectories. Since these latter
are almost independent from each other, firms’ Skill Profile tend to become highly het-
erogeneous as they specialize. Imitation becomes more difficult, thereby reducing the
dimension of spillovers both for imitators and innovators. Firms can thus rely oly on
innovation to move forward in the learning process, and the productivity dynamics is
dampened (Fig. 6), despite the greater number of innovations achieved by innovators,
as displayed in Fig. 7.

The situation is reversedwhen the network is poorly branched. In this case the nodes
of the network appear to be muchmore interrelated, the number of links increases, and
the number of clearly distinguishable-independent trajectories markedly decreases, as
one can observe in Fig. 8a displaying an example of Technology Network obtained
with Pspli t = 10%. Firms exploring such a network tend to be less specialized and
their Skill Profiles tend to be more homogeneous. Since many complementarities exist
between alternative technological paths, imitation becomes easier.

18 The plot for imitators’ capital shares, which fundamentally resembles that for market shares, is omitted
for space reasons.
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Fig. 7 Total number of innovations (a) achieved in the industry and maximum number of innovative draws
achieved by a single firm (b) with different T Ns obtained with Pspli t equal to 10% (red), 25% (blue), and
40% (green) (color figure online)

On the one hand, this favors firms following a pure imitative strategy and plagues
innovators, causing a reduction of both the mean and maximum number of innova-
tions achieved over the simulation timespan, as shown by Fig. 7. On the other hand,
the greater complementarity between firms’ Skill Profiles enhance the dimension of
spillovers for both innovators and imitators, allowing technology to spread more and
faster thanks to imitation. Figure 6 shows that this latter effect prevails on the slow-
down of innovators’ innovative performance, causing an improvement of the best and
average productivities Fig. 9.

These latter results thus suggest that the topology of the Technology Network char-
acterizing the industry, that is the degree of interrelatedness/complementarity between
technological skills required to achieve innovations, plays an important role in shap-
ing the dimension of spillovers, thereby affecting not only the profitability of different
innovative strategies (i.e. innovating vs. imitating), but the overall innovation perfor-
mance of the system as well.

Finally, results in Tables 3 and 4 highlight that less branched technology struc-
tures, which make imitation relatively easier, tend to dampen the process of market
concentration, whereas highly branched structures which reduce spillovers and make
imitationmore difficult, tend to exacerbate it. Indeed, amore interrelated-less branched
technological structure reduces the risk that firms specialize, by bad luck, on isolated
trajectories, being thus prevented from exploiting spillovers. Furthermore, since imi-
tation is easier and firms’ Skill Profiles are more homogeneous, catching up becomes
relatively easier, thereby narrowing productivity differentials between firms. This in
turn dampens the selection process through market competition.

This latter result is broadly comparable to that obtained in the original Nelson
and Winter’s models under a cumulative technological regime, where hard imitation
conditions tended to increase market concentration while easier imitation softened it.
On the contrary, the effect of harder/easier imitation conditions on the dynamics of
productivity was not conclusive. However, the novelty of the present work lies not
so much in the results, but rather in the framework which generates them: in Nelson
and Winter (1982) the ease to imitate was exogenously tuned by varying imitation
probability of success for given levels of imitative R&D expenses. Here instead, it
depends on the pervasiveness of spillover effects, which is fundamentally affected

123



Innovation Dynamics and Industry Structure... 329

F
ig
.8

L
ef
t
a
Te
ch
no

lo
gy

N
et
w
or
k:

N
no

d
es

=
10

0,
In
iti
al
N
od

es
=
10

,
P
sp
li
t
=

10
%
.R

ig
ht

b
Te
ch
no

lo
gy

N
et
w
or
k:

N
no

d
es

=
10

0,
In
iti
al
N
od

es
=
10

,
P
sp
li
t
=

40
%

123



330 A. Caiani

F
ig
.9

C
om

m
un

ity
st
ru
ct
ur
e
ba
se
d
on

ed
ge

be
tw

ee
nn

es
s
(G

ir
va
n–

N
ew

m
an
)
fo
r
th
re
e
T
N

ge
ne
ra
te
d
w
ith

P
sp
li
t
=

10
%

(a
),
25

%
(b
),
40

%
(c
)

123



Innovation Dynamics and Industry Structure... 331

by the features of the Technology Network and by firms’ technological advancement
paths.

The experiments presented in the paper thus confirm that the analysis of the tech-
nology structure and the direction of technological advance undertaken by firms is
crucial to understand industries evolution and its relationship with innovative dynam-
ics. This claim is in line with the empirical evolutionary literature which has insisted
on the heterogeneity of the knowledge base, learning and diffusion processes, and
technological structure as a key factor in shaping the boundaries, organization, and
evolution of sectors.19

5 Concluding Remarks

The paper proposed a simple AB framework to analyze the relationship between inno-
vation and the evolution of market structure under different characterizations of the
industry technology structure, following the generativist approach of Agent Based
Models (Esptein 2006). Results show that more concentrated initial market structures
tend to outperform less concentrated ones, by reducing the competitive pressure on
innovators. Furthermore, the increase of market concentration caused by the process
of Schumpeterian competition is more marked than in the Nelson andWinter’s family
of model when we account for firms’ specialization, which constrains firms’ abil-
ity to exploit technological spillovers through imitation. Furthermore, we show that
more connected-less branched Technology Networks reduce firms’ specialization and
enhance technological spillovers, allowing to improve the dynamics of productivity in
the industry and to dampen the process of market concentration, despite the relative
worsening of innovators’ performance. The opposite occurs under less connected-
more branched networks.

Our results thus confirm the topicality of firms’ technological specialization and
industry technological knowledge structure for the analysis of industry evolution and
innovation dynamics. Despite the over-simplified nature of the model presented here,
we believe that the proposed framework might be worthy of several other applications
and extensions.

In particular, we have discussed the suggestive opportunity provided by the empir-
ical literature on patent citation networks (Hall et al. 2001; Verspagen 2007; Fontana
et al. 2009) to improve the realism of the Technology Network employed in the model,
thus possibly deepening our understanding of the relationship between innovation dif-
fusion patterns, knowledge spillovers, and the evolution of industry structures across
real world sectors, in the wake of ‘history friendly models’ (Malerba and Orsenigo
2002; Malerba et al. 2008).

A further possible application is represented is to the design and regulation of
Intellectual Property Rights (e.g. patents) which faces a trade-off between appropri-
ability incentives guaranteed by IPRs, which spur R&D investments by increasing the
quasi-rents of innovations, and the exploitation of network externalities and spillovers

19 For an extended review of this literature see Nelson (1993), and more recently Malerba (2004) and Hall
and Rosenberg (2010).
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generated by the process of knowledge diffusion. The framework proposed is par-
ticularly suited for this type of analysis, since it explicitly models knowledge flows
between innovations bymeans of the network structure which defines the relationships
between different pieces of technological knowledge.

Finally, since the model accounts for the firms’ search process by which they tend
to specialize along certain trajectories among all the possible ones, this makes it
suitable to investigate the competition process between alternative technologies and
thee potential emergence of inflexibilities, lock-in effects, and inefficiencies in the
pattern of technological advance, as originally advocated by Arthur (1988b, 1989).
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A Appendix

A.1 Investment

As explained in the text the function defining desired investment reflects the idea that
firms are afraid of ‘spoiling’ their own market if they increase too much the scale of
production, thereby reducing the market price and possibly their own profit margin.
Assuming that the demand curve has a constant elasticity η and firm’s market share
is equal to s, the elasticity of the residual demand facing the firm, under the firm’s
conjecture that other producers will maintain constant their output, is given by: η

s
Given that π = (P(Q)− c

A )sQ, the firm maximizes her profit when it chooses a level
of output such that:

∂π

∂Q
=

((
∂P

∂Q

Q

P
P + P

)
− c

A

)
s = 0 ⇒

(
− 1

η/s
+ 1

)
P = c

A
⇒

⇒ η

η − s
= PA

c
= ρ (A.1)

If instead firm’s conjecture is that the rest of the industry consists of price-takers
that respond along a supply curve with constant elasticity ψ we obtain a more general
results. The profit maximizing price-to-marginal-costs ratio is given by:

ρ = η + (1 − s)ψ

η + (1 − s)ψ − s
(A.2)

Notice that, when ψ = 0, we obtain the previous equilibrium condition. The right-
hand side of the above equation can be interpreted as the target mark-up ρT (s) of the
firm, expressed as a function of the firm’s market share.

Hence, desired investment can be expressed as:

ID = δ + 1 − ρT c

Pt Ait
(A.3)
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When the realized mark-up Pt Ait/c is exactly equal to the target mark-up ρT (s) the
firm considers herself to be in a profit maximizing equilibrium at the current level
of production and her desired investment is simply equal to the amount required to
replace depreciated capital. Instead, when the realized mark-up is greater (smaller)
than the target one, the desired net investment will be positive (negative). Equation
(2.8) in Sect. 2 was obtained by setting η = 1 and ψ = 1.

A.2 Tables of Results

Table 2 Results of the simulations-5 networks generated with PSpli t = 25% & Initial parents number =
10

Network Number of firms

4 8 16 32

Best practice 1 0.386 0.347 0.290 0.235

(0.055) (0.054) (0.057) (0.035)

2 0.395 0.336 0.273 0.229

(0.059) (0.057) (0.049) (0.034)

3 0.385 0.337 0.276 0.233

(0.062) (0.052) (0.053) (0.040)

4 0.381 0.349 0.295 0.247

(0.050) (0.044) (0.043) (0.031)

5 0.386 0.338 0.281 0.224

(0.055) (0.054) (0.050) (0.040)

Average productivity 1 0.355 0.317 0.262 0.213

(0.056) (0.049) (0.050) (0.026)

2 0.362 0.307 0.249 0.212

(0.058) (0.052) (0.043) (0.029)

3 0.349 0.309 0.252 0.214

(0.055) (0.048) (0.045) (0.033)

4 0.356 0.325 0.274 0.221

(0.052) (0.038) (0.039) (0.027)

5 0.350 0.306 0.249 0.203

(0.052) (0.052) (0.044) (0.031)

Ratio average
productivity:
imitators/innovators

1 0.742 0.891 0.899 0.976

(0.218) (0.181) (0.132) (0.068)

2 0.682 0.840 0.918 0.981

(0.234) (0.168) (0.120) (0.087)

3 0.677 0.829 0.903 0.975

(0.215) (0.186) (0.133) (0.085)

4 0.798 0.884 0.967 1.007

(0.224) (0.158) (0.080) (0.058)

5 0.646 0.723 0.829 0.966

(0.209) (0.199) (0.148) (0.085)
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Table 2 continued

Network Number of firms

4 8 16 32

Industry total innovations
N◦

1 29.80 26.10 20.55 13.65

(6.42) (6.71) (7.75) (4.38)

2 31.80 25.56 19.10 13.57

(6.83) (6.67) (6.65) (5.48)

3 31.12 26.52 19.11 13.48

(7.07) (6.53) (6.55) (6.38)

4 29.00 26.35 19.23 12.88

(6.33) (7.26) (6.20) (4.86)

5 31.33 27.78 21.60 13.61

(5.96) (6.90) (6.57) (5.18)

Max N◦ innovation by a
single firm

1 18.51 13.44 8.53 4.19

(3.45) (4.03) (4.06) (2.61)

2 19.72 13.01 7.54 3.89

(4.07) (3.94) (3.40) (2.51)

3 19.03 13.42 7.84 4.16

(4.03) (3.64) (3.61) (3.28)

4 18.54 13.02 7.33 3.40

(3.84) (3.99) (3.48) (1.94)

5 19.25 13.88 9.00 4.17

(3.66) (3.74) (3.92) (2.97)

Imitators’ capital share 1 0.251 0.334 0.496 0.744

(0.172) (0.171) (0.206) (0.152)

2 0.217 0.339 0.549 0.783

(0.175) (0.165) (0.203) (0.163)

3 0.206 0.323 0.515 0.728

(0.172) (0.174) (0.208) (0.199)

4 0.304 0.387 0.590 0.839

(0.180) (0.191) (0.187) (0.139)

5 0.178 0.246 0.385 0.743

(0.168) (0.182) (0.188) (0.177)

Imitators’ market share 1 0.226 0.311 0.476 0.736

(0.176) (0.182) (0.223) (0.165)

2 0.190 0.316 0.532 0.777

(0.179) (0.174) (0.217) (0.176)

3 0.177 0.301 0.496 0.720

(0.177) (0.184) (0.224) (0.212)
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Table 2 continued

Network Number of firms

4 8 16 32

4 0.284 0.372 0.582 0.839

(0.188) (0.202) (0.197) (0.134)

5 0.150 0.218 0.352 0.734

(0.171) (0.189) (0.202) (0.196)

Herfindahl number
equivalents

1 2.473 3.175 4.715 6.765

(0.427) (0.787) (1.445) (2.087)

2 2.326 3.353 5.194 7.261

(0.368) (0.872) (1.634) (2.145)

3 2.360 3.320 4.779 7.032

(0.453) (0.862) (1.455) (2.156)

4 2.615 3.810 5.446 7.434

(0.534) (0.933) (1.175) (1.49)

5 2.250 2.978 4.353 7.634

(0.336) (0.743) (1.558) (2.901)

Table 3 Results of the simulations-5 networks generated with PSpli t = 10% & Initial parents number =
10

Network Number of firms

4 8 16 32

Best practice 1 0.403 0.377 0.320 0.285

(0.043) (0.040) (0.035) (0.027)

2 0.390 0.349 0.306 0.277

(0.056) (0.047) (0.035) (0.023)

3 0.397 0.360 0.309 0.250

(0.051) (0.052) (0.046) (0.035)

4 0.380 0.329 0.273 0.247

(0.056) (0.041) (0.029) (0.012)

5 0.380 0.351 0.295 0.265

(0.049) (0.042) (0.036) (0.022)

Average productivity 1 0.392 0.366 0.308 0.275

(0.044) (0.038) (0.036) (0.027)

2 0.373 0.335 0.294 0.266

(0.057) (0.044) (0.033) (0.023)

3 0.370 0.338 0.290 0.237

(0.049) (0.051) (0.041) (0.031)
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Table 3 continued

Network Number of firms

4 8 16 32

4 0.367 0.320 0.267 0.242

(0.056) (0.040) (0.027) (0.014)

5 0.360 0.334 0.280 0.254

(0.052) (0.043) (0.034) (0.022)

Ratio average
productivity:
imitators/innovators

1 0.941 0.963 1.010 1.037

(0.116) (0.073) (0.037) (0.034)

2 0.878 0.964 1.003 1.033

(0.200) (0.070) (0.035) (0.036)

3 0.805 0.878 0.972 1.047

(0.222) (0.166) (0.119) (0.064)

4 0.909 0.969 1.005 1.021

(0.189) (0.068) (0.018) (0.021)

5 0.817 0.905 0.984 1.031

(0.225) (0.155) (0.054) (0.044)

Industry total innovations
N◦

1 27.08 24.75 16.35 12.76

(6.23) (6.70) (5.12) (3.52)

2 27.02 22.30 16.36 11.88

(6.73) (6.49) (5.52) (3.43)

3 28.87 25.44 19.07 11.96

(6.39) (7.15) (7.24) (4.18)

4 28.05 23.40 16.11 11.41

(6.69) (6.40) (4.20) (3.36)

5 28.34 25.35 17.11 12.45

(6.21) (6.81) (5.77) (4.12)

Max N◦ innovation by a
single firm

1 17.21 11.90 5.55 3.18

(3.91) (3.61) (2.61) (1.25)

2 17.04 10.78 6.16 3.14

(3.94) (3.54) (3.16) (1.30)

3 18.03 12.43 6.90 3.13

(3.83) (3.68) (3.43) (1.66)

4 17.43 10.54 5.06 2.63

(3.85) (3.47) (2.02) (0.89)

5 17.90 12.02 6.42 3.16

(3.78) (3.09) (2.83) (1.50)
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Table 3 continued

Network Number of firms

4 8 16 32

Imitators’ capital share 1 0.420 0.481 0.745 0.887

(0.151) (0.168) (0.135) (0.054)

2 0.391 0.497 0.718 0.870

(0.173) (0.158) (0.134) (0.078)

3 0.329 0.383 0.607 0.862

(0.195) (0.191) (0.231) (0.108)

4 0.405 0.484 0.764 0.900

(0.155) (0.165) (0.129) (0.037)

5 0.321 0.414 0.650 0.858

(0.186) (0.180) (0.166) (0.118)

Imitators’ market share 1 0.412 0.475 0.746 0.890

(0.160) (0.173) (0.140) (0.055)

2 0.377 0.490 0.717 0.873

(0.182) (0.164) (0.138) (0.081)

3 0.309 0.367 0.600 0.865

(0.204) (0.201) (0.245) (0.113)

4 0.395 0.479 0.764 0.902

(0.164) (0.170) (0.131) (0.037)

5 0.304 0.402 0.645 0.859

(0.196) (0.189) (0.174) (0.123)

Herfindahl number
equivalents

1 3.105 4.625 6.535 8.610

(0.554) (0.903) (0.999) (1.595)

2 2.998 4.577 6.131 8.134

(0.646) (0.972) (1.106) (1.690)

3 2.678 3.674 5.251 7.587

(0.571) (0.899) (1.193) (1.935)

4 3.001 4.686 6.881 10.171

(0.638) (1.009) (1.233) (2.342)

5 2.705 4.112 5.668 8.097

(0.570) (0.900) (1.089) (1.703)
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Table 4 Results of the simulations-5 networks generated with PSpli t = 40% & Initial parents number =
10

Network Number of firms

4 8 16 32

Best practice 1 0.389 0.342 0.286 0.224

(0.054) (0.055) (0.055) (0.034)

2 0.389 0.346 0.284 0.224

(0.058) (0.049) (0.051) (0.029)

3 0.391 0.336 0.273 0.222

(0.053) (0.050) (0.053) (0.037)

4 0.388 0.336 0.284 0.223

(0.055) (0.053) (0.050) (0.035)

5 0.386 0.347 0.272 0.220

(0.052) (0.053) (0.051) (0.026)

Average productivity 1 0.347 0.306 0.254 0.205

(0.048) (0.049) (0.045) (0.027)

2 0.352 0.318 0.259 0.210

(0.052) (0.048) (0.043) (0.024)

3 0.351 0.293 0.242 0.202

(0.049) (0.044) (0.043) (0.027)

4 0.349 0.301 0.252 0.201

(0.051) (0.048) (0.043) (0.025)

5 0.346 0.306 0.242 0.199

(0.048) (0.045) (0.043) (0.019)

Ratio average
productivity:
imitators/innovators

1 0.618 0.722 0.815 0.978

(0.189) (0.196) (0.157) (0.080)

2 0.699 0.796 0.901 1.008

(0.233) (0.196) (0.134) (0.071)

3 0.579 0.708 0.845 0.961

(0.180) (0.161) (0.142) (0.107)

4 0.619 0.721 0.853 0.960

(0.211) (0.191) (0.145) (0.90)

5 0.629 0.703 0.867 0.977

(0.179) (0.171) (0.132) (0.077)

Industry total innovations
N◦

1 31.78 28.46 21.73 14.15

(6.04) (7.41) (7.20) (5.02)

2 30.39 27.95 19.82 12.54

(6.32) (6.63) (6.05) (4.23)

3 31.73 27.23 21.18 13.92

(5.92) (6.60) (6.88) (4.97)
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Table 4 continued

Network Number of firms

4 8 16 32

4 31.95 28.26 21.19 13.49

(6.68) (6.51) (6.75) (4.02)

5 31.10 29.07 19.83 13.17

(6.14) (6.46) (6.90) (4.47)

Max N◦ innovation by a
single firm

1 19.77 14.32 8.87 4.14

(3.78) (3.80) (3.97) (2.79)

2 18.77 13.70 8.07 3.27

(3.66) 3.42) (3.72) (1.57)

3 19.90 14.35 8.64 4.30

(3.52) (3.84) (4.12) (2.58)

4 19.59 14.02 9.25 4.23

(3.65) (3.68) (3.94) (3.02)

5 19.10 14.70 8.42 3.90

(3.27) (3.78) (3.72) (2.21)

Imitators’ capital share 1 0.167 0.230 0.398 0.760

(0.156) (0.177) (0.223) (0.174)

2 0.230 0.284 0.498 0.823

(0.179) (0.172) (0.209) (0.145)

3 0.144 0.227 0.428 0.742

(0.146) (0.156) (0.204) (0.191)

4 0.162 0.224 0.434 0.745

(0.164) (0.159) (0.194) (0.170)

5 0.174 0.223 0.469 0.783

(0.158) (0.159) (0.194) (0.153)

Imitators’ market share 1 0.134 0.201 0.366 0.753

(0.153) (0.186) (0.239) (0.189)

2 0.204 0.261 0.479 0.822

(0.184) (0.183) (0.224) (0.154)

3 0.111 0.191 0.398 0.732

(0.142) (0.157) (0.220) (0.210)

4 0.135 0.194 0.406 0.732

(0.170) (0.166) (0.209) (0.188)

5 0.141 0.188 0.442 0.775

(0.154) (0.162) (0.209) (0.169)
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Table 4 continued

Network Number of firms

4 8 16 32

Herfindahl number
equivalents

1 2.225 2.883 4.281 7.069

(0.353) (0.686) (1.516) (2.365)

2 2.356 3.127 4.831 7.556

(0.421) (0.734) (1.546) (1.797)

3 2.153 2.770 4.550 7.013

(0.291) (0.563) (1.594) (2.498)

4 2.205 2.911 4.230 7.316

(0.315) (0.672) (1.519) (2.551)

5 2.263 2.843 4.632 7.486

(0.342) (0.629) (1.696) (2.263)
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