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Abstract This study presents a novel framework for the study of endogenous network
growth subject to constraints. The literature on strategic network formation analysed
the specific case of positive constraints: in the present work, the model is extended
to constraints which can be negative and change in time depending on the actions of
the agents. A characterisation of stable networks in the static case is provided, and
it is proved that finding them is computationally difficult unless specific assumptions
are made. The framework can be applied to contexts in which the formation of a link
inhibits or implies the formation of another one, typically due to time, space or capacity
constraints. Two specific examples are investigated, highlighting the importance of
modelling constraints in order to obtain credible simulations and null models: the
network of corporate control and the network of citations among scientific papers.

Keywords Network formation · Nash equilibrium · Complexity of equilibria ·
Network analysis

JEL Classification D85 · C55 · C72

The present work was mainly developed while I was a Ph.D. candidate of the DEFAP Graduate School at
the Department of Economics, University of Milan Bicocca; I am indebted to Prof. Luca Stanca for his
continuous support.

B Pietro Battiston
me@pietrobattiston.it

1 Istituto di Economia, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33,
56127 Pisa, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40797-016-0040-0&domain=pdf
http://orcid.org/0000-0001-5343-7861


348 P. Battiston

“Always go to other people’s funerals; otherwise they won’t go to yours.”
Yogi Berra (facing a typical “constrained growth” network)

1 Introduction

In the last 20 years, the theory of networks has been recognised an important role
in explaining the formation and functioning of social and economic settings in which
relationships among agents are of fundamental importance. In particular, several mod-
els of network formation were developed targeting the mechanisms by which some
characteristics of nodes (typically, the cost of creating/keeping alive a link, compared
to the utility received from becoming—directly or indirectly—connected to some
other nodes) endogenously determine the structure of a network. A stream of litera-
ture, starting from the seminal work of Bala and Goyal (2000), has developed focusing
on a noncooperative approach, where the choice of adding a link between two nodes
is made independently by only one of them, which bears all the cost—although other
nodes potentially benefit from such link. Based on this framework, a definition of sta-
bility can be given, typically based on the concept of pairwise Nash equilibrium (such
as in Galeotti 2006 and Haller et al. 2007), or some refinement of it (for instance Dutta
and Mutuswami 1997 consider coalition choices, while the concept of “far-sightedly
stable networks” formulated by Herings et al. 2009 is based on attributing nodes a
longer horizon of strategical reasoning).

The aforementioned studies share the implicit assumption that links can be added
and destroyed freely (though at some cost). Even experimental works on endogenous
network formation have usually been based on the assumption that participants can at
any point in time—or at least repeatedly—decide to create/break a link (Goeree et al.
2009; Kirchsteiger et al. 2016). This is a natural starting point for several reasons:
links in many real world networks (e.g. computer networks, social relationships…)
are indeed at least potentially volatile, the data available to researchers often describe
some inherently volatile flow (e.g. trade, influence, information) over them, and even
considering networks which are typically characterised by a stratification of links
over time (such as connections in Internet social networks, or the network of roads
between cities), most databases available to researchers are snapshots of networks at
given points in time, sacrificing information on their temporal evolution. However,
there are several contexts in which the process of network formation is profoundly
shaped by constraints, and in which the assumption that links can be freely created is
at odds both with reality and with data available to researchers. Constraints may have
different origins: they can for instance be related to time (e.g. networkswhere nodes are
scientific papers, patents or other kinds of timestamped objects), space (e.g. planarity),
and rivalry (e.g. cross-ownership networks, nodes affected by capacity limits): two
specific examples will be analysed in more detail in Sect. 3. Only recently some form
of constrained growth was formalised in the context of strategic network formation
by Haller (2012). His study provides interesting conclusions concerning networks
which grow around an exogenously fixed subset of links, shown to potentially change
drastically the existence, numerosity, stability and efficiency of stable configurations.
An interesting insight is that such backbone infrastructures, that is, sets of links which
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Constrained Network Formation 349

are guaranteed to exist ex ante and independently from individual incentives, and
which hence forbid nodes from playing their individual best replies, can actually
cause global welfare improvements. The present study generalises the approach to
the analysis of repeated addition of nodes and/or links, under positive and negative
constraints. Differently from the work of Haller, the set of guaranteed/forbidden links
will not necessarily be exogenously given, but can come instead from the previous
iteration of the network formation process. This results in a rich framework, which
can be specialised according to the characteristics of the network under analysis.

2 The Model

As in the model by Galeotti et al. (2006), a network is composed by N = {1, . . . , n}
nodes: for each pair of nodes (i, j) a cost parameter ci j > 0 and a value parameter
vi j > 0 are given. A directed network g is formally a collection of pairs of nodes: if a
pair (i, j) is in g, we say that i sponsors a link to j , and we write gi j = 1. ḡ represents
the corresponding undirected network, i.e. the smallest network containing g and also
( j, i) for each (i, j) contained in g. The set of feasible networks is denoted by G.

Each node extracts from the network a benefit which depends on the values of the
nodes it is connected to. That is, denoting as Ni (g) = Ni (ḡ) the set of nodes j such
that the network g contains a path from i to j or vice-versa, the benefit extracted by i
is defined as:

Bi (g) = Bi (ḡ) =
∑

j∈Ni (g)

vi j ;

i also pays a cost which is the sum of costs of sponsored (outgoing) links:

Ci (g) =
∑

(i, j)∈g

ci j ,

and the resulting payoff it extracts from the network is simply the difference between
the benefit and the cost:

�i (g) = Bi (g) − Ci (g).

Some other standard graph-theoretic concepts and notations will be used. The letter
e denotes the empty network.A set of connected nodes S ⊂ N is said to be a component
if they are not connected to any node outside S (notice that Ni (g) simply denotes the
componentwhich contains a given node i); a link is said to be a bridge if it connects two
otherwise disconnected components (i.e. if the number of components in the network
increases by 1 when removing it). Moreover, the notation

gi = (gi1, . . . , gin) ∈ {0, 1}n
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350 P. Battiston

summarises the outgoing links from a given node i in the network g (in the present
work, it is always assumed for simplicity that gii = 0). An action for a node i is a
subset of N (so again, an element of {0, 1}n), determining the links that i is sponsoring.

2.1 Internal Constraints

Haller (2012) enriches this basic model with the presence of constraints: in his work,
they consist in a pre-existing and exogenously given network g ∈ G. The payoff
function ismodifiedby setting the cost of links ing to 0, and as a consequence such links
are always incentive compatible. The aim of the present section is to generalise this
seminal idea with the concept of negative constraints: a model of network formation
will be characterised not only by g, which will be denoted henceforth as g+, but also
by another network g− (disjoint from g+), containing links whichwill be absent in any
possible network. Although it is possible to introduce this generalisation by setting the
cost of links in g− high enough, a more tractable approach is to neglect their benefits
in the payoff function,1 which is hence defined as

�i
(
g+, g−, g

) = Bi
(
g ⊕ g+ � g−) − Ci (g) for g ∈ G.

where ⊕ and � denote respectively the operations of union and difference between
networks.2 It can be easily verified that when g− = e, this coincides with the payoff
function defined by Haller (2012). With all the components of the model exposed, we
can proceed to the generalisation of some of his results concerning Nash networks—
that is, networks which are stable with respect to individual deviations. As a starting
point, let us consider the following result.

Proposition 1 (Haller 2012) Consider a strategic model of network formation with
payoff functions �i (g

+, e, g), g ∈ G, i ∈ N. Suppose that costs are owner-
homogeneous. Then there exists a Nash network g∗.

What follows is a simplified proof of this result. Like the original proof by Haller
(2012), it relies on the observation that the proof of existence by Haller et al. (2007)
does not exploit the homogeneity of costs, only the owner-homogeneity.

Proof We start by replacing each link (i, j) ∈ g+ with an “ancillary” node h “serving”
i and j , which has cost ch = 1, vhk = 2 for k = i, j , and vhk = 0 otherwise. This
model has owner-homogeneous costs, so it has a Nash network g∗′ (Haller et al. 2007).
In g∗′, each ancillary node must be connected (possibly indirectly) to both the nodes
it serves. If it is connected indirectly, we sever the first link of the path (or any other
link, if the first step is a direct connection to the other node it serves) and replace it
with a direct link. Similarly, we sever any other link to any ancillary node and replace
it with a link to any of the two nodes it serves. The result is still a Nash network (all

1 As in the approach ofHaller (2012), the original cost of links ing+ should be taken again into consideration
when doing comparative statics and welfare analysis.
2 With a slight abuse of notation, when the network to be added/removed is composed of a single link, I
will write g ⊕ (i, j) or g � (i, j), instead of g ⊕ {(i, j)} or g � {(i, j)}, respectively.
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Fig. 1 Link (h, k) replaces link
(i, j), now forbidden

i

h

j

k
Ni(g∗ (i, j))

Nj(g∗ (i, j))

utilities of “original” nodes weakly increase and their space of strategies is unchanged,
while ancillary nodes have clearly no incentive to deviate), and if we restrict it to the
N original nodes we obtain the desired g∗. �	

The following result is analogous to the previous except that it now allows for
g− 
= e.

Proposition 2 Consider a strategic model of network formation with payoff functions
�i (g

+, g−, g), g ∈ G, i ∈ N. Suppose that costs are owner-homogeneous. Then there
exists a Nash network g∗.

Proof of Proposition 2 Iwill show that if aNash equilibrium g∗ exists for�(g+, g−, ·),
then one also exists for�(g+, g−⊕(i, j), ·) for any link (i, j) /∈ g+∪g−. If (i, j) /∈ g∗,
then g∗ itself is the desired Nash network (i’s strategies set having being restricted,
and all of the others nodes’ ones staying unchanged, the equilibrium is still such), and
hence this step is trivial. So let us assume that (i, j) ∈ g∗. The link (i, j) is contained
in g∗ � g+ (since it is by assumption not in g+), so it must have been convenient for
i , i.e. it must be a bridge. Two cases are possible.

(a) There exists another link (h, k)3 from Ni (g∗ � (i, j)) to N j (g∗ � (i, j)) (see
Fig. 1) or vice-versa, which is not forbidden ((h, k)/∈ g−) and is part of the best
response of h to g∗ � (i, j), i.e.

ch,k <
∑

k′∈Nk (g∗�(i, j))

vh,k′ . (1)

(b) There is no such pair (h, k).

In the case A, consider the network g∗ � (i, j)⊕ (h, k): for any node l /∈ {i, h}, the
actions space is unchanged from g∗, aswell as the payoffs. For i , all available strategies
now deliver a payoff increased by ci, j (the cost of connecting the two components now
being borne by h), so their preference ordering does not change. Finally, since costs
are owner-homogeneous, h does not have an incentive to deviate by replacing the link
(h, k) with a different one. In the case B, consider instead the network g∗ � (i, j).
For any node outside Ni (g∗), the preference ordering of strategies is unchanged. The
same holds for nodes in Ni (g∗), except for strategies which would connect the two
components; but such strategies are, by assumption (Eq. 1 is not satisfied), dominated.
So in both cases we have a new Nash equilibrium. Since the case�(g+, e, ·) is proved
by Proposition 1, the result is proved by induction for any possible g−. �	

3 Notice that i and h, or j and k, can coincide.
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352 P. Battiston

Proposition 2 is the natural generalisation of Proposition 1 to the presence of neg-
ative restrictions.4 Analogously, the following result, related to networks of positive
constraints which are (in the unconstrained model of network formation) Pareto opti-
mal, generalises Proposition 2 by Haller (2012).

Proposition 3 Consider a strategic model of network formation with payoff functions
�i (g

+, g−, g), g ∈ G, i ∈ N. Suppose that the pre-existing network or infrastructure
g+ ∈ G is Pareto optimal. Then the empty network is a strict Nash network and the
only Nash network.

Proof Let g+ be Pareto optimal. The case g− = e is Proposition 2 by Haller (2012).
When considering g− 
= e, the actions set of some nodes is restricted, but the links in
g+ are left untouched (recall that g+ and g− are disjoint). Hence, the empty network
is still a strict Nash network, because the preference ordering on available strategies
does not change.

Suppose next that some g∗ 
= e is a Nash network. The proof develops as in the
original result: given some pair (i, j) with 1 = g∗

i j 
= g+
i j = 0, it must be that g∗

i is
a best response against g∗−i . But then g∗ is strictly preferred to g+ by at least i , while it
is at least equally preferred by all other agents (since it contains all links in g+). This
contradicts the Pareto optimality of g+. �	

The effort in generalising the theory of network extension to the presence of negative
constraints can be motivated with two main arguments:

1. considering negative constraints is important in order to understand the growth of
some real world networks,

2. from a social planner perspective, imposing negative constraints could in principle
improve the beneficial effects of an endogenously formed network, possibly at a
lower cost than through positive constraints.

The first argument has already been mentioned, and will be the motivation for
Sect. 3. The rest of this section is devoted to the second argument. Haller (2012)
shows several ways in which positive constraints can impact on the equilibria of a net-
work: examples include a stabilising effect (in some cases in which Nash equilibria
do not exist, they can instead be obtained by choosing an appropriate g+), a welfare
improvement effect (constraints can raise the overall sum of payoffs in Nash equilib-
rium), and others. Those exogenous constraints can hence be imagined as publicly
provided infrastructures which are provided by the social planner. Can some of the
described effects be attained as well through negative constraints—i.e. with a social
planner acting through prohibition of a set of given links? The question is relevant
because in principle it can be much easier for the policy maker to forbid some given
links than to provide others, or obliging the interested nodes to build them (the problem

4 The assumption that costs are owner-homogeneous is one of the reasons why it is impractical to define
negative constraints just as arbitrarily costly links: if this was the case, in order for a owner-homogeneous
model of network formation to remain such after the imposition of negative constraints, such constraints
could not consist in arbitrary sets of links, and should rather include all outgoing links from a given set
of nodes. Another reason is that this would make the definition of endogenous negative constraints, as
described in Sect. 2.3, much more complicated.
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1

2 3

2 3

2
Fig. 2 An example of the stabilising effect of constraints. vi j = 4 for all i, j except v21 = 1. Numbers
next to links refer to their specific costs, while links which are not drawn are implicitly assumed to cost
enough as to make them trivially non-convenient (only part of dominated strategies)

of contribution to links as public goods is analysed for instance by Anshelevich et al.
2003).

It is worth starting with an example. The network in Fig. 2 does not admit a Nash
equilibrium, since {(2, 1)} is the best response of 2 to any network which includes
(3, 1) (allowing 2 to connect to 3), but (3, 1) is in the best response of 3 to and
only to networks which do not include (2, 1) (3 prefers to connect to 1 through 2
than directly). However, the network {(2, 1), (3, 1)} can be made stable both with
only positive constraints (g+ = {(3, 1)}) and with only negative positive constraints
(g− = {(3, 2)}).

In general, any network g can be made trivially stable by setting g+ = g and
g− to the complementary of g. At the same time, there are obvious configurations
which cannot be made stable by using only positive or only negative constraints:
consider the case of n = 2, with c12 = 2 and c21 = 4. If v12 = v21 = 1, the
“connected” configuration can only be obtained in presence of positive constraints,
while if v12 = v21 = 3, the “disconnected” configuration can only be obtained in
presence of negative constraints.

Hence, both positive and negative constraints have the sometimes exclusive ability
of transforming given network configurations in Nash equilibria. This symmetry how-
ever breaks when we look at the welfare of obtained equilibria, as suggested already
in the last example proposed, and as formalised by the following result.5

Proposition 4 Consider a network configuration g which is not a Nash equilibrium.

(a) If g becomes an equilibrium with some g− 
= e, g+ = e, then it is not Pareto
optimal.

(b) If g is Pareto optimal, then it can be made an equilibrium with some g+ 
= e,
g− = e.

Proof It is easy to see that the creation of a new link (i, j), possibly replacing another
link (i, k) to a same component of the network, is always (strictly) Pareto improving
when it is part of the (strict) best reply of i . This is because it must be convenient for i ,
and makes two components connected (or keeps them unchanged, in the replacement
case). Now consider case (a): since g becomes unstable once negative constraints are
removed, there must be some (i, j) ∈ g− which would be part of the (strict) best reply
of i to g, possibly replacing some (i, k). So g ⊕ (i, j) (or g ⊕ (i, j) � (i, k), in the

5 In Proposition 4, as already in Proposition 3, the Pareto optimality of g refers to the unconstrained setting.
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S+S−

PO
N

G = S+−

Fig. 3 Summary of equilibria attainable through constraints. S− and S+ represent the set of network
configurations which can become equilibria with the appropriate negative only or positive only restrictions,
respectively, while P O represents the set of Pareto optimal configurations, and N of the Nash equilibria.
The set of network configurations which can become equilibria with the appropriate negative and positive
constraints, S+−, coincides with the set of all possible network configurations

replacement case) necessarily Pareto dominates g, which is hence not Pareto optimal.
For case (b), notice that if g is Pareto optimal, the argument above states that there
cannot be a link (i, j) /∈ g which is part of a profitful deviation for i , so to stabilise g
it is sufficient to set g+ = g. �	

Figure 3 summarises the social planner perspective on positive and negative con-
straints: the latter can sometimes substitute the former (and assumingly be easier to
implement) when the goal is to avoid implicit costs related to stability, but do not help
in reaching Pareto optimality in the sense of the mere maximization of private values.

2.2 Complexity of Finding Nash Equilibria

Both the proof of Proposition 2 and the proof by Haller et al. (2007) it reduces to are
constructive proofs, i.e. as long as the required conditions are satisfied, they provide
a recipe for finding a Nash network. Such recipe is relatively simple to implement.6

Outside of such assumptions, however (i.e. with non-owner-homogeneous costs),
not only a Nash equilibrium might not exist, but determining if one exists, and finding
it, can be a computationally hard task. What follows is a more precise characterisation
of the computational complexity of such problem.

First, determining if a givennetwork configuration is aNash equilibrium is relatively
simple (with or without constraints): it requires only to check the best response of
each of the n nodes, and each of these checks requires O(n) operations; so the whole

6 The proof by Haller et al. (2007) is composed of n iterative steps, each consisting in the evaluation of links
from a given node to each other connected component. It is easy to see that for each connected component,
the cost of such operation is bounded above by its size, so the total cost of each step is at most n. The proof
of Proposition 2 adds in principle as many as n2 − n steps (the maximum size of g−). But since the initial
g∗ � g+ cannot have more than n links (each link must be a bridge), all but at most n of such steps will be
trivial: for instance, if one starts by looking at (i, j) /∈ g∗, the first steps are all trivial. So the total cost is
still O(n2).
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vh

oh

hT

1
hF

1

tk

lk rk

2 3

2

1 1

1T 2T 3F

Fig. 4 Left “variable” network component corresponding to the h-th variable; right “clause” network
component corresponding to the k-th clause (x1 ∨ x2 ∨ x3 in this example). vvh ,oh = 4 for all variables
h ∈ {1, . . . , H}, vrk tk = vlkrk = 4 for all clauses k ∈ {1, . . . , K }, while vi j = 1 for all other drawn
links (i, j), and vi j = 0 for all remaining pairs. Non-numbered arrows denote trivially convenient links
(dominant strategies), missing arrows denote trivially non-convenient links (dominated strategies)

verification requires O(n2) operations, and this locates the problem is in NP, the class
of problems a solution of which can be validated in polynomial time.

The next step consists in showing that the problem of finding Nash equilibria is NP-
hard, whichmeans that it is at least as difficult as any other problem inNP. To do this, it
is sufficient to reduce anotherNP-hard problem to it, and a suitable problem in this case
is 3-SAT (3 satisfiability).7 Consider a set of H Boolean variables x1, . . . xH , and a set
of K clauses containing each three possibly negated instances of such variables, joined
by disjunctive operators (an example of clause is x1 ∨ x2 ∨ x3, where x3 denotes the
negation of x3). The 3-SAT problem consists in stating whether there is an assignment
of Boolean values to each of the variables which makes each clause evaluate to true.

The reduction of the search ofNash equilibria to 3-SAT is performedby constructing
a network composed of m “variable” components and k “clause” components, as
represented in Fig. 4. Notice that the components are connected among them at the
extrema of the links �hT and �hF they share. In order for a “variable node” vh to
become connected to its objective oh , it needs to sponsor �hT or �hF (and is ex ante
indifferent between them). Now, the “clause” component is unstable whenever one
of the peripheral links is built (recall the example in Fig. 2). It becomes instead a
Nash equilibrium if at least one of the internal paths is built, i.e. if at least one of the
variable nodes chooses the appropriate path/truth value. Hence, the collection of all
clause components (and hence the network) is a Nash equilibrium if and only if an
appropriate assignment of truth values is implemented.

It can be observed that the stability concept being employed is weak: each variable
node vh can deviate and build the other path to its objective oh without incurring any
loss. However it is trivial to make it strict by amending the definition of vi j with the
rule that vi j = 0.5 if (i, j) = (vh, lk) for some h,k, and by raising the cost of �hF

to 1.1: with these changes, variable nodes have a strict incentive not to deviate from
configurations which satisfy all clauses, and if this happens regardless from the value

7 This choice and the proof which follows are heavily inspired by Anshelevich et al. (2003), who proved
the NP-completeness of finding Nash networks in a different but related framework of network formation.
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of some variable h, then the variable node vh has a slight preference for building �hT

over �hF .
Having shown that the problem of finding Nash equilibria is both in NP and in

NP-hard, it is hence in NP-complete, which is defined as the intersection of the two.
Notice that the result concerning NP was proven in the more general case of arbitrary
constraints, while the result concerning NP-hard was proven again in the more general
case of not resorting to constraints. So the whole proof of NP-completeness applies
both to the original model by Bala and Goyal (2000), and to the generalised model
adopted in the present work.

2.3 Repeated Internal Constraints and Non-Decreasing Network Models

A basic ingredient of virtually any real world process of network formation is time:
as will be exemplified in Sect. 3.2, it can be a crucial ingredient in the study of some
real world networks. A study of the consequences of repeated internal constraints,
going beyond the analysis of static Nash equilibria relative to exogenous constraints,
is hence a natural development of the theory exposed so far. In what follows, I will
assume that the formation of the network happens in a discrete time setting. For
each t = 1, 2 . . . , I will define as gt+ and gt− respectively the positive and negative
constraints at that time period. At each time, the best reply of each node is the one
maximizing �i (g

t+; gt−; ·).8 The outcome, if any, of the step t , denoted as gt , will
hence be a Nash equilibrium for these payoffs functions. Clearly, such outcome needs
not be unique, and neither it necessarily exist: if it does not, the network formation
process terminates at time t .

The introduction of endogenously determined, time dependent constraints is a pow-
erful conceptual tool, but it increases considerably the amount of degrees of freedom,
so the model is of limited utility unless one restricts to specific classes of rules which
have a particular economic meaning. The result which follows considers the class of
non-decreasing network models, defined as those for which gt+ = gt−1 (the posi-
tive restriction coincides with the outcome of the previous step of the process): such
class naturally maps to several real world contexts, including the case of bibliometric
networks analysed in Sect. 3.2. A peculiarity of non-decreasing network models is
that, since the number of links present at time t is (weakly) increasing in t itself, and
since it can never exceed n2 − n, it must, for some t , terminate or stabilise in some
configuration, which I will call a limit network. A limit network will then be defined
as strict if there is no other limit network composed by a subset or a superset of its
links.

Proposition 5 If gt− is constant, then the set of (strict) limits of the non-decreasing
network model corresponds to the set of (strict) Nash equilibria of the static model
associated to the payoffs function �i (g

1+; g1−; ·).

8 Clearly, the framework could also be an ideal context for the study of a less myopic type of rationality,
such as the farsightedly stable networks (Herings et al. 2009).
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Proof Consider a (strict) Nash equilibrium g∗ of the model associated to payoffs
functions �i (g

1+; g1−; ·). By, definition, it is also a (strict) Nash equilibrium for the
first step of the non-decreasing network model. In order to prove that it is a limit
network, it is hence sufficient to show that it is still a (strict) Nash equilibrium for
�i (g∗; g1−; ·). Assume it is not: this means there is some i which (weakly) prefers
some g′

i ⊃ g∗
i . But then, g∗ was not a (strict) Nash network in the first place. The

same applies hence for t = 2, 3 . . .

Now assume g∗ is a (strict) limit for the non-decreasing network model, reached at
some time t∗. By construction, g∗ is a union of t∗ subsequent extensions (some of them
possibly empty) each of which leads to a Nash equilibrium subjected to the constraints
originating from the previous period. Hence, each of the link they contain must be a
bridge between two otherwise disconnected components (as in the proof of Proposition
2).
Given any time period t and any link (i, j) in gt � gt+ , let �t

i, j be the profit which
the link (i, j) yields to i in gt , that is,

�t
i, j = �(g1

+
, g1

−
, gt ) − �(g1

+
, g1

−
, gt � (i, j)).

This profit is necessarily (strictly) positive, since the node is part of the best reply
of i . Any �t ′

i, j with t ′ > t will also be positive—all new links are bridges, and so the
connected component of j can only grow,while no paths from i to j alternative to (i, j)
can appear. So no node has a (weakly) positive individual incentive to simply break one
or more existing links in gt . If g∗ is not a (strict) Nash equilibrium of �i (g

1+; g1−; ·),
then necessarily some node has a (weakly) positive individual incentive to add some
link, or to replace some link with some other. The first case is impossible: since gt− is
constant, thiswouldmake g∗ unstable also at time t∗. But the second is also impossible:
since�i (g

1+; g1−; ·) is positive, the new link should still connect i to N j (g∗ � (i, j)).
So to be incentive compatible, it should cost less than (i, j). But then, it would have
been chosen at time t in its place.

Proposition 5 in particular implies that when no Nash equilibrium exists, no limit
network exists. An interesting implication is that network models satisfying only the
more general condition gt+ ⊇ gt−1 do not exhibit richer limit structures than non-
decreasing network models: imposing (i, j) ∈ gt+ would not make a change, in terms
of limit networks, compared to imposing (i, j) ∈ g0

+
. Richer dynamics could instead

be expected when

1. considering partially non-decreasing network–networks inwhich some previously
provided links can be destroyed, or

2. introducing time-dependent negative constraints—for instance, real world net-
works with a population of nodes which increases over time can conveniently be
modelled through appropriate negative constraints which decrease over time.9

The growth of the network of citations, described in Sect. 3.2, falls in this second
case.

9 I thank an anonymous reviewer for this remark.
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3 Applications

Several examples have been mentioned in Sect. 1 of real world networks the growth of
which is significantly affected by positive or negative constraints. The present section
goes more in depth in two of them in order to highlight the importance of taking
into account such constraints when modelling them. The two case studies also make
prominent the fact that modelling constraints inside a model of strategic network
growth can result in interesting economic insights even when the distributions of costs
ci j and values vi j are only partially known, or entirely unknown.

3.1 The Network of Corporate Control

Chapelle and Szafarz (2005) have modelled the network of control among corpo-
rations, and Vitali et al. (2011) have studied empirically the international network
of corporate control, characterising its topological structure and identifying a strong
concentration of power in the hands of a small core of actors. For simplicity, in the
present context we can define control as being the largest shareholder, with a share
of equity above a given threshold.10 Being part of a single group, which acts in a
strategically coherent way, can clearly present benefits to member institutions, e.g. in
terms of vertical integration. This relation of control among institutions is then subject
to both natural and policy constraints.

• The main natural constraint consists in the fact that control is clearly exclusive,
i.e. if firm A controls firm B, firm C cannot control firm B.

• A typical example of policy constraints is represented by antitrust policies, e.g. the
European Commission forbidding the acquisition of a firm D on behalf of some
holding E which already owns a competitor F .

Notice that both kinds of restrictions are endogenously determined, i.e. they depend
on the current network configuration. In the first case, firm C might get control of firm
B if firm A decided to sell enough shares; in the second case, firm E might get control
of firm D if it first sold its shares of F . Equally important is that the formalisation
of both types of restriction must take into account indirect ownership. For instance,
in the example of antitrust constraints, if E is forbidden from acquiring a majority
share of F , it should as well be forbidden from acquiring a majority share in each of
two other entities G and H each owning 30 % of the shares of F . In general, defining
restrictions which implement even relatively simple principles (e.g. an upper bound
to market share controlled by a single entity) can result in complex rules.

While the restrictions described above are irrelevant for a mere characterisation of
the network under study (i.e. quantifying the power of a core of firms), they become
important in order to measure specific features relative to appropriate null models,
resulting from simulations with endogenous incentives. For instance, an apparently
low level of clustering (the tendency of nodes to link to neighbours of their neighbours)
could be a consequence of the simple fact that ownership is exclusive, while a low

10 In the aforementioned studies, such share is 50 %, but it is commonly acknowledged (Barclay and
Holderness 1989) that the largest shareholder can attain de facto control even with a smaller share.
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assortativity (the tendency of nodes to link to similar links) might be due to local
antitrust authorities limiting the control power of a single firm in a given national
economy/sector. Running simulations which take into account such aspects becomes
simple by resorting to the appropriate constraints, which in this case are only negative.

Interestingly, the cost of building links in the network being analysed coincides at a
first approximation with the market value of the (voting) shares needed to control the
target firm, which in turn is independent from the identity of the buying firm.11 This
suggests that the case of target-homogeneous costs could be important to investigate
(while the literature has so far mostly focused on owner-homogeneous costs—see
Proposition 1).

3.2 The Network of Citations Between Scientific Papers

The network of citations between scientific papers is a prominent example of an
endogenously formed network in which the time component is not just crucial for
the endogenous growth mechanism, but also easily observable in the data typically
available to researchers. Indeed, scientific papers have well defined publication dates,
which impose a clear temporal hierarchy among them and hence strong restrictions to
the set of “actions”—that is, of citations—they can make: these observation, together
with the specific constraints the network is subject to, are exploited byBattiston (2014)
to provide a measure of the so-called “Matthew effect” (Merton 1968) in shaping
citations flows, and hence bibliometric indicators. The Matthew effect consists in
a cumulative advantage by which papers or authors which already received many
citations in the past tend to bemore cited in the future, even if hypothetically controlling
for quality, originality and age.

The non-cooperative approach à la Bala and Goyal (2000) is the most appropriate
for the setting being discussed because a citation is a purely one-side sponsored kind
of relation: an author can very well find out ex-post (if ever) that some paper of her has
been cited by some other paper in the literature. The fact that being cited can, at least
in some cases, represent a gain for a researcher is unanimously recognised, and is part
of the reason why the network of citations is interesting to bibliometric scientists. Less
intuitive is the evaluation of the utility obtained from making a citation, but the mere
fact that the overwhelming majority of scientific articles have a list of bibliographic
references is an obvious sign of such implicit benefits. Notice that, coherently with
the non-cooperative approach, a paper cannot create ingoing links.12 Although there
is apparently no cost involved in “sponsoring” a citation, it is evident that the number
of bibliographic references contained into a single scientific work is limited: many

11 This is clearly an oversimplification made for illustrative purposes—the buyer entity could already be
owning some amount of shares, and most importantly the price of the shares could reflect the interest in
them on the behalf of the buyer.
12 This description of the network of citations excludes on purpose “spurious” effects due environmental
constraints, such as the role that the fame of an author or the prestige of a journal can have in influencing
the amount of citations to a given piece of research. This modelling decision is instrumental in building a
null model which allows Battiston (2014), to find evidence of such spurious effect ultimately resulting in
the desired measure.
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Fig. 5 Examples of allowed and
forbidden links at time ti .
Allowed links in black,
forbidden links in red (color
figure online)

i
Time

ti

authors, starting with de Solla Price (1965), have analyzed different aspects of its
distribution, evidencing a strong concentration for small values. While this evidence
does not help in quantifying the implicit costs born by authors in making citations,
whichmay be due partly to editorial/formatting choices and partly to thework involved
in processing the literature to be cited, it does provide clear evidence of some implicit
costs. Finally, as best exemplified by the phenomenon of literature reviews, it is very
natural to assume that the benefit of a citation to a given paper depends in turn also
on the citations included in that paper. The hypothesis of perfectly reliable links—
meaning that being connected to another paper through an arbitrarily long path is
equivalent to being directly connected—is instead a non-harmful approximation of
reality for the analysis by Battiston (2014): it does not affect its qualitative results,
and on the other hand an alternative specification would make the model much more
complex and require some arbitrary choices.

Given a set of n scientific articles (i.e. composed of all papers published in a given
time span), it can be assumed for simplicity that there is a one-to-one relation between
each node i and the time ti at which it is published. The negative restrictions are then
defined as follows:

gt−i = {( j, k) : j 
= i or tk > ti }

whichmeans that at each instant in time, only the scientific publication being published
can establish links, and it cannot cite works which are yet to be published (Fig. 5).13

Differently from the case of corporate control, the network of citations among scientific

13 In principle, given the typical publication process, which goes through a period of open discussion in
seminars/workshop, an often lengthy referral process, and finally a delay from the definitive acceptance
to the publication, it can easily happen that two papers i and j cite some version of each other. This very
special case, which is not admissible under the simplified settings just described, would possibly deserve a
specific analysis.
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papers is also characterised by positive restrictions: namely, gt+i = gt−1, i.e. once a
citation is established, it “lasts” forever. The structure of negative constraints is then
peculiar in the fact that it is decreasing over time: no link to or from a node h can be
built before th , and so the model describes a growing network.

In Sect. 2.3, the fundamental building block of the development of a network with
repeated internal constraints was assumed to be the Nash equilibrium of a given step
t . Under the specification given for the network of citations, in which at each step only
one node is active, such a Nash equilibrium degenerates to the best response of each
node. The hypothesis of all nodes existing since time 0 does not influence the strategic
choice, which is determined simply as a best response among allowed links—because
of the direction in which value “flows”, later links are irrelevant.

4 Conclusions

The evolution of many economic and social networks is characterised by constraints
which delimit the action space of single nodes, in terms of links they can build and
severe. This paper provides a general framework for introducing such constraints in
models of strategic network formation where links are sponsored by individual nodes.

Previous results by Haller (2012) on the existence of Nash networks are extended
to the presence of negative constraints; moreover, Pareto optimality of network con-
figurations is put in relation with the constraints needed to transform them into
equilibria: in general, negative constraints do not share the welfare benefits of positive
ones, but they can provide a tool to guarantee the existence of equilibria. It is then
shown that finding Nash equilibria, and even just asserting whether they exist, can
be computationally unfeasible (NP-complete) if the cost of building new links is not
owner-homogeneous.

Two prominent examples were presented of the importance of taking into account
constraints in models of endogenous network formation. In the case of the network of
corporate control, the constraints can be both natural (control is exclusive) and reg-
ulatory (e.g. antitrust); in the case of bibliometric networks, they are mainly related
to the time factor (links are established at the time of publication, and only go back-
wards). The theoretical model can be specialised to study many other kinds of social
networks, and provide empirical researchers with tools that go beyond what the
mere static analysis of networks allows to identify. For instance, such restrictions
should be taken into account when simulations of endogenous network formation are
used to build null models against which to compare relevant features of real world
models.

The literature has exploredother kinds of strategic network formation: twoexamples
of deviations from the basic assumptions by Galeotti et al. (2006) are network models
in which links allow a one-way only flow of value (Galeotti 2006), and models in
which the transmission of value over links is imperfect, and hence length of paths
is relevant (Billand et al. 2010). The concept of constraints can be straightforwardly
applied to these and other frameworks, but understanding which of the results exposed
in the present paper extend to some extent to those other models might prove to be
challenging, and is a stimulating direction for further research.
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