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Abstract
Hydraulic support is the primary equipment used for surrounding rock control at fully mechanized mining faces. The load, 
location, and attitude of the hydraulic support are important sets of basis data to predict roof disasters. This paper summarized 
and analyzed the status of coal mine safety accidents and the primary influencing factors of roof disasters. This work also 
proposed monitoring characteristic parameters of roof disasters based on support posture-load changes, such as the support 
location and support posture. The data feature decomposition method of the additive model was used with the monitoring 
load data of the hydraulic support in the Yanghuopan coal mine to effectively extract the trend, cycle period, and residuals, 
which provided the period weighting characteristics of the longwall face. The autoregressive, long-short term memory, and 
support vector regression algorithms were used to model and analyze the monitoring data to realize single-point predictions. 
The seasonal autoregressive integrated moving average (SARIMA) and autoregressive integrated moving average (ARIMA) 
models were adopted to predict the support cycle load of the hydraulic support. The SARIMA model is shown to be better 
than the ARIMA model for load predictions in one support cycle, but the prediction effect of these two algorithms over a 
fracture cycle is poor. Therefore, we proposed a hydraulic support load prediction method based on multiple data cutting 
and a hydraulic support load template library. The constructed technical framework of the roof disaster intelligent prediction 
platform is based on this method to perform predictions and early warnings of roof disasters based on the load and posture 
monitoring information from the hydraulic support.
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1 Introduction

Longwall mining is the most common type of coal mining 
technology throughout China. The excavation breaks the 
original stress balance in the surrounding rock, which gives 
the overlying strata periodic fracture instability. The hydrau-
lic support is the primary equipment to control the surround-
ing rock of the longwall mining face. The load, posture, and 

other support information of the hydraulic support can rep-
resent the roof movement to a certain extent (Peng et al. 
2019; Bai et al. 2019; Xie et al. 2017). The increased mining 
height, intensity, and depth year over year make it difficult to 
control the surrounding rock of the longwall face. Therefore, 
it is relatively common to observe coal wall spalling, roof 
falling, support crushing, and other accidents. The change 
law of the support state is an effective technical approach to 
realize the prevention and control of roof disasters by pre-
dicting the roof weighting and accidents such as roof falling 
and support crushing.

Understanding the coupling relationship between the 
hydraulic support and surrounding rock is important for 
ground control and roof disaster forecasting. Numerous stud-
ies have considered the problem of surrounding rock control 
and roof disaster prevention. Qian et al. (1996, 2019), Ju 
et al. (2015) introduced the theories of a “voussoir beam” 
and “key stratum,” which formed the foundational mechan-
ics models for ground pressure and strata control in longwall 
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faces. Song et al. (1996) proposed the “transfer-beam struc-
ture model” and studied the relationship between the hydrau-
lic support and surrounding rock based on the given defor-
mation and limit-deformation conditions. Wang et al. (2016, 
2017) studied the process of roof stratum breakdown insta-
bility and dynamic evolutions of the hydraulic support load. 
They introduced the “stiffness-strength-stability coupling 
model” between the hydraulic support and surrounding rock, 
which provides an approach to dynamically analyze and 
predict hydraulic support loads in longwall mining faces. 
Some scholars have studied the evolution mechanism of coal 
and rock dynamics in coal mining processes (Schmitz et al. 
2014; Dennis 2019; Qi et al. 2020; Mu et al. 2020). These 
works revealed the mechanism of dynamic disaster occur-
rence, proposed prevention and control concepts based on 
source separation and classification, and developed support-
ing equipment to provide theoretical, technical, and equip-
ment support for dynamic disaster prevention and control.

The research results above mostly considered the defor-
mation, failure, instability, and disaster mechanism of roof 
strata to predict roof disasters and provide early warnings. 
The limitations of the basic mechanics, fracture theory, geo-
logical exploration technology, and other related theories and 
technology development make it difficult to obtain accurate 
theoretical solutions of roof fracture instability and disaster 
occurrence mechanisms. With the development and progress 
of intelligent perception and network transmission technolo-
gies, electro-hydraulic control systems can realize real-time 
monitoring of the pressure, posture, and other information 
for the hydraulic support over the entire longwall mining 
face. The technologies of big data analysis and modeling 
provide new technical ways for roof strata control, disaster 
predictions, and early warnings. The National Institute of 
Occupational Safety and Health in America has developed a 
hydraulic support monitoring and evaluation system (Barc-
zak et al. 2002) that realizes monitoring and early warning of 
hydraulic support state parameters, such as column leakage, 
insufficient initial support forces, and uneven column forces. 
Sandford and Conover in Australia developed the GeoGuard 
System (Sandford et al. 1999), which predicts weighting 
with thick hard sandstone roof strata. Trueman et al. (2008, 
2009, 2010) developed the Longwall Visual Analysis (LVA) 
system to extract the time-weighted working resistance of 
the hydraulic support, initial support force, opening times 
of the safety valve, and other parameters. They studied the 
influence of the buried depth, longwall face width, and other 
factors on the interactions between the hydraulic support and 
surrounding rock. The University of Alabama developed the 
Strata Control and Monitoring System of a fully mechanized 
mining face to realize real-time monitoring and statistical 
analysis of the hydraulic support load to predict the periodic 
weighting of mining faces (DEB 1997). Scholars in China 
introduced a disaster prediction and early warning strategy 

based on multi-source information monitoring of the long-
wall face (Yu et al. 2016; Ding et al. 2019; Zhao et al. 2019; 
Xue et al. 2020; Kang et al. 2018), which has developed the 
intelligent prediction and early warning platform of roof dis-
asters based on big data. Therefore, the supporting technol-
ogy and equipment and the intelligent prediction and early 
warning technologies of roof disasters have been explored 
based on perceptual information.

Existing roof disaster monitoring and early warning 
technologies monitor the column pressure of the hydraulic 
support (Peng 2006; Cheng et al. 2018). Such technologies 
perform statistical analyses on the initial support force, the 
resistance forces at the end of the support cycle, and the 
weighted working resistance of the column to obtain the 
dynamic load coefficient and weighting step of the roof. 
There are shortcomings of current approaches as follows: (1) 
It is difficult to fully reflect the support status of hydraulic 
supports by only monitoring the column pressure (whether 
there is poor hydraulic support such as head up or head 
down). (2) There are a limited number of monitoring data 
types for hydraulic support and the data dimensionality is 
low, which makes it difficult to perform deep data mining. 
(3) The traditional load data analysis method only performs 
statistical analyses of the data, while the interpretability 
of the results is poor. (4) General AI algorithms cannot be 
directly applied to analyze and process the support load data, 
which makes it difficult to provide predictions and early 
warnings of roof disasters.

Given the problems above, this paper analyzed the current 
conditions and primary influencing factors of coal mine roof 
accidents in China. The monitoring information character-
istic parameters of roof disasters were introduced based on 
changes in the support load and posture. The feasibility and 
application of the mathematical-statistical method and big 
data modeling method were discussed as applied to roof dis-
aster predictions and early warnings for the longwall mining 
face. The technical architecture of the roof disaster intel-
ligent prediction platform was built, and the data modeling 
and roof disaster prevention technologies were integrated as 
new methods for roof disaster predictions.

2  Characteristic parameters of roof disasters

2.1  Current roof disasters in China

The safety conditions of coal mines in China have improved 
dramatically in recent years. In 2019, 316 people died from 
170 accidents in coal mines, giving a death rate per million 
tons of 0.083 (Zhang et al. 2020). In comparison, the num-
ber of roof accidents and deaths decreased by 19.33% and 
13.02%, respectively, in the year 2000. The distribution of 
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the number of occurrences and deaths for different accident 
types in Chinese coal mines is illustrated in Fig. 1.

Although the number of roof accidents and deaths has 
dropped significantly, the overall proportion is still high, 
meaning roof accidents are still the primary safety accident 
in coal mines. Roof accidents at the longwall face are caused 
mostly by hydraulic support failure at the roof, which mani-
fests as roof leakage, coal wall spalling, support crushing, 
and others, as shown in Fig. 2. The support parameters, sup-
port state, adaptability to surrounding rock fractures, and 
instabilities of the hydraulic support are the main factors that 
influence safety productions in the mining face.

It is difficult to directly detect the stress distribution and 
fracture structure of the overlying strata in longwall faces 
due to the limited development of geological exploration and 
stress sensing technologies. The fracture process of overly-
ing strata can only be inferred from changes in the support 
load and posture. Therefore, such data are the basis to judge 
the surrounding rock control effect of a longwall face and are 

an important basis to provide predictions and early warnings 
for roof disasters.

2.2  Monitoring information of characteristic 
parameters

As the longwall face advances, the hydraulic support con-
tinuously experiences cyclic operations of lowering, mov-
ing, and lifting. The hydraulic support load presents regular 
unloading, rapid pressurization, approximate constant pres-
sure, and other cyclic loading and unloading characteristics. 
The support load and supporting effect are not only affected 
by the roof fracture structure but are also restricted by the 
support position, support posture, advancing speed of the 
longwall face, manual operations, and other factors. The 
hydraulic support load provides time-series data that show 
cyclic dynamic changes with longwall advancement (Pang 
et al. 2020a, b). The influencing factors of the hydraulic 
support load and cycle change characteristics are used to 
introduce monitoring information characteristic parameters Fig. 1  Distribution of coal mine safety accidents and deaths in China

Fig. 2  Examples of roof safety accidents of the longwall face
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for roof disasters based on changes in the hydraulic support 
load and posture, as shown in Fig. 3.

Monitoring the inclination of the top beam, shield beam, 
and base of the hydraulic support provides the support pos-
ture. Combining the relative posture of the support with the 
roof and floor strata provides the longwall face position and 
other information of the supporting state. Monitoring the 
column pressure, balance jack force (shield support), front 
beam jack force (hinged front beam structure support), side 
protection jack force, balance jack stroke, front beam jack 
stroke, side protection jack stroke, column shrinkage, col-
umn shrinkage speed of the hydraulic support, initial sup-
port force, resistance increase rate, cycle end resistance, 
and circulation speed provides the safety valve opening of 
the hydraulic support. The support posture, load, and other 
related parameters of the support allow calculating the pos-
ture-load decoupling and establish the correlation model of 
the posture and load for the support. The support posture 
and load do not have a corresponding relationship; thus, the 
posture-load database of the hydraulic support can be estab-
lished from a significant amount of monitoring information. 
This establishes the mapping model of the support posture 
and load using the data analysis method, which provides data 
support to predict the support state, evaluate the surrounding 
rock control effect, and predict roof disasters.

3  General methodology

3.1  Engineering background

The hydraulic support load not only has cyclic variation 
characteristics but is also affected by time. The support 
posture, column shrinkage, jack stroke, and other relevant 

information (some characteristic parameters in Fig. 2) are 
not fully monitored, which brings difficulties to roof disas-
ter predictions for the longwall face. The column pressure 
monitoring data of the No.54 hydraulic support in the mid-
dle of the 30112 longwall face of Yanghuopan coal mine in 
Shaanxi Province are used to analyze the support load based 
on the data modeling method, which provides the basis for 
roof disaster predictions.

The 30112 longwall mining face is mined in the No. 3 
coal seam. The average thickness and buried depth of the 
coal seam are 2.2 m and 120 m, respectively. The length 
of the mining face is 240 m, and the dip angle of the coal 
seam is 1°–2°. This mining face adopts the ZY7200/17/30D 
hydraulic support with a center distance of 1.5 m, opening 
pressure of the column safety valve of 41.9 MPa, and sup-
port strength of approximately 0.95 MPa. The support pres-
sure is collected at equal time intervals (10 min), and the 
monitoring data from four continuous days are intercepted 
for the analysis. The original data are shown in Fig. 4.

3.2  Feature decomposition of hydraulic support 
load data

As the hydraulic support load has cyclic variation character-
istics, an additive model is adopted to decompose the load 
data. The original data are decomposed into the trend item, 
cycle period item, and residual item. The trend item reflects 
the long-term development law of the hydraulic support load 
data, the cycle period item reflects the change characteris-
tics of each support cycle, and the residual item reflects the 
random change characteristics of the data.

The sampling densities of the hydraulic support in dif-
ferent cycle periods differ due to the equal time interval 
sampling. For example, the maintenance team did not per-
form cutting operations, and the support load did not change 
periodically, but significant amount of data were collected, 
resulting in large deviations between the characteristic 
decomposition results and the real situation. To avoid dif-
ferences in the data density over various hydraulic support 
cycles as caused by the equal time interval sampling, the 
original monitoring data are preprocessed to equalize the 
data density of each cycle. Only the minimum, initial, maxi-
mum, and final loads are retained in each support cycle after 
processing. The preprocessed results are shown in Fig. 5.

It is seen from Fig. 5 that each support cycle of the 
preprocessed load data has the same data density, but the 
regularity of the data change is not obvious. This makes it 
difficult to obtain periodic weighting characteristics for the 
roof. Therefore, the characteristic decomposition of the pre-
processed load data is performed, and the results are shown 
in Fig. 6.

Analyzing the feature decomposition results of the pre-
processed data indicates that the separated trend item can 

Fig. 3  Monitoring information characteristic parameters of longwall 
face roof disasters
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better characterize the periodic fracture characteristics of 
the roof strata. There are three complete periodic weighting 
records in the intercepted data, which are consistent with 
the actual monitoring situation of the longwall face. The 
cyclic item shows regular characteristics of an increasing 
resistance, peak, and reducing resistance, which is similar to 
the cyclic variation characteristics of the support load. The 
residual item is small and fluctuates around zero, exhibiting 
white noise characteristics.

The above-mentioned analysis results, statistical theory, 
and preprocessed monitoring load data of the hydraulic sup-
port show that the cycle item of the support load and roof 
periodic weighting can be well decomposed. Therefore, load 
data modeling can be performed using machine learning, 
deep learning, or other related methods. Additionally, the 

historical monitoring data can be used to model the hydrau-
lic support load. The prediction results indicate that the 
roof weighting can be deduced and roof disasters can be 
predicted.

4  Support load data modeling 
and predictions

Time series data can be modeled and analyzed using the 
exponential smoothing method, autoregressive model, 
machine learning, deep learning, and other algorithms 
(Conejo et al. 2005; Seyyede et al. 2015; Schar et al. 2004). 
The historic monitoring load can be used to predict the load 
of subsequent single monitoring points, the subsequent 

Fig. 4  Monitoring load of the hydraulic support

Fig. 5  Preprocessed load data of the support cycle
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Fig. 6  Feature decomposition of the preprocessed monitoring data for the support load
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support cycle, and the fracture cycle of roof strata. As the 
predicted range increases, the prediction difficulty increases 
and the accuracy decreases.

4.1  Single point prediction of support load

As the acquisition frequency of the support column load is 
relatively high, historic data are readily used to predict the 
next acquisition value (single-point prediction) with a high 
accuracy. The support load data are affected by many fac-
tors, the strongest of which is the statistical value and trend 
item of the historic monitoring data. Therefore, the double 
exponential smoothing algorithm is used for single-point 
prediction of the support load (Box et al. 2016) as:

where, yt and ŷt+1 are the monitoring values at the current 
and next times; lt and lt−1 are the expected values of the 
monitoring data at the current and previous times; bt and bt−1 
are the trend items of the monitoring data at the current and 
previous times; α is the exponential smoothing factor; and β 
is the exponential smoothing weight.

The monitoring results of the hydraulic support load in 
the 30112 longwall face are used with the double exponen-
tial smoothing algorithm to predict the load monitoring data 
of the hydraulic support. Optimization of the exponential 
smoothing factor (α) and exponential smoothing weight fac-
tor (β) gives α = 0.95 and β = 0.05. The resulting single-point 
prediction is shown in Fig. 7.

(1)

⎧⎪⎨⎪⎩

lt = 𝛼yt + (1 − 𝛼)
�
lt−1 + bt−1

�
bt = 𝛽

�
lt − lt−1

�
+ (1 − 𝛽)bt−1

ŷt+1 = lt + bx

The analysis of Fig. 7 shows that the small amount of 
monitoring data in the early stage causes large deviations 
in the predicted values. With the continuous accumulation 
of monitoring data, the predicted value is consistent with 
the measured value (approximately coincident), indicating 
the single-point prediction effect is improved. Predicting the 
peak load of the hydraulic support allows inferring the possi-
bility of roof disasters. Thus, a simple sliding window model 
can predict the peak load, as shown in Fig. 8.

The long short-term memory (LSTM) model, support 
vector regression (SVR), and autoregressive (AR) model are 
used to predict the column load of the hydraulic support. 
Without strong adjustments, a good overall prediction effect 
is achieved. The root mean square error (RMSE) and mean 
absolute error (MAE) are used to compare the results. It is 
found that the prediction effect of the AR model is relatively 
high, as shown in Table 1.

4.2  Load predictions for one support cycle

The feature decomposition of the support load data suggests 
that the load data have strong trend and cycle character-
istics. The feature dimension of the data is relatively low 
and mainly contains the column load data. The AR model 
achieved good prediction results without strong adjustments. 
Therefore, the autoregressive integrated moving average 
(ARIMA) model is used to predict the support load over 
one support cycle.

The ARIMA model requires that the data must be sta-
tionary, which means the mean and variance must not 
change over time. The augmented Dickey-Fuller (ADF) 
is used to test the stability of the support load, while the 
autocorrelation function (ACF) and partial autocorrelation 
function (PACF) are used to analyze the stationarity and 

Fig. 7  Support load predictions based on the double exponential smoothing algorithm
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autocorrelation of the data. Although the preprocessed data 
meet the test results, there is a lag between the autocorrela-
tion coefficient and the partial autocorrelation coefficient, as 
shown in Fig. 9. After the fourth-order (d = 4), the difference 
calculations of the original monitoring data improve the data 
stability. A comparison of the ADF results before and after 
the difference is shown in Table 2, and the results of the 
autocorrelation comparative analysis are shown in Fig. 9, 
where the shaded area covers the confidence interval.

The analysis of the above figure suggests that after the 
fourth-order difference calculations, the lagging phenom-
enon of the autocorrelation and partial autocorrelation coef-
ficients in the monitoring data is improved. To determine 
the values of the autoregressive item (p) and sliding average 
item (q), a grid search method is used to search and calculate 
the data models within the ranges of the autoregressive item 
(2 ≤ p ≤ 8) and moving average item (2 ≤ q ≤ 8). A total of 36 
groups of data models were selected to optimize the model 
parameters using the Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC). For p = 5 and 
q = 4, the AIC and BIC values of the model are minimized 
at the same time (AIC = 1706.01, BIC = 1743.15). Therefore, 
the model parameters are determined as p = 5, d = 4, and 

q = 4. At this time, the residual value of the model follows 
the characteristics of white noise, as shown in Fig. 10.

The optimized data model is used to predict the support 
load over one support cycle, as shown in Fig. 11. The analy-
sis of the prediction results indicates that the fitting effect of 
the model on the hydraulic support load is good overall, and 
the peak value and variation law of the following support 
cycle can be predicted. However, the predicted results still 
have a certain deviation from the measurements.

The support load data have strong cyclic characteristics. 
To improve the prediction accuracy, the SARIMA model 
with the cycle item is used to predict the support load. First, 
the data are differentiated over a cycle period and the first-
order difference is performed to improve the data stability. 
The grid search method is used to search and calculate the 
range of the autoregressive item (2 ≤ p ≤ 6), moving aver-
age term (2 ≤ q ≤ 6), cyclic autoregressive term (2 ≤ P ≤ 4), 
and the cyclic moving average (2 ≤ Q ≤ 4). A total of 64 
data models are selected, and the AIC and BIC are used to 
optimize the model parameters. The optimal parameters are 
determined to be p = 3, q = 3, P = 2, and Q = 3. The opti-
mized data model is then used to predict the support load 
over one support cycle. The fitting and prediction results are 
shown in Fig. 12.

4.3  Load prediction of the hydraulic support 
over one roof fracture cycle

As the roof strata present the characteristics of periodic frac-
turing, the fracture cycle in different areas of the longwall 
mining face is variable. Thus, it is necessary to predict the 
hydraulic support load in a fracture cycle to provide suf-
ficient time for the prevention and control of roof disasters. 

Fig. 8  Support load predictions based on the sliding window model

Table 1  Prediction effects of the different algorithms

Algorithm RMSE MAE Accuracy 
within 5%

Accuracy 
within 
10%

LSTM 0.3551 0.1866 36.22% 52.47%
SVR 2.0164 0.9223 31.44% 46.52%
AR 0.1422 0.1012 61.32% 74.77%
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Fig. 9  Autocorrelation and partial autocorrelation graphs of the monitoring data before and after differential calculations
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The ARIMA and SARIMA models are used to predict the 
support load over multiple cycles, as shown in Fig. 13.

It is seen from Fig. 13 that the support load in differ-
ent circulation support processes exhibits little change. The 
ARIMA and SARIMA models can therefore only capture 
the load of the subsequent 1–2 cycles, while the predicted 
value is quite different from the real value. This means that 
neither model can accurately predict the support load in roof 
fracture cycles.

5  Discussion

5.1  Comparative analysis of data model prediction 
effect

The high frequency of the support load acquisition realizes 
single point predictions using the above algorithms with 
good overall results. However, the single-point prediction 
of the following acquisition is not significant for engineering 
applications. The data acquisition frequency is 10 min for 
the 30112 longwall mining face as an example. Even if it can 
accurately predict the next acquisition and infer an impend-
ing roof disaster based on the predicted results, this time is 
too short for disaster prevention. Therefore, it is necessary 
to predict load changes at least one support cycle in advance.

Comparing the load prediction results of the ARIMA 
and SARIMA models over one support cycle indicates 
the SARIMA model is closer to the measured values. The 
RMSE is used to compare the fitting effects of the two mod-
els as (Rehab et al. 2015):

where Xobs,i is the monitoring value at time i , and Xmodel,i is 
the predicted value at time i.

The calculation results of the ARIMA, SARIMA, Holt-
Winters, and LSTM for one support cycle, and the calcula-
tion results of the ARIMA, SARIMA, RNN, and LSTM for 
one roof fracture cycle are given in Table 3. The table shows 
that the SARIMA model is better than the others. Although 
the predicted results have a certain deviation from the meas-
ured values, the overall prediction is good. As a coal cutting 
cycle is approximately 1 h in the high-intensity mining face 

(2)RMSE =

�∑n

i=1

�
Xobs,i − Xmodel,i

�2
n

of the western mining areas, it is still difficult to predict the 
support load in one support cycle for disaster prevention and 
treatment. Thus, it is better to predict the load in one fracture 
cycle of the roof strata.

For one roof fracture cycle prediction, the SARIMA and 
ARIMA models provide the cyclic variation characteristics 
of the hydraulic support, but predictions of the peak value 
and variation law are poor. Neither of these models can pre-
dict the support load in one roof fracture cycle. We also use 
the LSTM and RNN algorithms to model and analyze the 
data, but the load predictions for a single roof fracture cycle 
are also not ideal.

5.2  Discussion on prediction method for one roof 
fracture cycle

Few related works have focused on prediction and early 
warnings of roof disasters in longwall faces Scholars have 
mainly focused on the stress field evolution characteris-
tics and fracture structure of roof strata (Wang et al. 2015; 
Pang et al. 2020a, b; Cheng et al. 2020). Studies focused on 
roof disaster predictions using data models are scarce. The 
related algorithm results to predict the support load in one 
fracture cycle have not been developed.

Based on the load prediction methods of one support 
cycle for a hydraulic support, a prediction method based 
on multiple data cuttings and a load template library of 
hydraulic supports is proposed, to predict the support load 
in one roof fracture cycle. First, the load characteristics 
(increasing resistance, constant resistance, and reducing 
resistance) over one support cycle are used to reduce the 
load data over the entire longwall face. The loads for each 

Table 2  Test result for the 
stability of the load data

Item Inspection find-
ings of T

p-value 99% confidence 
interval test

95% confidence 
interval test

90% confi-
dence interval 
test

Before diff −3.523 0.0074 −3.4519 −2.871 −2.5718
After diff −7.945 3.2 −3.4541 −2.872 −2.5731

Fig. 10  Residual values of the model optimization
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cycle of the hydraulic support are fit using the SARIMA 
algorithm, and similar fitting curves are classified into a 
single class to establish the support load template curve 
library for a single cycle. Second, the variation law of the 
peak load for each cycle is used to determine the fracture 
step of the roof strata. The load template curves of the 
hydraulic support in each fracture cycle are sorted, and 
the load change template library for the hydraulic support 
based on the fracture cycle of the roof strata is established, 
as shown in Fig. 14. Finally, the existing monitoring data 
predict the load curve of the subsequent cycle, which is 
compared with the single support cycle in the load tem-
plate curve library. A classification algorithm is used to 
determine the most likely trend of the support load in a 
roof fracture cycle to predict the hydraulic support load 
over a fracture cycle.

The methods above need to establish fitting curve tem-
plate libraries for the cycle support load and support load for 
a roof fracture cycle, which need a large amount of load data 
as samples for training. The load data in some coal mines in 
Northern Shaanxi are used in the above method to predict 
the support load in one fracture cycle of the roof strata to 
obtain some meaningful results.

5.3  Technical framework of roof disaster intelligent 
prediction platform

The technical framework of the intelligent prediction plat-
form for roof disasters is proposed in Fig. 15 based on the 
monitoring information characteristic parameters of roof dis-
asters and prediction methods for the support load. The two-
column shield hydraulic support is taken as an example. The 
posture-load characteristic database of the hydraulic support 

Fig. 11  ARIMA model fitting results
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is established by mapping a large amount of monitoring load 
data and the absolute and relative posture monitoring values 
of the hydraulic support. The roof beam inclination angle, 
column pressure, column shrinkage, and other related infor-
mation monitored at the longwall mining face were inserted 
into the posture-load characteristic database of the hydrau-
lic support for comparison and to determine whether the 
support state was abnormal. If there are any abnormalities, 
alarms will sound, and the support load and posture will be 
adjusted manually. If there are no abnormalities, the load 
variation law of the next support cycle is predicted based on 
the load prediction method of one support cycle.

The predictions are inserted into the load template curve 
library of a single-cycle support for comparison, and the 
load change template curve of the hydraulic support is 
determined from the classification algorithm and compared 

with the occurrence threshold of roof disasters. If the pre-
diction exceeds the threshold of roof disasters, the disaster 
alarm will sound. If not, the predicted single-cycle support 
load template curve is put into a load curve template library 
of the roof fracture cycle. The load variation law of the 
hydraulic support in the following roof fracture cycle is pre-
dicted and compared with the roof disaster threshold. If the 
predicted load exceeds the threshold of roof disasters, the 
disaster alarm will sound. When a hydraulic support cycle is 
complete, the monitoring data are stored in the single-cycle 
support load template curve library. When the support load 
monitoring of a roof fracture cycle is complete, the load 
monitoring data of the entire cycle are stored in the support 
load curve template library. Increasing the number of sam-
ples can improve the accuracy of roof disaster predictions.

Fig. 12  SARIMA model fitting results
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Due to space limitations, this paper does not discuss the 
establishment of a posture-load characteristic database for 
the hydraulic support and the determination of the roof dis-
aster threshold. In addition, if there is no predicted cycle 
support curve in the curve library for the hydraulic support 
over a single-cycle support load template, the floating range 

of the prediction is calculated using statistical principles. If 
the maximum floating value exceeds the threshold of roof 
disasters, the roof disaster alarm will sound.

6  Conclusions

(1) The load data of the hydraulic support are time series 
data with cyclical change characteristics. The load, 
position, attitude, and support state parameters of the 
hydraulic support directly impact the surrounding rock 
control effect.

(2) The data sampling density of the hydraulic support 
in different cycles greatly influences the results of the 
eigendecomposition. Only the minimum, initial, maxi-
mum, and final loads are retained for the data of each 

Fig. 13  Different models to predict the support load over multiple cycles

Table 3  Prediction effect of the different algorithms

One support cycle One roof fracture cycle

Algorithm RMSE Algorithm RMSE

ARIMA 4.76 ARIMA 5.62
SARIMA 4.34 SARIMA 5.18
Holt-Winters 7.62 RNN 8.51
LSTM 6.22 LSTM 7.92
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support cycle. Using equal density sampling can reduce 
the impact of the sampling density on the prediction 
results.

(3) Although different data algorithms can achieve single-
point predictions for the support load data, there is little 
engineering significance for single-point predictions. 

Fig. 14  Sequence of the support load template curves for one fracture cycle of the roof strata

Fig. 15  Technical framework of the intelligent prediction platform for roof disasters
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The SARIMA model is better than the ARIMA model 
at predictions over a single support cycle, but both 
algorithms have difficulty predicting the roof weight-
ing cycle in the longwall face.

(4) A support load prediction method based on multiple 
data cuttings and support load template libraries is pro-
posed based on the difficulty of predicting the support 
load during a roof weighting cycle of a longwall face. 
The technical architecture of the roof disaster intelli-
gent prediction platform is analyzed. The monitoring 
results of the support load and posture help realize 
advanced predictions and early warnings of roof dis-
asters.
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