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Abstract Coking coal dust is extremely hydrophobic; therefore, combination with droplets in the air is difficult and dust

suppression is challenging. Here, a dust suppressant spray for coking coal dust was studied in order to improve of the

combination of droplets and coking coal dust. Based on monomer optimization and compounding analysis, two surfactant

monomers, fatty alcohol ether sodium sulfate (AES) and sodium dodecyl benzene sulfonate (SDBS) were selected as the

surfactant components of the dust suppressant. The surfactant monomers were combined with four inorganic salts and the

reverse osmosis moisture absorption of each solution was determined. By combining the reverse osmosis moisture

absorption values with the water retention experimental results, CaCl2 was identified as the optimal inorganic salt additive

for the dust suppressant. Finally, the optimal concentration of each component was obtained using orthogonal experimental

design i.e., AES (0.03%), SDBS (0.05%), and CaCl2 (0.4%). The dust suppressant solution formulated using this method

had a high moisture absorption capacity and excellent performance.
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1 Introduction

Different mining processes, e.g., coal mining and trans-

portation, generate varying amounts of dust. Airborne dust

poses a serious threat to the health and safety of mine

workers (Ahmed et al. 2017; Zhou et al. 2018a; Xu et al.

2019a; Wang et al. 2019a; Hua et al. 2020). In recent years,

according to the National Occupational Diseases Statistics

Report by the National Health Commission of China, most

new pneumoconiosis cases were reported to occur in the

coal and non-ferrous metal mining industries. Specifically,

40% of new pneumoconiosis cases were reported to occur

in the coal mining industry (Vedal 1997; Li et al. 2002; Yin

et al. 2019; Bao et al. 2020; Zhang et al. 2020). Thus,

adoption of effective dust suppression technologies to

reduce the concentration of dust in the coal mining field is

imperative (Nie et al. 2017a, b; Peng et al. 2019).

Currently, spray-based dust reduction is the main dust

control measure in underground mines (Dey 2012; Wang

et al. 2019b, e; Zhou et al. 2019a, b; Han et al. 2020a).

However, sprayed water has a large surface tension and

coal dust is extremely hydrophobic, which limits the effi-

ciency of dust suppression sprays in coal mines (Wang

et al. 2020a; Xu et al. 2018; Han et al. 2020b, a). Some

studies report the addition of surfactants to water, which

provide the resulting solution with a lower surface tension

and improve the wetting performance of the spraying

process (Yang et al. 2007; Tessum and Raynor 2017).

Other studies have shown that surfactants significantly

reduce the surface tension of water, and that the reduction

effect is dependent on surfactant type and concentration

(Omane et al. 2018; Wang et al. 2019d). Tessum et al.

(2014) studied the ability of various surfactant droplets to

trap dust particles with a surface charge. The analysis

indicated that different types of surfactant performed dif-

ferently in trapping dust particles with a surface charge; in

particular, it was shown that non-ionic surfactants had the

highest dust trapping efficiency. Yang et al. (2014) repor-

ted that surface active ions in anionic surfactants generally

carry a negative charge, and thus repelled coal dust parti-

cles with a negatively charged surface. The anionic sur-

factant particles exhibited low adsorption on the surface of

coal dust particles. Therefore, anionic surfactants have a

weaker wetting ability compared to that of non-ionic

surfactants.
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In addition, some researchers have developed and

studied novel dust suppressants (Fan et al. 2018; Hu et al.

2019; Zhou et al. 2019a, b; Yan et al. 2020). Tong (2013)

and Jiang et al. (2013) conducted theoretical and experi-

mental analyses and concluded that the application of

suitable compounding significantly improved the wetting

performance of a solution during coal dust trapping. Li

et al. (2010) prepared a new dust suppressant using a sur-

factant compounding method and obtained the optimal

concentration through orthogonal experimental design.

Based on the experimental results, compared to clean

water, the dust suppressant improved the dust reduction

efficiency by 20%. Kilaua and Pahlman (1987) found that

the wetting performance of the surfactant solution is further

enhanced via the addition of metal inorganic salts. Subse-

quently, Du and Zeng (2002) and He et al. (2008) inves-

tigated the variation in surface tension of surfactant

solutions under the action of metal salts. Wu and Gu (2001)

investigated the impact of inorganic salt additives on the

wetting performance of anionic surfactant solutions

through experimental and theoretical analyses. The results

showed that the wetting ability of anionic surfactant solu-

tions is significantly enhanced following the addition of

Na2SO4. Li et al. (2016) compared the wetting properties of

a sodium dodecyl sulfate (SDS) solution with five different

additives and assessed its suitability for coal dust trapping

using surface tension, contact angle, and reverse osmosis

experiments.

Coking coal is a type of bituminous coal and is more

hydrophobic than other types of coal dust, meaning its

combination with water droplets is challenging. Thus, the

dust capture rate of traditional spray technologies is

extremely poor. The development of dust suppressants

specifically for coking coal is rarely reported in the liter-

ature. In addition, inorganic salts are rarely added as water-

retention agents and additives during the formulation of

dust suppressants. In this study, two surfactant monomers

were used as surfactant components to prepare a dust

suppressant for coking coal dust via monomer optimization

and compounding analysis. At the same time, through

compounding of the surfactant monomer and inorganic

salt, the reverse osmosis moisture absorption of each

solution was measured. Using the reverse osmosis water

retention results, a specific inorganic salt was chosen as the

dust suppressant additive. Finally, the optimal combination

of concentrations of the three components was obtained via

orthogonal experimentaldesign to obtain the spray dust

suppressant formulation for coke coal dust.

2 Materials and methods

2.1 Materials

Coking coal samples were obtained from the Shanxi

Wanfeng coal mine. The coking coal from the Shanxi

Wanfeng coal mine had poor wetting properties (making

wetting using water difficult), and a large contact angle

(88.76�) (Liu 2006; Luo et al. 2016; Zhou et al. 2018b;

Wang et al. 2019c). First, a pulverizer was used to crush

the coal samples for one minute, and then the sample was

passed through a sieve using a 150-mesh standard indus-

trial sieve. Next, the obtained coal dust sample was dried in

a vacuum dryer at 80 �C for 480 min. The coal dust sample

was stored in a sealed pouch prior to analysis. The indus-

trial evaluation indexes and characteristic particle diame-

ters of the coal dust samples are shown in Table 1. Figure 1

shows the contact angle and size distribution of the coal

dust samples. As the mining area uses tap water, tap water

was used during the experiments.

If the suppressant spray is applied directly to the coal

mine operation site, it will come into direct contact with

coal mine workers. Thus, there are strict requirements for

the selection of surfactants. When selecting dust suppres-

sant sprays, they should be: non-toxic, harmless, non-cor-

rosive, and easily soluble in water. In addition, the selected

suppressants should be economical and easy to transport.

Based on the above principles, through market research and

field investigation, ten types of surfactant underwent pre-

liminarily screening, as shown in Table 2.

During dust suppressant formulation as well as using

multiple surfactants for compounding, the addition of

hygroscopic inorganic salt additives to further improve the

wetting and water retention properties of the solution

should be considered (Tang et al. 2016; Kumar and Mandal

2016). The effect of hygroscopic inorganic salts and sur-

factants differ; some have synergistic effects and some

antagonistic effects. In the experiments reported here, four

types of hygroscopic inorganic salts (NaCl, CaCl2,

Table 1 Industrial evaluation indexes and characteristic particle

diameters of the coal dust samples

Coal

quality

Mad

(%)

Aad

(%)

Vad

(%)

FCad

(%)

D10

(lm)

D50

(lm)

D90

(lm)

Coking

coal

2.56 12.72 14.94 69.78 1.950 19.82 76.89

Mad refers to air-dried moisture, Aad refers to air-dried ash, Vad refers

to the air-dried volatile content, FCad refers to the fixed carbon con-

tent. D10, D50, and D90 are the characteristic diameters of the coal dust

particles, which represent particle sizes larger than 10%, 50% and

90% of the total volume of all particles, respectively
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Na2SO4, and Na2SiO3) were selected. The effect of each

inorganic salt and surfactant was analyzed, and the inor-

ganic salt with optimal performance was selected.

2.2 Experimental scheme

2.2.1 Preparation scheme

(1) Surface tension experiments were used to investigate

the ability of ten surfactant monomers to decrease

the solution surface tension. At the same time, we

investigated the performance of ten types of surfac-

tant monomer for wetting coal dust using contact

angle and reverse osmosis analyses. A total of six

surfactant concentrations were tested during the

experiments i.e., 0%, 0.00005%, 0.0005%, 0.005%,

0.05% and 0.5%. Based on the surface tension and

wetting performance experimental results, six suit-

able surfactant monomers were selected.

(2) The six surfactant monomers were tested using

binary compounding analysis, and the performance

of the compounded solutions was evaluated using

reverse osmosis analysis. Based on the results of the

performance evaluation, an optimal compounding

scheme was selected. The concentration of the six

monomer surfactants was set at 0.05% during the

binary compounding analysis.

(3) Four inorganic salts were used to prepare solutions

with mass fractions of 1%. The preferred surfactant

monomer selected during the compounding

scheme in step (2) was used to prepare a 0.05%

solution. Then, binary compounding of the surfactant

monomer and inorganic salt solutions was per-

formed, and the wetting performance of the com-

pounded solution was investigated using reverse

osmosis analysis. Solutions of the four different

types of inorganic salt at equal mass concentrations

were added to the coal dust samples and their water

retention properties were investigated. One of the

four inorganic salts was selected as the optimal

additive for the dust suppressant, based on the water

retention and reverse osmosis results.

(4) A three-factor, three-level reverse osmosis orthogo-

nal experimental design was performed using the

two surfactant monomers and the inorganic salt

selected in the binary compounding analysis

described above. In addition, based on the ranges

of the three factors and the comprehensive average

of each level, the dust suppressant configuration

scheme with optimal the dust suppression effect for

Fig. 1 a Contact angle and b particle size distribution of the coal dust particles

Table 2 Different types of surfactant and their specifications

Types Reagent Abbreviation Molecular formula Grade

Anionic Fatty alcohol ether sulfate AES C14H29NaO5S AR

Sodium lignosulfonate SLS C20H24Na2O10S2 AR

Sodium dodecyl benzene sulfonate SDBS C18H29NaO3S AR

Non-ionic Polyoxyethylene sorbitan monooleate Tween-80 C64H124O26 CP

Fatty alcohol polyoxyethylene ether AEO-9 RO(CH2CH2O)9H,R=12 AR

Polyoxyethylene sorbitan monolaurate Tween-20 C58H113O26 AR

Zwitterionic Cocamidopropyl betaine CAB-97 C19H38N2O3 AR

Dodecyldimethylamine oxide OB-2 C14H31NO AR

Cationic Cetyltrimethylammonium bromide CTAB C19H42BrN AR

Dodecyl dimethyl benzyl ammonium chloride 1227 C21H38CIN AR
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coking coal was obtained. The manufacturing pro-

cess for the dust suppressant is shown in Fig. 2.

2.2.2 Parameter measurement method

(1) Surface tension analysis. A German Kruss K20

surface tension meter was used to detect the surface

tension of the surfactant monomer and the com-

pound solution. The surface tension of all solutions

was measured at 25 �C using the hanging piece

method. First, the platinum piece was placed and

maintained in a vertical position on the experiment

table, and then the instrument was rotated to allow

the platinum piece to interact with the surface of the

water. Then, the minimum tensile force required for

the platinum piece to exit the aqueous solution was

measured.

(2) Contact angle analysis. In order to obtain the

cylinder test piece of the coal samples, a mold

containing 400 mg of pulverized coal was placed in

a bench-top powder grinding machine for one

minute at a pressure of 50 MPa. The obtained test

pieces were 2 mm thick and had a smooth surface.

A CA100B contact angle measurement instrument

was used to measure the contact angle of the solution

on a coal dust sample. Three test pieces were

measured in triplicate for each solution to obtain the

average value.

(3) Reverse osmosis analysis. A custom-designed

reverse osmosis device was used to evaluate the

moisture absorption of the coal dust. First, a 10 mm-

diameter glass tube containing 3 g of coal sample

sealed with filter paper was weighed. Then, the glass

test tube was submerged in a water tank for two

hours. Next, the glass test tube was removed from

the water tank and reweighed it. The difference

between the two weights was used to calculate the

moisture absorption of the coal dust samples.

(4) Water retention analysis. The four inorganic salts

i.e., NaCl, CaCl2, Na2SO4, and Na2SiO3, were used

to prepare 1% solutions. Then, 10 mL of each

solution was mixed with 10 g of dry coking coal dust

in a petri dish and the petri dish was dried at room

temperature. The petri dish was weighed at 12-h

intervals to calculate the coking coal moisture

content. The method used to calculate the moisture

content is shown in Eq. (1).

g ¼ m2 � m1

m1

� 100% ð1Þ

where, g is the moisture content, m1 is the mass of

the coal sample before wetting, and m2 is the mass of

the coal sample after wetting.

Fig. 2 Flow chart of the dust suppressant
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3 Selection of the optimal surfactant

3.1 Surface tension analysis

The experimental results in Table 3 show that the surface

tension was reduced by adding a surfactant into water. Due

to the amphiphilic structure, the surfactant molecules were

positively adsorbed onto the surface of the solution, caus-

ing a significant reduction in solution surface tension. The

results showed that for most coal dust samples the critical

surface tension was approximately 45 mN/m (Wu and Gu

2001). Table 3 also shows that the critical surface tension

of some surfactants exceeded 45 mN/m at the highest

concentration (0.5%). For example, the critical surface

tension of SLS was 48.9 mN/m and that of 1227 was 45.6

mN/m. Therefore, coal dust wetting using these two sur-

factants was not optimal and they were eliminated. cm
refers to the mass fraction of surfactant solution.

Table 3 also shows that as the surfactant mass concen-

tration increased within the low range, the surface tension

was significantly reduced. In addition, the surface tension

remained stable after the mass concentration exceeded a

certain value, which is defined as the critical micelle con-

centration (CMC) (Wang et al. 2020b; Jin et al. 2019). At

high concentrations, the interface adsorption between

amphiphilic molecules became saturated leading to the

formation of colloidal aggregates of the amphiphilic

molecules in solution and resulting in stable surface tension

(Ma et al. 2004). In this study, the change in surface ten-

sion slope for the ten types of surfactant were measured in

different concentration ranges to obtain the CMC of each

surfactant (Fig. 3).

Figure 3 indicates that when the concentration is

between 0.05% and 0.5%, the surface tension rate of

change for nine of the surfactants was below 5%; however,

Tween-80 was an exception. The results showed that the

CMC of Tween-80 was significantly higher than that of the

other surfactants. At the highest concentration, the corre-

sponding surface tension of Tween-80 was approximately

40 mN/m, which is close to the critical surface tension of

coal dust. Thus, Tween-80 should not be selected as the

dust suppressant. Based on the results in Fig. 3, the six

surfactants i.e., AES, SDBS, Tween-80, AEO-9, Tween-

20, CAT-97, and OB-2, have CMC values of approxi-

mately 0.005%, while SLS, CTAB, and 1227 have CMC

values of approximately 0.05%. Based on these surface

tension experimental results, three types of surfactant, SLS,

1227 and Tween-80, were eliminated.

3.2 Wetting performance analysis

The wetting performance of a surfactant solution is highly

dependent on the type of surfactant and the mass concen-

tration. The contact angle measurements and reverse

osmosis moisture absorption values for the ten types of

surfactant at various mass concentrations are shown in

Fig. 4.

From Fig. 4a, it can be seen that the solution contact

angle on the surface of the coal dust tablet continuously

decreases with the increasing mass concentration of the

surfactant. According to Young’s equation, the relationship

between the contact angle of a liquid on a solid surface and

the interfacial tension is as follows:

cos h ¼
csg � csl

clg
ð2Þ

where, h is the contact angle (�); csg, csl, clg are the tension
(mN/m) at the solid–gas, solid–liquid, and liquid–gas

interfaces, respectively. When a surfactant is present in the

solution, csl and clg significantly decrease due to the

adsorption of the surfactant at the solid–liquid and liquid–

gas interfaces, which leads to a smaller contact angle value

h, as shown in Fig. 5.

The results of the reverse osmosis analysis in Fig. 4b

show that for all ten surfactant solutions, the reverse

osmosis moisture absorption increases with increasing

mass concentration. By comparing Fig. 4a, b, we can see

that both the reverse osmosis hygroscopicity and the con-

tact angle essentially follow the same trend. Combining the

contact angle and reverse osmosis results allowed us to

Table 3 Surface tension analysis of the ten surfactants under five different mass fractions

No. cm(%) AES SLS SDBS Tween-80 AEO-9 Tween-20 CAB-97 OB-2 CTAB 1227

1 0 71.3 71.3 71.3 71.3 71.3 71.3 71.3 71.3 71.3 71.3

2 0.00005 49.2 67.9 57.7 57.5 49.9 61.0 49.6 55.5 58.3 63.6

3 0.0005 47.5 62.0 47.8 49.1 43.9 49.2 43.0 46.8 47.6 56.2

4 0.005 30.3 55.1 27.9 44.2 30.9 38.1 36.3 31.1 39.8 49.7

5 0.05 29.1 51.4 27.8 43.5 30.5 36.5 35.4 30.0 36.6 47.0

6 0.5 30.3 48.9 27.6 39.9 30.1 35.4 35.1 29.4 35.0 45.6
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select six surfactants based on wetting performance: anio-

nic AES and SDBS, non-ionic AEO-9 and Tween-20,

zwitterionic OB-2, and cationic CTAB.

Using Origin 9.0 software (Edwards 2002), curve fitting

of the data for the reverse osmosis moisture absorption and

contact angle analyses for the above six surfactant mono-

mers was performed. The fitting results shown in Fig. 6

indicate that the amount of moisture absorption decreases

as the contact angle increases. In addition, the moisture

absorption and contact angle were negatively correlated,

with a correlation coefficient of approximately 0.85. This

indicates that it is feasible to utilize contact angle and

reverse osmosis moisture absorption to assess the wetting

performance of surfactant solutions. The relatively high

error in the contact angle analysis and the difficulties

encountered in producing the coke coal test piece meant

the analysis was challenging (Huang et al. 2010). There-

fore, in subsequent compounding analyses, only reverse

osmosis absorption analysis was utilized to assess the

wetting performance of the solution.

Fig. 3 The surface tension rate of change for the ten surfactants in different concentration ranges: a a-SAA, b n-SAA, c z-SAA, d c-SAA. Note:
‘1–2’ refers to the surfactant concentration is between 0% and 0.00005%, ‘2–3’ refers to the surfactant concentration is between 0.00005% and

0.0005%, ‘3–4’ refers to the surfactant concentration is between 0.0005% and 0.005%. The rest can be deduced by analogy

Fig. 4 a Contact angle measurements and b moisture absorption

values for the ten types of surfactant

Fig. 5 Contact angle projections for coking coal in different SDBS

mass fractions: a 0%, b 0.00005%; c 0.0005%, d 0.005%, e 0.05%

and f 0.5%
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4 Compounding analysis

4.1 Surfactant binary compounding

A binary compound reverse osmosis experiment was con-

ducted using the six selected monomer surfactants and the

results are listed in Table 4.

From Table 4, it can be seen that most of the compound

solutions have stronger wetting effects and a higher

moisture absorption than the monomer solution (Zhang

2019; Xu et al. 2019b). By considering the moisture

absorption growth rate, four compounding schemes i.e.,

Scheme 1 (AES ? SDBS), Scheme 2 (AES ? AEO-9),

Scheme 10 (AEO-9 ? 20), and Scheme 13 (AEO-

9 ? CTAB), were considered most effective. The wetta-

bility of the mixed solution was more than 20% higher than

the monomer. Based on further comparisons, we found that

the final moisture absorption value for Scheme 1 was the

highest. In view of the properties of each surfactant and

their usage habits in coal mines, the two surfactant

monomers in Scheme 1 were chosen as the key compo-

nents for the dust suppressant.

4.2 Inorganic salt additive analysis

Following the surfactant binary compounding analysis

above, we selected AES and SDBS as the two basic

components for the dust suppressant. Figure 7 shows the

results of the reverse osmosis analysis using the two sur-

factant monomers (AES and SDBS) and inorganic salt

additives. From Fig. 7, it can be seen that compounding of

the surfactant AES with the four inorganic salts enhanced

the moisture absorption of the coal dust to various degrees.

This enhancement is because the surface of coal dust

consists of hydrophilic and hydrophobic crystal lattices.

The addition of a suitable surfactant creates an adsorption

effect on the hydrophobic lattice, thus improving the wet-

tability of the coal dust (Hapgood and Khanmohammadi

2009; Zhao et al. 2011; Hu 2014). However, adsorption of

surfactant onto the coal dust surface was limited by elec-

trostatic forces between the surfactant and the layers on the

surface of the coal dust and the addition of inorganic salts

resulted in the presence of ions in solution, which

Fig. 6 Relationship between contact angle and moisture absorption

Table 4 Moisture absorption of the surfactant binary compound solution

No. cm= 0.05% Types Moisture absorption (mg) Growth rate (%)

Former surfactant Latter surfactant Compound

1 AES ? SDBS A. ? A 61 93 116 24.73

2 AES ? AEO-9 A. ? N 61 65 94 44.62

3 AES ? 20 A. ? N 61 78 84 7.69

4 SDBS ? AEO-9 A. ? N 93 65 102 9.68

5 SDBS ? 20 A. ? N 93 78 90 - 3.23

6 AES ? OB-2 A. ? Z 61 95 98 3.16

7 SDBS ? OB-2 A. ? Z 93 95 97 2.11

8 AES ? CTAB A. ? C 61 75 75 0.00

9 SDBS ? CTAB A. ? C 93 75 51 - 45.16

10 AEO-9 ? 20 N. ? N 65 78 108 38.46

11 AEO-9 ? OB-2 N. ? Z 65 95 98 3.16

12 20 ? OB-2 N. ? Z 78 95 90 - 5.26

13 AEO-9 ? CTAB N. ? C 65 75 95 26.67

14 20 ? CTAB N. ? C 78 75 88 12.82

15 OB-2 ? CTAB N. ? C 95 75 92 - 3.16

A. denotes anionic surfactant, N. denotes non-ionic surfactant, Z. denotes zwitterionic surfactant, and C. denotes cationic surfactant. For

example, ‘‘A. ? N.’’ denotes a combination of anionic and non-ionic surfactants
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decreased the electrostatic force distance in the two-layer

arrangement. As a result, the adsorption density of the

surfactant ions was improved, and the wetting ability of the

surfactant for coal dust was further enhanced. Therefore,

the reverse osmosis moisture absorption capacity of the

coal dust particles was enhanced by the addition of the salt

additives (Zhan and Guo 2013; Wang et al. 2020b).

Figure 7 shows that for anionic SDBS, compounding

with salts does not lead to significant improvement in the

wetting performance of the solutions. Compared to the

monomer solution, the addition of CaCl2 and NaCl

increased the reverse osmosis moisture absorption up to a

maximum of 10%. Further, Na2SiO3 and Na2SO4 produced

an antagonistic effect on SDBS and resulted in a lower

compound solution moisture absorption compared to that

of the monomer; this indicates that these two inorganic

salts are not suitable for use as dust suppressant additives to

enhance the solution wettability.

Figure 8 shows the results of the moisture retention

analysis for four inorganic salt solutions. It can be seen that

the coal dust sample without inorganic salt additives has

the fastest moisture evaporation rate; after 132 h, the

moisture content was less than 5%. In contrast, the addition

of inorganic salts increased the moisture content of the coal

dust samples by more than 15%. This is because after the

coal dusts meet water, lots of water molecules are adsorbed

on the coal dust surface. The addition of an inorganic salt

into this solution results in the formation of ions, which

penetrate the crystal layers of the coal dust samples. As a

result, the coal dust surface charge and the ions adsorbed

on the crystal layers adsorb water molecules and a water

film is formed. This water film absorbs and stores water,

thereby enhancing evaporation resistance (Yao et al. 2017;

Wang et al. 2020b).

Prior to 168 h, the moisture content of the coal dust

samples containing NaCl was the highest. However,

between 168 and 192 h, the moisture content of the coal

dust samples containing NaCl decreases while evaporation

for the other three coal dust samples reached equilibrium

between 156 and 168 h. At 192 h, the moisture content of

the CaCl2 coal dust samples was the highest (8.40%) and

the moisture content of the coal dust with added NaCl,

Na2SiO3, and Na2SO4 were 4.88%, 4.55%, and 3.38%,

respectively. Based on the water retention analysis results,

we found that the addition of CaCl2 led to optimal water

retention. The addition of CaCl2 slows water evaporation in

coking coal dust. Therefore, CaCl2 is recommended as a

surfactant solution additive to further enhance the wetta-

bility of the surfactant solution and provide excellent water

retention. Therefore, we recommended this inorganic salt is

used as the additive for dust suppressants applied in engi-

neering applications.

4.3 Orthogonal experimental design

Through the previous compounding experiments, we

identified AES, SDBS and CaCl2 as the dust suppressant

components. However, the optimal concentration of each

component has not been determined. Orthogonal experi-

mental design was used to determine the optimal concen-

tration of the three compounds. A three-factor, three-level

orthogonal experimental design was performed using the

orthogonal table L9 (33). The results of the orthogonal

experimental design are shown in Table 5.

Table 5 shows that, of the nine schemes analyzed,

Scheme 1 is optimal. Under Scheme 1, the reverse osmosis

hygroscopic mass was 120 mg. In order to determine the

influence of the optimal concentration levels of the three

Fig. 8 Time course of the change in moisture content in the coal dust

samples

Fig. 7 The moisture absorption capacity of a solution of surfactants

and inorganic salts
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compounds, the comprehensive average and reverse

osmosis moisture absorption range for each level are listed

in Table 6.

Range is a key indicator in evaluating the importance of

each influencing factor. A larger range indicates that the

factor has a greater influence on the result (Sun et al. 2019;

Li et al. 2019). In contrast, a smaller range indicates that

the factor has a smaller influence. Using the range analysis

results in Table 6, the three factors were ordered based on

influence of reverse osmosis moisture absorption as fol-

lows: AES[CaCl2[ SDBS. The comprehensive average

calculation results in Table 6 show that K1 is the largest

factor for AES, K2 is the largest factor for SDBS, and K1 is

the largest factor for CaCl2. Therefore, the concentrations

of AES, SDBS, and CaCl2 in the recommended formula-

tion are 0.03%, 0.05%, and 0.4%, respectively. Using this

formulation, the reverse osmosis hygroscopic mass of the

solution was 128 mg, which indicates that the solution has

improved wetting performance.

5 Conclusions

In this study, six surfactants were selected from a total of

ten surfactant monomers as suitable dust suppressants for

coking coal dust, using surface tension, contact angle, and

reverse osmosis analyses. Next, the six selected surfactant

monomers underwent binary compounding and the wetta-

bility of the solution was investigated by determining the

reverse osmosis moisture absorption capacity. Based on the

results, SDBS and AES were determined to be the optimal

components of the dust suppressant. The wetting properties

of SDBS and AES compounded with four inorganic salts

were then investigated. By combining the wetting proper-

ties and the water retention properties of the four inorganic

salt solutions, CaCl2 was selected as the optimal inorganic

salt additive for the dust suppressant. Finally, three-factor,

three-level orthogonal experimental design was performed

to obtain the optimal combination of concentrations for the

three components i.e., AES (0.03%), SBS (0.05%), and

CaCl2 (0.4%). The dust suppressant solution prepared

using the above scheme has a moisture absorption of up to

128 mg and excellent wetting performance. Using the

methods described above, an improved surfactant formu-

lation for the treatment of coking coal dust was obtained,

which will provide direction for future research.
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