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Abstract Structural changes due to coalification and oxidation influence the coal quality, geochemically and petrologi-

cally. Understanding of the coal structures helps to predict the behaviour of coal at various processes. The objective of this

paper is to study the changes in organic structure and mineral phase transformation during combustion. Different density

fractions were generated and then heated at different temperatures from 200 to 1000 �C. Petrography, Fourier transform
infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were carried out on all the density fractions aimed to

accomplish this objective. Here, through petrography, it was observed that the vitrinite and liptinite macerals disappear at

higher temperature while porous inertinite is seen. The inertinite structure is exposed which is assumed by the presence of

-OH and C–O–C stretches with the aromatic nucleus (CH) and three to four adjacent H from FTIR spectra. Moreover, it

can be concluded that aliphatic groups get collapsed at high temperature. In case of inorganic matter, through XRD and

FTIR, it is also revealed that with increasing temperature, clay minerals converted into elemental oxides. Hence, this study

is suggesting that the structures of coal are altered by the degree of contact metamorphism.
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1 Introduction

Coal consists of primary macromolecules of polyaromatic-

polynuclear structure with some heteroatom groups and

their secondary networks, latter of which are derived from

aromatic ring stacking, aliphatic side chain entanglement,

and hydrogen bonds, cation bridges, charge-transfer inter-

actions through oxygen functional groups (Solum et al.

1989; Carlson 1992; Cody et al. 1993; Nakamura et al.

1995; Larsen et al. 1996; Wu et al. 2013). The oxidation of

coal is a complex and multifaceted process representing a

perplexing issue for both scientists and industrialist alike.

The scientist seeks to understand the physical and chemical

transformations brought about by oxidation, whereas the

changes in behaviour specific to a given technological

processes is the dominant concern of industry. Because

oxidation alters the surface characteristics of both coal and

mineral particles, flotation efficiencies may be changed and

coal cleaning characteristics degraded (Sun 1954; Taylor

et al. 1980). Conversely, mild, low temperature oxidation

affects the process of gasification, reduces the caking ten-

dencies and increases char reactivity (Mahajan et al. 1980).

Hence, changes in behaviour may relate to changes in

operating cost (Lowcnhaupt and Gray 1980) and there is a

need to determine the extent of oxidation.

Coal undergoes structural changes when heated to a

temperature at which thermal decomposition occurs (Ozbas

and Kok 2003; Acma et al. 2006; Giroux et al. 2006). Fully

characterizing coal structures is still a challenging issue

due to the heterogeneity, non-crystalline structure, and

insolubility of coal. Inertinite is the most aromatic and

most thermally stable of all the maceral groups (Pandolfo

et al. 1988; White et al. 1989; Vasallo et al. 1991; Xie et al.

1991; Sun et al. 2003; Wang et al. 2010). In this group, the
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maceral fusinite is more aromatic than semifusinite from

the same coal (Blanc et al. 1991; Diessel 1992; Morga

2010). On the other hand, the amount of mobile hydrogen

is higher in semifusinite than in fusinite (Maroto-Valer

et al. 1998).

In this work, the compositional and structural changes

that occur as a consequence of heat treatment of a bitu-

minous coal performed at 200–1000 �C were investigated

qualitatively. The study has been undertaken to develop a

better understanding of the effect that the variations of

mineralogical compositions, as a result of smouldering,

have on the technological properties important for coal

utilisation. The effect of heat treatment on the organic

matrix of the coal has been discussed in detail. The results

obtained would throw light not only on the nature and on

distribution of organic matter (macerals) but also on the

types of mineralogical transformations, which can take

place during heating. As coal is heated, the inorganic

phases undergo transformations and reactions that yield a

complex mixture of solid, molten, and volatile species.

There are many different minerals that behave differently.

The main refractory minerals are quartz, metakaolinite,

mullite, and rutile, while the common fluxing minerals are

anhydrite, acid plagioclases, Kfeldspars, Ca silicates, and

hematite (Vassileva and Vassilev 2006; Creelman et al.

2013; Mishra et al. 2016).

Chemical structure of coal macerals can be well exam-

ined by means of FTIR spectroscopy which makes it pos-

sible to obtain good quality spectra even from relatively

small grains (Painter et al. 1978, 1980, 1981a, b; Bouwman

and Freriks 1980; Painter and Rhoads 1981; Solomon

1981; Kuehn et al. 1982; Meyer 1982; Solomon and Car-

angelo 1982, 1988; Mastalerz and Bustin

1993a, b, 1995, 1996; Guo and Bustin 1998; Bustin and

Guo 1999; Walker and Mastalerz 2004; Singh et al. 2015).

Therefore, Fourier transform infrared spectroscopy (FTIR)

is used as a physical detection technique and is widely

applied in characterizing the chemical structures of coal.

Besides, to quantify the mineralogical transformation

X-ray diffraction analysis (XRD) analysis has been done on

the samples.

2 Experimental section

2.1 Sampling and preparation of coal

Samples were taken from Jamadoba colliery (Fig. 1) of

Jharia coalfield. The stratigraphy (Table 1) of Jharia coal-

field unconformably overlies the Archean basement and

belongs to the Lower Gondwana of Permian age. The

stratigraphic succession in the coalfield comprises Talchir,

Fig. 1 Geological map of the study area (modified after Paul and Chatterjee 2011)
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Barakar, Barren measures and Raniganj formations, from

bottom to top (Fox 1934; Mehta and Murthy 1957).

The collected sample was used for laboratory thermal

alteration, which was performed at different temperatures.

The sample was crushed, pulverized, and passed through

3 mm sieve. -3 mm size fraction weighing 1 kg was fol-

lowed to heavy media separation with the relative density

range from 1.3 to 1.5 gm/cm3, made by benzene (density:

0.8 gm/cm3) and bromoform (density: 2.8 gm/cm3) mix-

ture, for heat treatment study. Thus, from a single sample,

three different density samples were prepared and 5 gm of

each density fractions were heated at 200, 400, 600, 800

and 1000 �C temperatures at oxidizing atmosphere for a

period of 1 h to attain the temperature of 1000 �C. After
that, the furnace was cooled at the rate of 6 �C/min.

Beyond 1000 �C, coal is reduced into ash and the organic

matter is completely burnt.

2.2 Proximate and ultimate analysis

Proximate and ultimate analysis of the representative and

their fractionated coal samples were carried out in the coal

characterisation laboratory using standard analytical pro-

cedures. The proximate analysis was performed taking 72

mesh size coal powder using oven and muffle furnace as

per Bureau of Indian Standard (BIS 2003). The elemental

analysis (C, H, N and S) was performed using Vario EL III

CHNS analyser (Elementar GmbH, Germany).

2.3 Petrography, XRD and FTIR

To study the coal samples under microscope the samples

were crushed and passed through -18 mesh size and

pellets were prepared in cold medium of epoxy-resin and

hardener. The maceral analysis was carried out on pol-

ished mounts of coal with a polarized transmitted

microscope having fluorescence attachment (Leica

DM4500P) using established ICCP (1963, 1998, 2001)

recommendations.

Mineralogical analysis of the coal samples were per-

formed by means of X-ray diffraction (XRD) with Ni-fil-

tered CuKa radiation at (10�–70�)/(2h) at a scan rate of 2�/
min (D8 Discover Bruker) using High Score Plus software

package to obtain quantitative mineral proportion.

Table 1 Generalised stratigraphic succession of Jharia coalfield (modified after Chandra 1992)

Age Formation Litho-type Max. thickness (m)

Recent and sub-recent Weathered Alluvium, sandy soil, clay, gravel, etc. 30

Unconformity

Jurassic Deccan trap and other igneous

activity (intrusive)

Dolerite dykes, mica lamprophyre dyke

and sills

Upper Permian Raniganj Fine grained feldspathic sandstones,

shales with coal seam

800

Middle Permian Barren measure Buff coloured sandstone, shales and

carbonaceous shales

730

Lower Permian Barakar Buff coloured coarse to medium grained

feldspathic sandstones, grits, shales,

carbonaceous shale and coal seam

?1250

Upper Carboniferous Talchir Greenish shale and fine grained

sandstones

245

Archeans Metamorphics

Table 2 Proximate and ultimate analysis of representative coal samples with yield % obtained in float fraction of different densities

Sample Yield (%) Proximate analysis Ultimate analysis

Ma VMdaf Ad FCdaf Cdaf Hdaf Ndaf Sdaf

HS 1.57 24.04 19.00 75.96 74.41 3.07 1.25 0.57

F1.3 2.5 1.66 24.00 10.04 76.00 80.76 4.19 1.36 0.83

F1.4 17.8 1.37 21.72 19.54 78.28 72.71 3.62 1.21 0.65

F1.5 39.3 1.32 22.69 32.27 77.31 58.67 3.18 1.11 0.61

HS Head Sample, M Moisture, VM Volatile Matter yield (wt%), A Ash yield (wt%), F.C. Fixed carbon (wt%), C Carbon (wt%), H Hydrogen

(wt%), N Nitrogen (wt%), S Sulphur (wt%), a analytical state, d dry basis, daf dry ash free basis
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IR spectra of the samples were recorded with a Perkin–

Elmer (model-Paragon 500) FT-IR spectrometer in the

range of 4000–400 cm-1 on KBr pellet.

3 Result and discussion

3.1 Proximate and ultimate

Table 2 reveals the general characteristics of the head

sample and the prepared samples from heavy media sepa-

ration. The yield % of the float fractions of different den-

sities are also tabulated there. The volatile matter (VMdaf)

and ash yields (Ad) are 24.04 and 19.0 wt% respectively. In

the fractions, VM and moisture are decreasing with density

while ash is increasing. Carbon, hydrogen, nitrogen and

sulphur, all are also decreasing with density.

3.2 Organic change from petrography and FTIR

3.2.1 Petrography

All the coal samples prepared by heating in an oxidising

condition at different temperatures from 200 to 1000 �C
were subjected to petrography to study the heating-induced

changes in micro-texture and structure of coal (Fig. 2;

Table 3). The percentage of inertinite macerals increased

with density in all the temperatures while the macerals

which were affected by heat (heat affected maceral), seen

to increase with density at only 200 �C. These two com-

ponents decreased with density in the samples treated at

other temperature range (400–1000 �C). Oxidised macerals

were only found in 400 �C where it also decreased with

density. The mean reflectance of vitrinite macerals

increased with temperature (B400 �C) and density both.

Vitrinites were seen below 600 �C since it was totally

transformed into heat affected macerals at higher temper-

ature. The mineral matter relatively increased with density

at all temperature ranges.

Table 4, shows the IR spectra of macerals. The major

FTIR spectra of vitrinite are the aromatic C=C ring

stretching vibration at 1615–1585 cm-1, aliphatic absorp-

tion at 1460–1450 and 3000–2800 cm-1. Weak peaks

occur at 1740–1700 cm-1 due to C=O group absorption,

and at 3050–3030 cm-1, due to aromatic CHx stretching

vibration (Xuguang 2005). In our coal, all the three major

peaks were identified. 3039–2916 and 1603–1575 cm-1

are present below 600 �C which is in a perfect match with

petrography where vitrinite is not found above 400 �C. The
strongest aromatic C=C ring stretching at 1600 cm-1, and

the weakest aliphatic CHx stretching at 3000–2800 cm-1,

establishes the fact that fusinite has the highest degree of

aromatic substituents and condensation of aromatic rings,

and aliphatic substances is minor (Xuguang 2005). Ther-

mal stability of inertinite macerals are higher than the other

macerals probably due to its aromatic nature (Sun et al.

2003; Wang et al. 2010; Roberts et al. 2015). In our coal,

the presence of inertinite found throughout the whole

temperature range (200–1000 �C).
At 200 �C (Fig. 2A1–A4), the mean reflectance of vit-

rinite (Table 3) increased with density but did not show

any change in the maceral and microtextural constituents.

Telovitrinite, detrovitrinite, were observed in vitrinite

group maceral. In case of inertinite group macerals, fusinite

is low in concentration than semifusinite. Inertodetrinite is

also seen in the float fractions of the density of 1.3 gm/cm3.

Among liptinite group meceral, resinite is seen in this

density but in low concentration. The clay minerals are

associated with semifusinite. In the float fractions of the

density of 1.4, telovitrinites were observed and the iner-

tinite macerals were dominated by semifusinite. Fusinite

and macrinite occur in low concentration. In the float

fractions of density of 1.5, the dominated macerals are

detrovitrinite and semifusinite. Low reflectivity of semi-

fusinite is observed in all density fractions at this

temperature.

At 400 �C (Fig. 2B1–B5) temperature, the sub-macerals

of vitrinite and inertinite are oxidised in all density frac-

tions. In the float fractions of the density of 1.3, telovit-

rinite, semifusinite and inertodetrinite were observed.

Thermally activated cracks were developed in semifusinite.

In float fractions of the density of 1.4, fusinite and semi-

fusinite were seen. The reflectivity of semifusinite was

changed in this temperature and this oxidation was started

from grain boundaries. Thus low reflective semifusinite,

surrounded by bright semifusinite, found at this tempera-

ture. Thermally altered detrovitrinite, inertodetrinite, heat

affected macerals were also observed. In float fractions of

the density of 1.5, detrovitrinite and inertodetrinite were

seen. Heat affected macerals were found in very low

amount in this density. Oxidised macerals were observed at

this temperature range ([200 �C, \600 �C). Beyond this

cFig. 2 Photomicrograph of laboratory oxidative alteration of some of

the macerals from Jamadoba coals (A1). Telovitrinite, semifusinite

and inertodetrinite (A2). Detrovitrinite and fusinite (A3). Semifusinite

is filled by clay (A4). Fusinite with macrinite and low reflectivity

semifusinite sample, thermally activated cracks (B1). Thermally

activated cracks with oxidised semifusinite (B2). Low reflective

semifusinite surrounded by oxidised bright semifusinite (B3), Fusinite
(B4). The oxidation of semifusinite is started from the grain

boundary. Centre part of grain is almost not metamorphosed with

fragments of inertodetrinite (B5). Thermally altered of detrovitrinite,

Inertodetrinite, heat affected (C1). Heat affected inertinite filled by

mineral matter (C2). Fusinite with pores increasing in size due to heat

(C3). Mineral matter with trace amount of fusinite (D1). Quartz and

siderite (D2). Highly metamorphosed fusinite (E1), Quartz (E2).
Altered coal with showing character of coke with many macropores
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Fig. 2 continued

Changes in organic structure and mineral phases transformation of coal during heat treatment… 423

123



range, they get altered. However, below this range, oxi-

dation did not ensue.

At 600 �C (Fig. 2C1–C3) temperature the sub-macerals

of inertinite and heat affected macerals were very common

in all density fractions. Vitrinite and liptinite were not seen

in this temperature. In float fractions of the density of 1.3,

the pores of fusinite became larger due to thermal alter-

ation. In the float fractions of the densities of 1.4 and 1.5

heat affected macerals, fusinite and semifusinite were seen

and the mineral matter occur either alone or associated

with fusinite.

At 800 �C (Fig. 2D1–D2) and 1000 �C (Fig. 2E1–E2)

temperatures, vitrinite and liptinite were not seen and

metamorphosed inertinite occurs in all density. In the float

fractions of the density of 1.5 gm/cm3, the mineral matter

is highest in amount (Table 3). Organic matter gradually

decreased with density fraction.

3.2.2 FTIR

Figure 3(A–C) represents the comparative FTIR spectra of

the samples of different density with varying temperatures.

The corresponding functional groups (Ibarra et al. 1996;

Maity and Mukherjee 2006) of the bands present in each

sample are tabulated in Table 4. The numbers of the peaks,

coming from organic complex, decreased with increasing

density. The -OH absorption in the range of

3419–3359 cm-1 due to the moisture absorbed in the

residues during cooling process. The strong aliphatic and

aromatic absorptions with C–O–C stretching and carbonyl

(C=O) groups were present in low temperatures in all

density fractions while at high temperature ([400 �C)
some of these peaks were lost. Most of the peaks in FTIR

spectra of coal between 1100 and 400 cm-1 are assigned to

quartz and clay minerals such as kaolinite, illite and

montmorillonite groups (Saikia et al. 2007) which increase

with density.

The absence of vitrinite and liptinite macerals at

[400 �C is also reflected by FTIR spectra where some of

the peaks are lost in that temperature range ([400 �C).
Therefore, it appears that with increasing temperature, the

organic groups collapsed and macerals were oxidised.

Oxidation at 400 �C has deleterious effects on coking

properties and reduces the specific energy of steaming coal

(Ignasiak et al. 1972; Fredericks et al. 1983). At[400 �C
inertinite is seen in all density fractions whereas in FTIR

spectra the C–O–C stretch is present with an aromatic

nucleus (CH) and three to four adjacent H deformations as

organic functional groups. In the higher density fraction,

the mineral matter content is comparatively more (Table 4)

which is also reflected in FTIR spectra.

Table 3 Petrographical variation of coal samples of different den-

sities at different temperatures

T (�C) Density Vmmf Immf Lmmf Hmmf Ommf Ro MM

HS 46.2 37.6 0.8 15.4 nf 1.36 7.2

200 F 1.3 52.4 29.4 2.1 16.1 nf 1.52 12.5

F 1.4 43.0 36.4 1.7 18.9 nf 2.03 23.2

F 1.5 36.9 41.7 0.8 20.6 nf 2.34 27.3

400 F 1.3 20.2 25.8 0.6 18.6 34.8 2.05 9.6

F 1.4 24.6 32.0 nf 17.8 25.6 2.24 26.9

F 1.5 28.7 38.9 nf 16.3 16.1 2.50 33.6

600 F 1.3 nf 48.8 nf 51.2 nf nf 56.8

F 1.4 nf 72.9 nf 27.1 nf nf 87.1

F 1.5 nf 84.0 nf 16.0 nf nf 90.2

800 F 1.3 nf 63.5 nf 36.5 nf nf 69.6

F 1.4 nf 81.0 nf 19.0 nf nf 71.6

F 1.5 nf 86.0 nf 14.0 nf nf 95.7

1000 F 1.3 nf 70.9 nf 29.1 nf nf 73.9

F 1.4 nf 73.1 nf 26.9 nf nf 79.2

F 1.5 nf 80.0 nf 20.0 nf nf 98.1

HS Head Sample, T Temperature, V Vitrinite, L Liptinite, I Inertinite,

H Heat affected, O Oxidised, Ro Mean reflectance of vitrinite, MM

Mineral matter, nf Not found, F Float fraction, mmf mineral matter

free basis

Table 4 FTIR band positions found in samples

Sample name Band position Functional groups

F1.3; F1.4; F1.5 3419–3359 -OH stretching vibration

F1.3 3080–3035 Aromatic nucleus CH stretching vibration

F1.3 2975–2955 Aliphatic CH3 asymmetric stretching vibration

F1.3; F1.4; F1.5 2925–2919 Aliphatic CH2 asymmetric stretching vibration

F1.3; F1.4 1721–1695 Aromatic (carbonyl/carboxyl groups) (C=O)

F1.3; F1.4; F1.5 1615–1585 Aromatic nucleus (C=C)

F1.3; F1.4; F1.5 1460–1450 Aliphatic chains (CH3, CH2)

F1.3; F1.4; F1.5 1300–1000 Phenolic deformation C–O–C (stretching)

F1.3; F1.4 900–700 Aromatic bonds; (C-H)ar (out-plane bending)

F1.3; F1.4; F1.5 776–730 Aromatic nucleus (CH), three to four adjacent H deformations
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Fig. 3 FTIR spectra of coal samples of different density with varying temperature
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3.3 Mineral chemistry

The XRD analysis was performed on all the residues of

different density fractions obtained from burning the coal

samples at different temperatures. Figure 4 represents the

comparative XRD diffractogram of same density fractions

at different temperatures. It indicates evidently, the pres-

ence of kaolinite at low temperatures (B400 �C), and illite,

andalusite, mullite at high temperatures ([400 �C) whereas
quartz was seen as the major mineral phase in all the

samples of different density fractions at different temper-

atures. This indicates the mineral phase transformation

with increasing temperature where the clay minerals were

oxidised and form different type of oxides (Fig. 4A–C).

The identification of minor minerals only by XRD in a

multi component system like coal ashes is difficult due to

the detection limits (normally at about 0.5%–1%) and peak

overlapping (Mishra et al. 2016) and mullite peaks were

only present at higher temperature (1000 �C) of float 1.5
density fraction. Hence, presence of mullite in higher

density fraction indicates the higher concentration of

mineral matter in that particular fraction.

4 Conclusions

This study provides a comprehensive view of the changes

in organic structure with increasing temperature and helps

to predict the structure of inertinite macerals. Coal under-

goes appreciable physico-chemical changes when heated in

the temperature range of 200–1000 �C during which,

reacted molecules break along the weakest bonds, forming

free radicals which subsequently recombine with other

radicals or molecules to form more highly condensed

species and volatile compounds. At B400 �C temperature,

all the macerals are seen. The dominating macerals are

vitrinite (telovitrinite, detrovitrinite) and inertinite (fusi-

nite, semifusinite). The semifusinite has a low reflectivity

but at 400 �C temperature, some of the vitrinite and iner-

tinite macerals were oxidised. At[400 �C temperature the

vitrinite and liptinite were not seen while porous inertinite

was observed. In FTIR spectra, the absence of vitrinite and

liptinite macerals in [400 �C is indicated by absence of

their peaks at that temperature range. While inertinite

survived, the other two macerals could not be seen at

higher temperature. Therefore, it can be concluded that

inertinite is most thermally stable maceral in coal. The clay

minerals were oxidised at high temperature, which was

revealed by XRD analysis.
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