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Abstract
Purpose of Review Advancements in space travel, such as space tourism into Earth’s orbit, but also the prospect of long-
distance manned space travel to other celestial bodies such as Mars, has generated a clinical need for new enabling technolo-
gies to support the long-term well-being of humans during their passage. Here, we will give an outline on the clinical need 
and practical considerations to MSC therapy as enabling technology for long-distance manned space travel.
Recent Findings Long-distance space travel entails a threat to the health of astronaut crews due to the low gravity environ-
ment and exposure to toxic radiation in space. Multi-organ-system degenerative changes, such as decline in musculoskeletal, 
hematopoietic, immune system function, and in particular risk of genetic mutations and cancer, are major health concerns. 
Physical training, pharmacological agents, and protective shielding are among the currently available methods to counteract 
harmful effects. However, a potential lack of adequate shielding, side effects of pharmacological compounds, and limitations 
to physical training suggest a need for new countermeasures, to protect space travellers to the best extent. Here, the prospect 
of cell-based therapy, e.g. mesenchymal stromal/stem cells (MSCs), has been subject to intense research, due to their potent 
regenerative and immunomodulatory properties. Off-the-shelf MSC therapeutics can be easily maintained in space due to 
the ambient extremely low-temperature environment, and cryorecovery and even culturing of MSCs under microgravity 
were shown to be feasible.
Summary Designing new therapy against harmful radiation is urgent need in space travel. Here we will discuss aspects 
related to clinical MSC administration to optimize their therapeutic benefit. MSC-based therapy may aid in evolving protec-
tive countermeasures for space travellers.

Keywords Cosmic radiation–induced tissue damage · Space disease/sickness · Mesenchymal stromal/stem cells (MSCs) · 
Regeneration and immunomodulation · Therapeutic cell delivery and dosing · Cryopreservation and cryostorage · Freeze-
thawing · Innate and adaptive immune responses
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LET  Linear energy transfer (high LET radiation 
from neutrons and heavily charged particles)

SPEs  Solar particle events
TPs  Electrons and protons in the Van Allen Belts
CNSA  China’s National Space Administration
NASA  National Aeronautics and Space Administra-

tion (of America)
UAESA  United Arab Emirates Space Agency
TRL  Technology Readiness Level

Introduction

The year 2021 marks several major breakthroughs in space 
travel, with an acceleration in efforts of government agen-
cies, corporate/private enterprises, and private–public part-
nerships, to put humans into space, both in the prospect of 
interplanetary long-distance travel and in space tourism in 
Earth’s closer proximity. This acceleration in manned space 
flight calls for increased efforts to develop novel adjunct 
medical technology to support the well-being of space trav-
ellers [1]. In this perspective, we will give an outline on 
the clinical need and practical implications for the use of 
regenerative and immunomodulatory therapeutic mesenchy-
mal stromal/stem cells (MSCs) [2•, 3•, 4–7], to antagonize 
any detrimental health-risks associated with long-term space 
travel [1, 8, 9, 10••, 11], such as musculoskeletal wasting, 
hematopoietic and immune system compromise, and multi-
morbid toxicity resulting from prolonged exposure to space 
radiation and confined low-gravity environment.

Human space exploration has been going on for more than 
70 years since the early American and Russian space pro-
grams have started in the 1950s [12]. The years 2020–2021 
have brought notable acceleration in both government and 
private efforts. Key interplanetary government efforts entail 
landing of the Chinese Mars rover ‘Zhurong’ in April 2021 
as part of the ‘Tianwen-1’ mission organized by China’s 
National Space Administration (CNSA), to send a robotic 
space craft to Mars. This was following suit to landing of 
the American Mars rovers ‘Curiosity’ in Gale Crater on 
August 6, 2012, and ‘Perseverance’ in Jezero crater on Feb-
ruary 16, 2020, as part of the ‘Mars 2020 mission’ of the 
National Aeronautics and Space Administration’s (NASA) 
Mars exploration program. The Mars Mission ‘Hope’ of the 
United Arab Emirates Space Agency (UAESA), that has 
reached Mars on February 9, 2021, is another notable effort 
to Mars exploration.

Interestingly, multiple corporate and private efforts, as 
well as private public partnerships, have also stepped on the 
stage and rapidly progressed lately, culminating in the ‘Bil-
lionaire Space Race’ that cemented the feasibility of ‘Space 
Tourism’ in July 2021 [13–15]. This is exemplified by the 
two crewed near-Earth space hops of Richard Branson on 

July 11, 2021 (Virgin Galactic – SpaceShipTwo rocket, peak 
altitude 88 km) and Jeff Bezos on July 20, 2021 (Blue Origin 
– New Shepard rocket, peak altitude 107 km, thus passing 
the Karman line of 100 km). Importantly, this was recently 
followed by the first successful launch of an all-civilian crew 
by entrepreneur Elon Musk and team on September 16, 2021 
(Space X – ‘Inspiration-4’ mission with the SpaceX Crew 
Dragon flying at 575 km, which is 160 km higher than the 
orbit of the International Space Station; ISS) sending for the 
first time four exclusively private citizens on a 3-day mission 
into Earths’ orbit — circling Earth three times before reentry 
of their craft [16, 17].

Akin to national and transnational efforts to explore Mars, 
many of the corporate/private programs see manned long-
distance travel to Mars as a first major step-stone to inter-
planetary colonialization. As shown by the extended duration 
space missions on Earth orbiting space stations, such as the 
‘American Astronaut Twin Studies’ conducted on the Inter-
national Space Station (ISS) [9, 10••, 11], a major drawback 
to manned exploration/long-distance travel are the consid-
erable health challenges posed on space travellers [1]. The 
high-altitude environment is very challenging to astronauts, 
since microgravity triggers musculoskeletal atrophy, remote 
and restricted habitability causes great psychological stress, 
and most importantly, the exposure to space radiation sig-
nificantly endangers the health and long-term well-being of 
astronauts [1, 18]. In ISS orbit, major sources of ionization 
radiation are composed of three primary sources: (i) galactic 
cosmic rays (GCRs), (ii) solar particle events (SPEs), and (iii) 
electrons and protons in the Van Allen Belts (TPs) outside the 
spacecraft. Considering interplanetary travel, particularly, the 
highly charged GCRs create a hostile environment outside the 
lower Earth orbit (LEO) [19], which can promote long-term 
development of degenerative tissue defects, such as cardio-
vascular changes, genetic mutations, and cancer [1, 20].

During interplanetary space travel, the protection of astro-
nauts from SPE storms is a great challenge. During missions 
to Mars, there is high risk for astronauts to be exposed to 
SPE radiation events, which can be harmful to space systems 
and crews alike [21], thus impacting on mission planning, 
timelines, and operational decisions. However, researchers 
are constantly advancing genomic, proteomic, and metabo-
lomic techniques, to improve the detection of any harmful 
effects from space radiation on human physiology [1, 11]. 
In contrast, developing medical countermeasures to actually 
mitigate or treat radiation injury is an urgent medical need 
for the astronauts on extended missions. There exist at least 
two approaches to counteract radiation injury in space. First 
of all, shielding is an effective method against SPEs, but it 
often fails to protect the crew from the biological effects of 
fast moving and highly-charged GCRs [22]. In addition, the 
administration of pharmacological agents is another method 
of radiation protection, but radioprotective pharmacological 
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compounds have considerable side effects (e.g. decreased 
renal perfusion and angioedema) and are therefore difficult 
to use in astronauts exposed to space radiation [23]. This 
encourages a continuous search for more amenable and tol-
erable drugs to ameliorate the effects radiation exposure.

Stem cells therapy is a promising field in regenerative 
medicine, which has greatly advanced recently [2•, 24–26]. 
The field has now reached a technological readiness level 
(TRL) [27, 28] that robustly supports operability in Earth 
environments with its supportive infrastructure. The TRL 
is a measure developed by NASA for assessment of tech-
nological readiness on a scale from 1 to 9, spanning differ-
ent phases, e.g. 1 Basic technology research, 2 Research 
to Prove Feasibility, 3 Technology Development, 4 Tech-
nology Demonstration, 5 System/Subsystem Development, 
and 6 System Test, Launch and Operations. However, the 
implementation of stem cell therapy in space entails par-
ticular logistic challenges, such as high cargo costs, suit-
able storage methods, and considerable practical limitations 
related to actual clinical cell application/delivery to patients 
[2•, 3•, 4–7]. While hematopoietic stem cell transplanta-
tion (HSCT; e.g. to recover a dysfunctional hematopoitic 
system) is already a well-established entity with > 50.000 
annual procedures globally [24, 29–31], MSC therapy has 
only been developed more recently, aiming to provide novel 
regenerative and immunomodulatory treatments for great 
range of clinical indications [3•, 7, 24, 26, 32, 33].

MSCs are multipotent progenitor cells with limited self-
renewal capacity [25, 34] that can be derived from several 
tissue sources (e.g. bone marrow, adipose tissue, and peri-
natal tissues, abbreviated BM, AT, and PT, respectively), 
which may entail variations in their safety and efficacy pro-
file [2•, 5]. According to the International Society for Cell 
and Gene Therapy (ISCT) [35], the minimal criteria for 
defining MSCs are (i) plastic adherent fibroblast-like mor-
phology, (ii) presence/absence of a panel of defined cell sur-
face markers, and (iii) multilineage differentiation potential. 
More updated criteria have also been proposed recently [2•, 
5, 36, 37]. Preliminary studies aboard ISS have demonstrated 
that MSCs can be retrieved from cryostorage and expand 
in microgravity with maintenance of ‘stemness’ [38], thus 
supporting MSCs’ therapeutic application in space. How-
ever, a major limitation in the use of MSCs as an immedi-
ate therapeutic in space is the current lack of understanding 
considering the best modality of clinical MSC application to 
patients for optimal therapeutic benefit [2•, 3•, 4–6]. In this 
review, we will first introduce how cosmic radiation and the 
altered physical environment (e.g. microgravity) affect the 
physical health of astronauts, which will then be followed by 
an outline on MSC mediated prevention of radiation injury. 
Finally, we will discuss optimal modes of MSC delivery to 
achieve the optimal therapeutic outcome.

Radiation Exposure Causes Multisystem 
Organ Failure

Interplanetary travel to Mars and beyond entails flight 
schedules lasting several months (Fig. 1A), which has 
been linked to 30 different health risks within NASA’s 
Human Research Program [1]. The risks ranked as ‘red’ 
have the highest priority based on both the likelihood of 
occurrence and the severity of their impact on human 
health, performance in mission, and long-term quality of 
life. During this passage, the combination of GCRs and 
protons released during SPE’s contributes to the most 
prevalent harmful components of radiation outside of the 
LEO. Although SPE’s overall impact on human health 
during interplanetary transit is not clear today, first clini-
cal studies have studied the dose distribution regarding 
whole body irradiation. Importantly, compared to inter-
nal organs, the directly exposed skin is more susceptible 
to absorb the low energy spectra of protons and nuclei; 
hence, SPE dose is higher for skin than internal organs 
and may promote skin injury and cancer [39]. However, 
it is clear that the health challenges during prolonged 
space travel are multifactorial, thus leading to progres-
sive multisystem organ failure in relation to the time of 
travel and the dose or harmful radiation that has been 
accumulated during the flight (space exposome) [1]. In 
particular, due to the combined effect of SPE radiation 
and prolonged living inside artificial microgravity, crew 
members often experience serious health problems like 
skin injury, haematological changes, and immune system 
suppression, followed by development of degenerative 
vascular changes, and elevated risk for genetic muta-
tions and cancer [20]. The high linear energy transfer 
(LET) radiation in the GCR spectrum damages biomol-
ecules (e.g. deoxyribonucleic acid (DNA), proteins, and 
lipids) and can also alter the organelles and cellular struc-
ture. Furthermore, aging associated degenerative tissue 
changes, such as myocardial remodelling and fibrosis, can 
be developed due to the radiation-induced increase in oxi-
dative stress [40]. Recently, the NASA ‘Astronaut Twin 
Study’ has been performed to study biological responses 
of the human body during a year-long spaceflight [9, 
10••, 11]. The authors pointed out crucial physiologi-
cal parameters, such as maintenance of telomere length, 
genome stability, and epigenetic modification in response 
to extended space travel [11]. Studies in a mini-pig model 
confirmed that high doses of SPE-like radiation can cause 
skin damage, along with malfunction of the lung and heart 
[41, 42]. Furthermore, exposure to SPE radiation elicits 
deleterious effects on T cell activation, with mice becom-
ing susceptible to bacterial infection [43].
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Current  Methods of Radiation Protection

The most common approach to avert the harmful impact 
of cosmic radiation during space travel is shielding, which 
establishes a protective physical barrier between the astro-
naut and space [44]. However, shielding is first of all costly, 
due to the great weight restriction posed on cargo brought 
into space, and second, only effective inside the LEO, since 
beyond LEO, the high-energy nuclei component of GCR 
(i.e. HZE ions) can penetrate shielding of space crafts [45, 
46]. Hence, novel pharmacological agents have been intro-
duced in space travel, to support ineffective shielding [40]. 
Meerman et al. discussed three specific types of pharmaco-
logical agents: 1 Radioprotectors (e.g. to reduce tissue dam-
age before exposure), 2 Radiomodulators (e.g. to increase 
radio resistance of exposed tissues), and 3 Radiomitigators 
(e.g. to prevent tissue damage after exposure) [40]. How-
ever, the use of pharmacological agents may also induce 
impairment of normal tissue function; e.g. the angiotensin 
converting enzyme (ACE) inhibitor Captopril has demon-
strated a positive effect in the reduction of radiation-induced 
complications in animal models, but its use entails a rare but  
serious risk of agioedema particularly in a low gravity envi-
ronment [47]. The pharmacological agent Pentoxifylline, a 
xanthine derivate, has been identified as a remedy for both 
myocardial fibrosis and intermittent claudation, the muscle 
pain resulting from peripheral artery disease [48], but it is 
not yet well studied in radiation protection and has consider- 
able side effects. In addition, physical exercise, antioxidants,  
and nutraceuticals provide a degree of non-toxic ameliora-
tion/protection against radiation toxicity. Several antioxi-
dants are useful to protect DNA or tissues from the harmful 
oxidative stress and reactive oxygen species (ROS), which 
are generated during interaction between HZE and water 
molecules in biological tissues. In particular, Amifostine 
(first officially authorized radioprotector with activity based 
on catching free radicals and ROS to protect DNA and accel-
erate DNA repair selectively in healthy cells, but not tumour 
cells) [49–51], but also N-acetylcysteine (NAC), and hydro-
gen therapy, have shown positive effects against radiation 

induced tissue damage [40, 52]. However, considerable tox-
icity and clinical delivery aspects impair the wider use of 
Amifostine in daily practice [51]. Immune dysfunction is 
one of the common problems associated with spaceflight [1, 
53]. To circumvent this, a combination of pharmacological, 
nutritional, and exercise interventions, such as stress reliv-
ing breathing exercise and personalized medications like 
Anti-histamine, Fexofenadrine, and Valacyclovir, are rou-
tinely prescribed for exploration space mission [54]. Poly-
clonal immunoglobulin and interleukin-2 are also used as 
the countermeasures to repair immune system impairment. 
However, these countermeasures also have some restrictions 
with respect to their stability, storage mass, or delivery in 
long-distance space travel. Importantly, all of these existing 
radioprotective methods are only partly effective and can-
not yet provide optimal/maximal protection against radiation 
shock during long-duration space mission.

MSC Application as a Living Cellular 
Pharmaceutical in Space

As reviewed earlier [55–57], MSCs have shown promise as 
countermeasure for exposure to toxic radiation in preclinical 
animal models and first human clinical studies, e.g. for the 
treatment of radiation injury and radiation syndrome. For 
successful utilization of MSCs as a cell-based therapeutic 
in space travel, it is of importance to understand the require-
ments of these living therapeutic cells considering their opti-
mal storage conditions, their mechanisms of action (MoA), 
and their pharmacokinetics and pharmacodynamics in this 
environment. In particular MSCs’ mode of clinical delivery 
to patients should be considered as a key parameter, since 
it may impact greatly on therapeutic outcome, such as their 
safety and efficacy profile and MoA [2•, 3•, 4, 5, 36, 37].

While developing any personalized cellular therapy for 
astronauts, the foremost thing that needs to be considered 
is the radiation type/dose and flight duration. Post-flight 
chromosomal breaks were more repetitive in the Apollo 
astronauts compare to the Gemini astronauts [21], sug-
gesting a direct correlation between the radiation dose/
time and body’s pathophysiological response. Importantly, 
clinical applications involving MSCs must thoroughly distin-
guish between chronic and acute radiation syndrome (CRS 
and ARS), since both entities do/may may have different 
molecular pathogenesis depending on the raditon dose and 
exposure time [57]. This may most certainly make adjust-
ments in dose and timing of cellular therapy necessary. The 
majority of studies investigated the role of MSCs’ in ARS, 
caused by radiation dose higher than 1 Gray (Gy), while 
CRS occurs due to chronic/repeated exposure to less than 
1 Gy radiation. MSCs’ role in chronic radiation syndrome is 
not well addressed so far. Hence, systemic study is required 

Fig. 1  Human interplanetary travel and MSC therapy in space. A 
Upper panel: Travel distance/duration that have to be anticipated dur-
ing interplanetary travel, resulting in prolonged exposure to cosmic 
radiation and increasing the likelihood of exposure to solar particle 
events (SPEs) outside the lower Earth orbit (LEO). B Lower panel: 
SPE causes multiorgan damage and failure during long-term space 
flight, which may be counteracted in the future by mesenchymal stro-
mal cell (MSC) therapeutics which have been shown to reduce sys-
temic inflammation, ROS-production, tissue damage, and to promote 
tissue regeneration and recovery from acute and chronic radiation-
damage. However, in particular, the mode of clinical delivery will be 
decisive for feasibility, safety, and efficacy of MSC therapeutics in 
space

◂
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to establish MSCs’ therapeutic role in chronic radiation 
syndrome.

MSC Therapy in the Context of Space Travel: 
Radioresistance and Radioprotection

First research on stem cell-based therapy in the context of 
space exploration has been initiated, both for experimental 
studies and within the prospect of ameliorating space sick-
ness [38, 57–60]. Some recent examples include a Bioculture 
System developed by NASA to conduct in-orbit experiments 
and the development of an integrated space laboratory, 
including a combined facility for cell culture and technolo-
gies for molecular biology (WetLab2) and other advanced 
tools [61]. Recently, Dr. Abba Zubair and team from Mayo 
Clinic studied the feasibility of cultivating MSCs in Space 
for their potential use during long-term space flight [38, 59].

Chinnadurai and DiCarlo reviewed the potential of MSCs 
as therapeutics for radiation injury and space sickness [55, 
57] and another review by Nicolay and coworkers from Hei-
delberg University concluded that MSCs are radioresistant 
(as detailed below), and the authors outline the cellular and 
molecular mechanisms of MSCs’ radioresistance and poten-
tial implications for clinical use [62]. MSCs’ mesodermal 
differentiation capacity along with their potent immunomod-
ulatory and pacrine properties make them ideal candidates 
for recovery of radiation induced injuries of the skin, intes-
tine, brain, lung, liver, and heart [63]. For example, in an 
animal model of lethal ARS with severe weight loss, the 
secretome of injected placenta-derived MSCs (PLX-RAD 
of foetal origin) improved animal survival, the recovery of 
hematopoietic function, and the regain of weight-loss [64], 
and similar beneficial effects on multiple organ systems have 
also been observed in human patients under Earth gravity 
conditions, but also in animal models of simulated weight-
lessness [65–69].

MSCs can be formulated as ‘off-the-shelf’ living cellular 
drugs with multifactorial regenerative and immunomodula-
tory properties and low inherent immunogenicity [7, 70]. In 
addition, MSCs therapeutics can be applied through multiple 
means [2•, 3•, 4, 5]; e.g. they can be employed systemi-
cally or locally, and the cells can also be chemoattracted and 
migrate to sites of tissue damage in vivo, all of which may 
promote systemic and local immunomodulation and tissue 
repair by down-modulating inflammation and assisting tissue 
regeneration through multiple means. This may entail mito-
chondrial transfer and sequestration of repair signals, such 
as bioactive extracellular vesicles and various soluble and 
cell bound mediators [64, 71–73]. Thereby, MSCs can create 
a tissue protective environment at sites of tissue damage by 
secreting a plethora of immunomodulatory and regenera-
tive paracrine mediators [7, 64], such as numerous short-
lived immunomodulatory metabolites and diverse growth 

factors, such vascular endothelial growth factor and many 
others [7]. All of these properties make MSCs therapeutic 
candidates for a broad range of clinical indications [26, 74], 
such as skeletal diseases, cardiovascular diseases, autoim-
mune, inflammatory, and neurodegenerative disorders, many 
of whom are also of interest in the multifactorial sympto-
matic of space disease [1]. Hence, MSCs are envisioned to 
be utilized in space travel for the prevention of both acute 
and chronic tissue injury and multi-organ-system-failure.

Several studies identified that unlike with other BM-
derived stem and progenitor cell populations, the in vitro 
survival of MSCs was not substantially impaired or indif-
ferent to exposure of high doses of irradiation [57]. This 
radio-resistance of MSCs is more prominent under hypoxic 
conditions, which is manifested by increased proliferation, 
improved DNA damage repair, and enhanced long-term sur-
vival after exposure to ionizing radiation [75]. Furthermore, 
MSCs retain their stem cell features, such as plastic adher-
ence and adipogenic, osteogenic, and chondrogenic differ-
entiation potential even in exposure of high doses of 12C 
carbon ion and even in 10 Gy of ionizing radiation [76, 77]. 
Therapeutic cell doses of MSCs could be maintained long-
term in space in ambient low-temperature cryostorage sys-
tems in combination with appropriate radiation shielding, to 
prevent mutations and maintain their optimal function until 
thawing/recovery for clinical use [6]. MSCs actually pos-
sess radio-resistant properties to repair DNA double strand 
breaks induced by high doses of photon or 12C particles by 
both non-homologous end joining and homologous recom-
bination pathways [75, 78]. Akin to the radioprotective 
pharmaceuticals and antioxidants described above, MSCs 
were found to ameliorate tissue damage from oxidative stress 
by lowering ROS production [79]. Due to these preventive 
and regenerative properties in context of radiation damage, 
MSCs are considered as therapeutic candidate to allevi-
ate the side effects of radio therapy [63]. Interestingly, an 
ongoing clinical study coordinated by Dr. Mohamad Mohty 
at INSERM in France (PRISME; NCT02814864) cur-
rently assesses MSC injections for the treatment of chronic 
radiotherapy-induced abdomino-pelvic complications and 
radiation-induced haemorrhagic cystitis. Collectively, these 
studies indicate that MSCs’ radio-resistant and -protective 
properties may be exploited in the future to mitigate radia-
tion-induced tissue damage during extended space missions 
(Fig. 1B).

Feasible Routes of Therapeutic Cell Delivery and Use 
of Fresh and Frozen Cells

Meta-analysis of existing clinical studies documents that 
MSCs exhibit an excellent safety in well-regulated clinical 
studies [37, 80–82]. Depending on the practical feasibility 
and specific treatment requirements, MSCs can be applied 
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either through local or systemic routes of administration [2•, 
4, 5]. In particular, novel bio-instructive material-/hydrogel-
guided approaches are generating an increasing interest to 
optimize both the safety and efficacy/potency of MSCs by 
positively modulating the functional properties of therapeu-
tic MSC products and their concomitant biological effect 
[83]. Given the zero gravity environment in space, there is a 
certain need for comprehensive analysis of biodistribution, 
persistence, and fate of MSCs following various routes of 
cell administration. This applies for both, the in vivo distri-
bution, but also to the cells behaviour in typical application 
devices, such as syringes and infusion bags, which may con-
siderably alter their suspension, aggregation, and sedimenta-
tion properties, which are in turn all highly crucial aspects 
for effective cell delivery [84]. The currently established 
MSC delivery routes discussed below were established 
under normal gravity condition. Microgravity may interfere 
with the transplanted MSCs’ biodistribution, hence their 
in vivo persistence and cellular fate. Furthermore, radiation 
shock may trigger gene and tissue alterations in the recipi-
ent (e.g. proinflammatory or necrotic tissue response), thus 
potentially resulting in altered therapeutic activity of MSCs 
towards the host, since cells will respond to in vivo signals. 
Hence, it is critical to understand MSCs’ pharmacokinetics 
and pharmacodynamics before their application in long-
space travel.

Local MSC Delivery is often performed to boost the immedi-
ate local activity/potency by increasing the engraftment of 
therapeutic cells at specific target sites. The simplest method 
for local MSCs delivery is topical application through intro-
duction of a cell suspension or cell-containing hydrogel/
patches directly onto the target area to be treated [4]. This 
method is preferred due to its technical simplicity and good 
safety profile for a range of indications, such as wound repair, 
to enhance skin graft survival, and for repair of defects in 
solid organs, such as heart, liver, or kidney [85], although it 
may be of use to treat surface wounds resulting from space 
sickness. In addition, intra-muscular injection (IM) is also 
considered to be a rather simple route of MSC delivery, 
although multiple cell injections with syringes may cause 
some transient discomfort and hematomas, which needs to 
be considered. However, IM delivery comes at the substantial 
advantage that it promotes the survival and dwell-time of 
implanted MSCs compared to other common routes, which 
may also be helpful to improve therapeutic outcomes in radi-
ation injury and ARS [64, 65, 86]. In addition, the combina-
tion of therapeutic MSCs with bio-instructive hydrogels may 
further improve outcomes [83].

Systemic MSC Delivery Intravenous (IV) and intraarte-
rial (IA) intravascular infusion are among the most popu-
lar approaches of MSC delivery, and IV application is 

commonly considered to be one of the most conventional 
and safest modes of cell delivery [37, 80–82]. Around 50% 
of human MSC clinical trials employ intravascular deliv-
ery for an extensive range of clinical disorders [3•, 5, 26, 
37]. Nonetheless, a plurality of reports has identified that 
the IV-applied MSCs are rapidly trapped in the lungs and 
cleared shortly afterward [87], which may be related to trig-
gering of the instant-blood mediated inflammatory reaction 
(IBMIR) in response to infusion of highly procoagulant tis-
sue factor (TF/CD142) expressing MSC therapeutics with 
insufficient hemocompatibility [37, 88–93] and concomitant 
suboptimal efficacy in some clinical indications due to early 
cell destruction [2•, 4, 5]. Since their paracrine MoA sup-
ports MSC therapeutic activity/potency, a reduced lifespan 
of grafted cells may debilitate their therapeutic activity [2•, 
3•]. A recent preclinical study identified that repeated IV 
delivery of a maximally tolerated dose (50 million cells/
kg body weight) of fit MSCs failed to affect colitis clini-
cal outcomes [3•], while another research group identified 
beneficial effects of IV infused MSCs in the reduction of 
lethal sepsis [94]. This discrepancy may be explained by the 
process of efferocytosis [6, 89, 95, 96], where lung-resident 
macrophages rapidly phagocytose more than half of the 
lung-trapped MSCs and their residue to be skewed in an 
anti-inflammatory M2 profile to produce interleukin-10 (IL-
10), thereby reducing tissue inflammation [94]. This report 
is corroborated by another preclinical study where intra peri-
toneal (IP) or IV-delivered apoptotic MSCs were effective 
in improving GvHD outcomes via the secondary efferocy-
totic response [97, 98]. Compared to the IV approach, IA 
application can be more effective in certain indications, as 
it can reduce cell-trapping in the lungs and thus promote 
cell engraftment at the target site, e.g. the ischemic leg [99]. 
However, there are also reports showing a risk for adverse 
embolic effects related to this approach [100, 101]. MSCs 
targeted to the brain via IA delivery demonstrated a risk of 
stroke [101]. For utilizing the IA approach, cell size/cell 
aggregate removal, cell dose, and infusion speed must be 
carefully adjusted to prevent cell embolization and tissue 
ischemia [4]. Though IP or subcutaneous route of MSC 
delivery are not very common, in some preclinical studies, 
they improved the recovery from various indications; e.g. 
while the maximum tolerated IV delivered MSC dose was 
ineffective to improve toxic colitis in mice, SC or IP deliv-
ered MSCs demonstrated a positive therapeutic effect on 
colitis clinical and pathologic endpoints [3•].

Cardiovascular Regenerator Systems An entirely different 
approach to deliver MSCs’ beneficial therapeutic proper-
ties is to employ MSC-loaded dialyzer-based CVR systems 
that are currently developed as intensive care support units 
to reduce inflammation and promote regenerative pathways 
in severely compromised patients [102–106]. These would 
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be of particular interest in long-distance space missions, 
since units could be prefabricated and loaded with MSCs 
to be used as rescue module for acute incidents or regular 
spaced support to promote regenerative pathways in addi-
tion to training and other active countermeasures to promote 
astronaut well-being.

Enhancement of MSC’s Therapeutic Activity

Clinically relevant engineering approaches to improve MSC 
bioactivity and safety that may also be beneficial in the con-
text of space exploration are in principle almost countless 
[92, 106, 107], but here we wish to outline some key aspects 
that have shown promise in recent years.

Integrated Systems According to numerous mechanistic 
studies, MSCs deploy local and systemic immunomodula-
tory effects via the secretion of numerous paracrine soluble 
factors [7]. Studies by Dr. Zubair and colleagues are now 
certain that MSCs can be cultured and expanded in space 
microgravity with intact morphological and regenerative 
properties [38, 59]. However, for the treatment of tissue 
injury, single or multiple doses of more than 100 million 
cells are required, which are rather difficult to grow at a time, 
particularly in space. Here, a prefabricated system, either 
preloaded or to be loaded, with cryobanked ‘off-the-shelf’ 
MSC batches ready for therapeutic use, such as the CVR 
system introduced above [102–106], would provide a very 
elegant solution to rapid availability without prior need for 
cell expansion in space. Preclinical studies have also tested 
culture rescued log phase growth MSCs to get a more opti-
mal therapeutic benefit [95]. Here, a closed cartridge CVR 
system would also allow for short culturing/revitalization of 
cryostorage derived cells to boost their metabolic function 
and improve their hemocompatibility [104].

Freeze‑Thawing In many human clinical trials, pre-banked 
cryopreserved allogeneic MSCs are used, which are thawed 
immediately before transplantation [6]. However, immedi-
ately post thawing therapeutic cells may possess partially 
defective immune functionality/metabolic activity and in 
addition express typical cell injury markers that promote 
cell clearance upon infusion [6, 89, 108]. Thawed cells read-
ily derived from cryostorage display reduced in vivo persis-
tence due to increased susceptibility to T cell mediated lysis 
[6, 109], which is in part due to the expression of the same 
altered cell surface features that also promote the triggering 
of IBMIR, such as phosphatidylserince exposure resulting 
from cell membrane asymmetry post thawing [6, 89, 104, 
110]. Short in vivo persistence of post-thawed MSCs is 
associated with impaired cell-dependent functionality [3•]. 
Importantly, while improper methods of cryopreservation and 
thawing can cause damage of MSCs, optimized cryomedia 

and freeze-thawing procedures may yield improved out-
comes, and culture rescue of MSCs for 16- to 24-h post-thaw 
can completely reverse the cryoinjury effect [6].

Hemocompatiblity Their immunomodulatory and regenera-
tive properties and in part also their lineage differentiation 
form the basis of MSCs’ therapeutic activity/potency. As 
outlined above, the hostile tissue environment encountered 
by MSCs after in vivo delivery promotes cellular apopto-
sis and triggering of IBMIR with concomitant therapeutic 
cell graft destruction and rejection, which is furthermore 
affected by patient-specific parameters [2•, 5, 36]. Space-
flight and microgravity may alter coagulation parameters, 
promote hypercoagulability, and induce venous and/or 
coagulation pathology, particularly in the cephalad venous 
system [111]. This may be associated with altered/increased 
triggering of IBMIR responses to systemically infused TF/
CD142-bearing cell products and thus altered safety pro-
files, cell persistence, and functionality. To improve MSCs 
in vivo persistence, different cellular or genetic modifica-
tion strategies and preconditioning approaches have been 
studied extensively in the past [5]. The modification/down-
modulation of MSCs’ expression of highly procoagulant TF/
CD142 has been identified as a key target to improve their 
hemocompatibility for intravascular applications [37]. In 
addition, TF/CD142 knockout and downmodulation strate-
gies, or cell coating with hemocompatible surfaces, such 
as macromolecular-heparin-conjugates, as well as suitable 
patient thromboprophylaxis, are envisioned [5], which must 
be carefully reviewed and re-evaluated for operability in the 
space environment.

Alloimmunity Although MSCs are commonly considered 
to be hypoimmunogenic, recent studies have better identi-
fied that MSCs are rather ‘immune-evasive’ than ‘immune-
privileged’ [70]. However, using allogeneic MSCs as the 
‘off-the-shelf’ product have many advantages, especially that 
a substantial amount of healthy allogeneic MSCs is readily 
available at the time of need, while for the autologous MSCs, 
it is difficult to collect the similar amount of good quality 
cells within short period of time, although this benefit may 
come at the cost of anti-donor immune responses [70, 112, 
113]. Given the currently still fairly small crew number of 
astronaut crews, cell banks of HLA-compatible/matched 
products could be prepared in advance. Mechanistically, 
it appears to be beneficial for the therapeutic outcome to 
protect MSCs from allo-rejection [3•]. Different approaches 
have been identified so far to protect allogeneic MSCs from 
recognition of host cell immunity, such as the temporary 
administration of immunosuppressive drugs along with the 
therapeutic cells or ‘immune-editing’ to genetically prevent 
MHC II expression are some potential avenues to improve 
the in vivo persistence of allogeneic MSC products.
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Metabolism Hypoxia preconditioning and careful adjust-
ment of nutrient supply may be another approach to promote 
MSC’s persistence before in vivo application and hence their 
therapeutic potency in human clinical trials, since it may 
reduce cell starvation upon transplantation into oxygen and 
nutrient poor tissue environments [114]. In addition, it has 
been recognized that transplanting integrin-linked kinase 
(ILK) overexpressed MSCs into an ischemic myocardium 
model, improved myocardial damage recovery through rapid 
angiogenesis [115]. Since myocardial damage is a common 
phenomenon in radiation injury, it can be speculated that 
ILK overexpresses MSCs could serve as a potential thera-
peutic against radiation-induced myocardial disease.

Conclusions

The harmful effect of radiation exposure on internal organs 
and tissue function is a major concern for long-term manned 
missions. Therefore, space agencies emphasize research to 
evaluate the health risks that astronauts experience during 
and after long-distance space travel beyond the LEO [1]. 
Exploring novel strategies to ameliorate space radiation-
induced injury is equally important. Although shielding 
approaches and pharmacological agents are available, these 
may not be very effective for the HZE component of GCR 
beyond LEO, particularly during interplanetary travel. 
Hence, developing alternate protective strategies is one of 
the newest challenges in space research. Presently, research-
ers are making first efforts to implement stem cell-based 
therapy in space travel. Here, MSC-based therapeutics pro-
vide considerable promise, due to their profound regenera-
tive and immunomodulatory properties, and their therapeutic 
potential to alleviate radiation injury/ARS. Although MSCs 
bear great promise, their clinical development is still in the 
early phase and needs to overcome many practical chal-
lenges to implement their full potential. The enhancement of 
MSCs’ therapeutic properties (e.g. anti-apoptotic, antioxida-
tion, proangiogenic, immunomodulation, regeneration, and 
hemocompatibility) before infusion, their optimized clinical 
delivery to patients, but also novel cellular modification/
licensing approaches, e.g. by employing pharmaceutical 
approaches or cytokine pre-activation and genetic engi-
neering, offers new avenues to further advance MSC-based 
therapy in space applications. MSCs’ full potential as a liv-
ing cellular pharmaceutical depends upon MSCs in vivo per-
sistence inside the host, the route of clinical delivery, culture 
conditions, and also the host tissue environment, which all 
influence their in vivo persistence. Although in human clini-
cal trials IV administration is the most favoured conventional 
approach, IV delivered cells are cleared rapidly by triggering 
of the innate and adaptive immune cascades, e.g. IBMIR, T 
cell allorecognition, and efferocytosis by host phagocytes, 

which may considerably impair cell-dependent functional-
ity. Preliminary studies have identified that microgravity is 
not detrimental, but may even have a beneficial effect on 
MSCs’ proliferative and therapeutic capacity, thus indicat- 
ing potential to employ therapeutic approaches based on 
culturing MSCs during space travel, such as haemodialysis-
integrated CVR systems. We here anticipate a promising 
future for MSC therapy in alleviating radiation injury in 
long-term manned space travel.
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