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Abstract
Purpose of Review  Clinical implementation of personalized cancer therapy necessitates translational cancer models that faith-
fully represent the molecular and cellular features of human cancer. Current patient-derived preclinical models, including 
cell line and xenograft models, are limited by incomplete recapitulation of parental tumor heterogeneity and long induction 
times, impeding their ability to directly inform clinical decision-making. Newly emerging patient-derived organoids (PDOs) 
of solid tumors retain the intra-tumoral heterogeneity lost in many preclinical models and mirror the therapeutic responsive-
ness of their parent tumors. Herein, we explore the origins and rationale for organoid cancer modeling, the creation of PDO 
models through an illustrative example of glioma organoids, and their downstream use in comprehensive drug screens to 
guide oncologic therapy selection.
Recent Findings  Cancer organoid models have been generated through numerous techniques, producing PDOs of brain, pan-
creatic, breast, and gastrointestinal cancer, among others. Recent evidence supports the creation of PDOs using a minimally 
processed approach, whereby manually parcellated tissue can produce viable organoids in the absence of tissue dissociation, 
an artificial extracellular matrix, and exogenous growth factors. Refinement of these models thus allows PDOs to serve as 
patient avatars, and early evidence demonstrates similar responses to chemotherapy and radiotherapy as the parent tumor.
Summary  The retention of key molecular, histopathologic, and phenotypic features of numerous human cancers offers com-
pelling support for the use of PDOs as translational cancer models. Given the ability to rapidly create these models following 
tumor resection, PDOs can be used as platforms for personalized drug screens to guide the selection of oncologic therapies.

Keywords  Organoid · Personalized oncology · Glioma · Glioblastoma · Cancer · Patient-derived organoid

This article is part of the Topical Collection on Radiation Biology

 *	 Samuel K. McBrayer 
	 samuel.mcbrayer@utsouthwestern.edu

 *	 Kalil G. Abdullah 
	 abdullahkg@upmc.edu

	 William H. Hicks 
	 william.hicks@utsouthwestern.edu

	 Cylaina E. Bird 
	 cylaina.bird@utsouthwestern.edu

	 Lauren C. Gattie 
	 lauren.gattie@utsouthwestern.edu

	 Mohamad El Shami 
	 mohamad.elshami@utsouthwestern.edu

	 Jeffrey I. Traylor 
	 jeffrey.traylor@utsouthwestern.edu

	 Diana D. Shi 
	 diana.shi@utsouthwestern.edu

1	 Department of Neurological Surgery, The University 
of Texas Southwestern Medical Center, Dallas, TX, USA

2	 Children’s Medical Center Research Institute, The University 
of Texas Southwestern Medical Center, Dallas, TX, USA

3	 Department of Radiation Oncology, Brigham and Women’s 
Hospital and Dana‑Farber Cancer Institute, Harvard Medical 
School, Boston, MA, USA

4	 Simmons Comprehensive Cancer Center, The University 
of Texas Southwestern Medical Center, Dallas, TX, USA

5	 Department of Neurosurgery, Hillman Cancer Center, 
University of Pittsburgh Medical Center, Pittsburgh, PA, 
USA

/ Published online: 24 March 2022

Current Stem Cell Reports (2022) 8:107–117

http://crossmark.crossref.org/dialog/?doi=10.1007/s40778-022-00211-2&domain=pdf


1 3

Introduction

Solid cancers are often treated with maximal surgical 
resection, systemic therapy, and/or adjuvant radiotherapy 
aimed at disrupting tumor maintenance and proliferation 
[1]. While this paradigm remains standard, modern oncol-
ogy has placed a growing emphasis on the development 
of targeted therapies and patient-specific treatment regi-
mens. The advent of advanced genomic technology, such 
as next-generation sequencing (NGS) and transcriptomic 
analysis, allows for the rapid identification of the molecu-
lar characteristics of individual tumors [2]. Furthermore, 
increased appreciation for the heterogeneity of solid cancers 
has resulted in a push towards personalized oncology — 
treatment based on a tumor’s molecular, metabolic, physi-
ologic, and environmental factors [3]. In this regard, several 
genomic tools have emerged that can aid in personalizing 
cancer treatment decisions, including use of chemotherapy 
(ex. Oncotype DX in breast cancer) and radiation therapy 
(ex. GARD) [4–7]. However, these predictive tools were 
developed from aggregated data and thus may not fully 
capture the unique characteristics of any single tumor. As  
further technological advances have increased the feasibil- 
ity of developing faithful ex vivo models, the ability to test 
treatment strategies on individual patients’ tumor models 
is an exciting advance in facilitating personalized cancer 
treatment. A critical component of this approach is the 
need for translational models that reliably demonstrate 
the array of molecular phenotypes appreciated in complex  
human cancers [8].

Traditional laboratory cancer models have provided tre-
mendous value in cancer research. The high throughput 
capacity of two-dimensional cell cultures facilitates rapid 
testing of novel therapeutics and provides the rationale 
for in vivo experimentation [9–11]. Also, patient-derived 
xenografts in mice have been utilized to study the biology 
of human cancer tissue and have guided many aspects of  
preclinical therapeutic development [12, 13]. Further,  
the breadth of tools to create genetically engineered mouse 
models (GEMMs) allows for the temporal and spatial con-
trol of tumor formation in vivo [13–15]. However, these 
models carry several limitations that may, in part, contrib-
ute to their shortcomings in establishing cancer therapy 
efficacy [16]. The selective pressures of serial cell culture 
often manifest in oligoclonal cell populations that lose 
the genotypic and phenotypic heterogeneity of the parent 
tissue and ultimately diverge from the primary sample and 
parental tumor [17–19]. For cancers with diverse intratu-
moral complexity, such as malignant glioma, breast cancer, 
and pancreatic cancer, the absence of tumor-tumor, tumor-
parenchyma, and tumor-stroma interaction limits modeling  
of diverse cellular states and hierarchies [20–23]. Addi-
tionally, the requisite use of immunocompromised mice 

in patient-derived xenograft models limits study of the 
tumor-immune interface [15, 24]. While GEMMs enable 
cancer formation to occur in immunocompetent mice, 
species-specific differences may pose challenges in mod-
eling some cancers, as seen with differential phenotypes 
in mice following aberrations in classical driver muta-
tions of human cancer, such as APC, BRCA1/2, and RB 
[14, 25]. Similarly, tumors in GEMMs trend towards a 
homogeneous state compared to the heterogeneity seen 
with the progressive accumulation of genetic alterations in 
human tumors [26, 27]. Finally, murine models are time- 
and resource-intense and are relatively low-throughput 
models for preclinical drug screens. Thus, new modeling 
approaches, particularly in the realm of translational 
research and personalized oncology, may identify prom-
ising therapeutics more efficiently and accurately.

Cancer organoid models have emerged as preclinical and 
translational models. Organoids are heterogeneous, three-
dimensional, self-organizing structures that can model the 
architecture and function of native organs and neoplasms 
[28]. In 2009, Sato et al. created the first organoids by devel-
oping crypt-villous structures from Lgr5 + intestinal stem 
cells [29•]. By embedding cells in Matrigel, an artificial 
extracellular matrix, and culturing in media enriched with 
epidermal growth factor (EGF), r-spondin 1, and Noggin, 
organoids resembling crypt and villous domains of freshly 
isolated small intestine crypts were produced and persisted 
for greater than 8 months [29•]. To date, numerous organoid 
models of human organs have been created, including brain, 
blood vessels, endometrium, fallopian tubes, intestine, kid-
ney, lung, ovaries, pancreas, retina, stomach, taste buds, and 
testicles [29•, 30•, 31–40]. Following generation of many of 
these primary tissue models, cancer organoid models were 
produced, with an emphasis on their creation from primary 
patient tissue samples [22]. The resulting patient-derived 
organoids (PDOs) faithfully demonstrated many genotypic 
and phenotypic features of their native tissue. PDOs have 
been developed for bladder, breast, colorectal, gastric, met-
astatic gastrointestinal, liver, pancreatic cancer, and glio-
blastoma, among others [41, 42•, 43–51]. The translational 
implications for PDOs are most apparent in tumors charac-
terized by inter-tumoral heterogeneity, diverse tumor cell 
states, and complex tumor microenvironments integral to 
tumor behavior and response to treatment. As such, PDOs 
may complement classical cancer models to support per-
sonalized predictions of human tumor responses to specific 
treatments.

Glioma, the most common primary malignant tumor of 
the central nervous system (CNS), exists along a histopatho-
logic spectrum from WHO grade 1 to grade 4 [52, 53••]. 
The most aggressive of these is glioblastoma (GBM, IDH-
WT, WHO grade 4), characterized by its infiltration of the 
brain parenchyma, cellular heterogeneity, and dismal clinical 
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prognosis [54]. While GBM cell lines have provided insight 
into the cellular hierarchy of glioma cell populations, these 
models are time intensive and challenging to establish [10, 
50, 55–57]. Furthermore, the overrepresentation of GBM 
cell lines has limited the study of lower-grade lesions that 
frequently progress to higher-grade tumors [58, 59]. Given 
these challenges in utilizing two-dimensional in vitro mod-
els to recapitulate the characteristics of gliomas of various 
grades, the development of PDOs for glioma modeling has 
already improved the ability to study tumor biology and 
develop new therapies for these tumors.

PDOs of cancer recapitulate the architectural, cellular, 
and molecular features of a diverse array of tumors with 
the potential to take personalized and translational oncol-
ogy from bench-to-bedside to a bedside-to-bench-and-back 
model [60]. Herein, we review the creation and applications 
of PDOs of cancer through the lens of glioma, followed by 
a discussion of the impact of PDOs on clinical oncology.

Creation and Utilization of Patient‑Derived 
Organoids of Glioma

A critical advance in the development of glioma organoids 
came from Lancaster et al. with the creation of cerebral orga-
noids [30•]. To generate cerebral organoids, human embry-
onic stem cells (hESCs) or induced pluripotent stem cells 
(iPSCs) were exposed to a series of stepwise media condi-
tions and nutrient supplements [61]. The hESCs or iPSCs 
were cultured with basic fibroblast growth factor (bFGF) and 
rho-associated protein kinase (ROCK) inhibitor to induce the  
formation of embryoid bodies (EB). These EB were kept in  
suspension and subsequently cultured in neural induction 
media — composed of DMEM/F12, N2 supplement, Glu-
taMax, non-essential amino acids (NEAAs), and heparin — to  
induce the formation of neuroepithelial tissue. The primitive 
neuroepithelial tissue is then embedded in Matrigel droplets 
and cultured in a differentiation medium — composed of 
DMEM/F12, Neurobasal, N2 supplement, insulin, GlutaMax, 
NEAAs, antibiotics, 2-mercaptoethanol, and B27 supplement 
— for 4 days, and finally, they were transferred to a spinning 
bioreactor and differentiation medium containing vitamin A. 
The newly generated cerebral organoids developed primitive 
regions analogous to ventricles, choroid plexus, and retina, as 
well as functional and structural cortical organization [30•]. 
In addition, the cerebral organoids displayed regionalization 
of discrete primitive brain regions [30•]. Utilization of the 
in vitro cerebral organoid model, effectively mini-brains, 
stimulated interest using similar approaches to model brain 
cancer, leading to an expansion of glioma organoid mod-
els (Table 1). These models can be developed via co-culture 
of glioma stem-like cells (GSCs) and cerebral organoids, 
genetic engineering of cerebral organoids, or direct culture 

of minimally processed glioma tissue samples (Fig. 1) [62••, 
63•, 64••, 65, 66].

Several studies have genetically manipulated cerebral 
organoids to model glioma [63•, 65, 66]. Using sleeping 
beauty transposon-mediated gene insertion for oncogene 
amplification and CRISPR/Cas9-mediated mutagenesis, 
Bian et al. introduced combinations of 15 clinically relevant 
genomic alterations seen in GBM, among other CNS tumors, 
to generate neoplastic cerebral organoids (NeoCOR) [65]. 
Three combinations of genetic alterations, including those 
affecting CDKN2A/B, NF1, PTEN, TP53, and epidermal 
growth factor receptor variant III (EGFRvIII), were then 
identified and classified as GBM-1, GBM-2, and GBM-
3. These NeoCOR of GBM demonstrated similar cellular 
identities and transcriptomic signatures to analogous human 
GBMs [65]. Similarly, Ogawa et al. introduced the oncogene 
HRasG12V at the TP53 locus to simultaneously knock out 
the tumor suppressor gene and introduce an oncogene [66]. 
Both models demonstrated invasive phenotypes on xenograft 
transplantation in mice as well as a propensity to undergo 
epithelial-mesenchymal transition, a transition seen in GBM 
tissue that is associated with a more aggressive and infiltra-
tive phenotype [65, 66, 74, 75].

Adapting the approach to generate cerebral organoids, 
Hubert et al. developed the first PDOs of GBM utilizing 
GSCs from surgically excised human GBM tissue [62••]. 
Tissue samples were either finely minced and plated in a 
Matrigel suspension or dissociated into single-cell sus-
pensions [62••]. Isolated cells were then maintained as 
tumorspheres and sorted for CD133, a marker of the GSC 
population [56, 76, 77]. CD133 + cells were plated in a com-
plete medium — containing EGF, bFGF, B27 supplement, 
glutamine, sodium pyruvate, and antibiotics — and result-
ant tumorspheres were cultured in a Matrigel matrix and 
allowed to form three-dimensional organoids [62••]. Their 
GSC-based PDO model recapitulated hallmark features of 
GBM, including radio-resistance of GSCs, radio-sensitivity 
of non-GSC populations, single-cell infiltration that is lost 
in many xenograft models, and gradients of GSC density 
and hypoxia, all hallmarks of in vivo human GBMs [62••].

Similarly, Linkous et  al. developed a PDO model of 
GBM by co-culturing GSCs with cerebral organoids termed 
glioma cerebral organoids (GLICO) [63•]. The GSCs are 
isolated from the primary tissue and maintained in serum-
free media supplemented with EGF and bFGF as previously 
described [78, 79]. Mature GSCs are then placed in cul-
ture with cerebral organoids and are rapidly and efficiently 
engrafted into the organoid. Considerable bulk tumor growth 
was observed after 1 week, and at 2 weeks the GLICO dem-
onstrated histopathologic features of human disease and 
generated a network of microtubes associated with invasion 
and proliferation [63•, 80]. Similarly, Krieger et al. utilized 
a GBM cerebral organoid model and transcriptomic analysis 
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of receptor-ligand pairing to highlight the importance of the 
tumor microenvironment in microtube formation and GBM 
invasion [71].

In defining the inter- and intra-tumoral heterogeneity asso- 
ciated with GBM, single-cell RNA sequencing of GBM iden- 
tified the presence of four cellular states, neural progenitor- 
like cells (NPC), oligodendrocyte progenitor-like cells 
(OPC), astrocyte-like cells (AC), and mesenchymal-like 
cells (MES) [81••]. Analysis of the patient-derived GLICO 
model developed by Linkous et al. revealed an enrichment 
in the NPC/OPC signature [68]. Furthermore, the enriched 
NPC cellular state was lost following organoid dissocia-
tion and analysis of the two-dimensional culture, providing 
more evidence as to the value of the tumor microenviron-
ment in maintaining the diverse cellular states of glioma 
[68]. Despite the value of GSC-based organoid models, 
the dependence of the models on exogenous growth factors 
(EGF and bFGF), and the use of an artificial extracellular 
matrix rather than native extracellular matrix introduces 
laboratory conditions that could lead to drift in the cellular 
and molecular features of these cultures.

To maintain the native cellular hierarchy and tumor 
architecture, Jacob et al. successfully generated GBM orga-
noids from minimally processed primary tissue samples 
[64••, 72]. The tissue is acquired from the operating room 
and taken directly to the laboratory, where it is parcellated 

into approximately 1-mm-diameter pieces [64••]. A critical 
advantage over prior techniques is the absence of single-cell 
dissociation, added growth factors, such as EGF and bFGF, 
or artificial Matrigel extracellular matrix. After 1 week in 
culture, the tissue formed well-rounded spheres, and within 
2–4 weeks a mature and cell-rich organoid is achieved [64••, 
72]. Importantly, the GBM organoids retained histopatho-
logic features of their parent tumor including nuclear atypia, 
hypoxia gradients, and high Ki67 indices [64••]. Similarly, 
organoids retained their intracellular heterogeneity, main-
taining CD31+ vascular cell populations, markers for glial 
cells such as GFAP and S100B, and markers of neural pro-
genitor cells and GSCs such as DCX, NESTIN, SOX2, and 
OLIG2 [64••]. Furthermore, the GBM organoids retained 
features at the 4-week time point, as well as after freezing 
and reanimation, indicating the ability to create clinically rel-
evant biobanks [64••, 72]. Given the profound inter-cellular 
heterogeneity seen in GBM, RNA, and exome sequencing 
analyses were performed on the PDOs and revealed similari-
ties in gene expression, copy number variants, and somatic 
variants [64••]. The GBM PDOs also retained tumor subre-
gion features, including mutations in PTEN and EGFR from 
different regions of the same primary tumor, indicating their 
ability to maintain intra-tumoral heterogeneity [64••, 72].

Recently, our group successfully generated the first PDO 
models of lower-grade glioma (LGG), including CNS WHO 

Fig. 1   Workflow for the crea-
tion of glioma organoid models
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grade 1–3 disease [73••]. With modifications to the mini-
mally processed glioma sample approach, namely orga-
noid culture at intracranial physiologic oxygen tension, we 
demonstrated a 91% success rate in all grades of glioma 
organoid formation and an 87% success rate for grade 1–3 
tumors [73••]. As such, the high fidelity of the workflow is 
unlikely to systematically exclude subsets of tumors from 
being made into organoids. The basis for these modifica-
tions was the extracellular environment of the intracranial 
vault, wherein oxygen tension is shown to be less than 
ambient room air [82–84]. These findings are consistent 
with the role of hypoxia in promoting GSC expansion 
[85]. While grade 4 tumors have likely reached a muta-
tional burden that limits their sensitivity to perturbations 
of environmental conditions, we hypothesized that lower-
grade tumors require culture conditions that better mirror 
physiologic conditions in the human brain [73••]. Addi-
tionally, in vitro culture conditions that better recapitulate 
physiologic conditions may produce more biologically rel-
evant results. Similar to prior PDO models of GBM, LGG 
organoids maintained markers of stemness, proliferation, 
and vascularity. Genomic and metabolomic analyses of the 
organoids demonstrated maintenance of common mutations 
in LGG, such as those in IDH1/2, TP53, NOTCH1/2, CIC, 
and ATRX, retention of copy number variations, and simi-
lar levels of the IDH1-R132H oncoprotein and the onco-
metabolite 2-hydroxyglutarate [73••]. There is emerging 
data, particularly in glioma, that tumors harbor significant 
differences in biological features at the time of recurrence 
following treatment than at diagnosis [86, 87]. However, 
most existing models are derived from end-stage disease, 
given that these highly aggressive tumor cells are most 
likely to grow in vitro or in xenografts. Thus, treatment-
naïve models of LGG can be used to study glioma biology 
independent of the effects of prior therapy.

While recent advances in GBM organoid models are 
promising, questions regarding the applicability of these 
models to studying some key aspects of glioma biology 
remain. For example, Jacob et  al. reported an organoid 
success rate for IDH-wildtype tumors > 90% while IDH1-
mutant tumors were generated at a much lower success rate 
of 66.7% [64••]. Furthermore, detailed characterization of 
the vascular and immune cell compartments in minimally 
processed samples is not yet available. While markers of 
vascular endothelial and immune cells are maintained in 
minimally processed glioma PDOs, it is possible that these 
non-glioma cell populations are not maintained as efficiently 
in long-term cultures relative to glioma cells. Contrary to 
cell-line models or GSC-derived organoids, minimally pro-
cessed patient-derived LGG organoids cannot be expanded 
over time, thereby limiting the scale of experiments that can 
be performed with each model. Thus, while they present an 
excellent model for personalized oncology screening, they 

may not support high-throughput experimental approaches. 
Despite these limitations, the remarkable fidelity of PDOs 
underscores their utility for studying glioma biology in the 
laboratory setting.

Applications to Personalized Oncology 
and Research

Ideal patient-derived cancer models are reliable, moderate-  
to high-throughput, and able to replicate the cellular and 
molecular phenotypes of their parent tumors. Current 
in vitro models are limited in their clinical utility due to 
the homogeneity of the tumor cell populations and long 
induction times. Conversely, the relatively rapid rate at 
which PDO models can be generated for many cancers ena-
bles experimentation within a clinically relevant timeline. 
Three-dimensional organoid architecture permits tumor-
tumor and tumor-stroma interactions that are critical for 
the development of cellular hierarchies and tumor cell pro-
liferation. The ability of PDOs to retain the genetic and 
transcriptomic signatures of their parent tumors allows them 
to act as patient avatars and may provide value for preclini-
cal drugs screens [88, 89]. Growing evidence for the reli-
ability and efficiency of PDOs as preclinical translational 
models supports potential uses of these models as avatars 
in oncology trials. If successfully implemented, one could 
use tissue from a patient’s biopsy or resection specimen 
to create a faithful PDO, screen this PDO across multiple 
treatments including systemic therapies and/or radiation, 
and use the information from this screen to guide personal-
ized treatment recommendations for the patient. Together 
with established tumor characterization methods and treat-
ment pipelines, a comprehensive report of histopathologic 
features, genetic alterations, and responsiveness of PDOs to 
various therapies has the potential to guide evidence-based 
and patient-specific oncology care (Fig. 2).

Critical to PDO use in personalized clinical drug screens 
are reliable, efficient, and timely protocols for organoid gen-
eration. Given that the primary tissue sample is a limiting 
resource, any PDO model must prioritize high success rates 
for organoid creation. While there is variability between 
models and cancer types, success rates for producing orga-
noid models are generally higher than for producing cell 
lines, ranging from 60 to 95% [42•, 50, 64••, 73••, 90–92, 
93•, 94]. Additionally, to generate the appropriate number 
of replicates for organoid-based drug screens, successful 
splitting and expansion of organoids from a single sample 
expand their use and longevity [95]. Compared with the 
time to generate and assay patient-derived xenografts and 
genetically engineered mice, most organoid models can be 
established in less than four weeks [96, 97]. Prior studies 
have completed rapid comprehensive drug screens, with Yan 
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et al. screening responses of PDOs of gastric cancer to 37 
drugs in under 2 weeks, ideal for timely prediction of patient 
responses to treatment [45, 98]. Tiriac et al. outline a simi-
lar timeline for drug screening utilizing PDOs of pancreatic 
cancer, with organoid creation to screening being completed 
in around 6 weeks [99].

Several studies have examined the feasibility of PDOs 
in conducting patient-specific drug screens [42•, 47, 48, 
64••, 93•, 94, 100–104]. Wetering et  al. utilized colo-
rectal cancer organoids to screen 83 therapeutics, includ-
ing chemotherapies and targeted therapies for treatment 
response [102]. Jacob et al. targeted tumor-specific genetic 
mutations affecting EGFR, NF1, PI3K, and EGFRvIII using 
gefitinib, trametinib, and everolimus, respectively, and used 
EGFRvIII-specific CAR-T cells to target organoids carrying 
this mutation [64••]. Sachs et al. screened 6 drugs target-
ing EGFR and HER2 signaling pathways, including down-
stream inhibitors of PI3K, AKT, and mTORC1/2, in their 
breast cancer PDOs [42•]. Furthermore, cancer organoids 
are shown to respond to treatment based on their genetic 
alterations, as seen with BRCA2-mutant organoids respond-
ing to olaparib, EGFR-mutant organoids to erlotinib, and 
EGFR-mutant/MET-amplified organoids to crizotinib [94]. 
Additional PDO-based drug screens have been conducted 
in bladder, ovarian, endometrial, pancreatic, lung, and other 
gastrointestinal cancers, among others [44, 45, 47, 93•, 94, 
99, 105, 106]. Similar to parent tissue, PDOs retained fea-
tures of chemoresistance and radioresistance, providing 
faithful representation of the parent tumor phenotype [42•, 
67]. Furthermore, many studies cite the ability of their PDO 
models to be biobanked and later reanimated, thus generat-
ing stored clinical databases for future screening and analy-
sis [42•, 45, 64••, 102, 107]. From a clinical standpoint, the 
ability to create and screen organoids in less than 6 weeks is 
optimal as it allows PDO formation and screening to occur 

in the period between surgical resection and initiation of 
subsequent therapy [108]. In the case of GBM, the drug 
screening protocol can overlap with the receipt of the stand-
ard of care temozolomide chemotherapy and radiotherapy 
and guide additional therapeutic considerations upon recur-
rence or progression [109].

Conclusions

Recapitulation of the three-dimensional native tissue struc-
ture, maintenance of molecular and cellular heterogeneity, 
and rapid generation of patient-derived models present sig-
nificant advantages for organoids relative to classical cancer 
models. The advent of organoid development from human 
cancer samples, either by isolation of cancer stem cells or 
minimally processed primary tissue specimens, has paved 
the way for PDO models. Relative to other cancer models, 
the rapid speed of generation and more faithful representa-
tion of human cancer offer new opportunities for personal-
ized oncology. Over the course of the last decade, cancer 
organoid models have been shown to retain histopathologic 
and molecular features of their primary tumors, as well as 
demonstrating treatment responses akin to those of the par-
ent tumor. As such, PDOs are a potential model for high-
throughput drug screens to guide the selection of oncologic 
therapies. The translational implications for PDOs are most 
apparent in cancers with limited therapeutic options and 
those characterized by patient-to-patient heterogeneity, 
diverse intra-tumoral cellular states, and complex tumor 
microenvironments integral to tumor behavior, as illus-
trated here in our discussion of malignant glioma. Despite 
the promising prospects of current studies, the use of PDOs 
in clinical oncology care is not without drawbacks. Vari-
ability in organoid generating methodologies, wide ranges of 

Fig. 2   Integrative model of his-
topathology, advanced genomic 
sequencing, and therapeutic 
response of patient-derived 
organoid models for precision 
oncology care
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organoid creation success rates, and incomplete characteri-
zation of non-tumor cell populations in organoid models are 
key limitations. While there is a need for standardization of 
PDO models, current data suggest their continued expansion 
and utility as translational cancer models. PDOs are poised 
to support the development and implementation of personal-
ized oncology treatment programs.
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