Current Stem Cell Reports (2021) 7:13-29
https://doi.org/10.1007/s40778-021-00187-5

PRENATAL THERAPIES (W PERANTEAU, SECTION EDITOR) ;.)

Check for
updates

Amnion Epithelial Cells — a Therapeutic Source

Renate H. M. Schwab "2 - Mihiri Goonetilleke ' - Dandan Zhu'? - Gina D. Kusuma '~ - Euan M. Wallace'? -
William Sievert>* . Rebecca Lim "2

Accepted: 5 February 2021 / Published online: 5 March 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021

Abstract

Purpose of Review In this review, we will explore the clinical and commercial focus on amniotic membranes (AMs) and their use
in tissue engineering (TE). We will showcase the therapeutic potential of AM-isolated epithelial cells (hnAECs) and the prospec-
tive use of their secreted factors, extracellular vesicles (EVs), in cell and non-cell therapies.

Recent Findings The potential of the hAECs as a therapeutic source has been investigated in various preclinical models with
some progressing into phase I clinical trials to evaluate their safety. Additionally, multiple animal studies showcase the thera-
peutic potential of EVs as non-cellular treatments.

Summary The amniotic membrane (AM) has been used as a form of regenerative medicine in wound healing for burns and
ulcerated surfaces and in ophthalmology for over a century. In the last few decades, research has looked to the use of the various
stem cells that can be isolated from the AM. The use of AM-isolated hAECs has proven rather promising with phase I clinical
trials currently underway across life-threatening diseases in both pediatric and adult populations. However, due to limitations of
using cell-based therapies (e.g., cost of production, delivery restricted to major hospitals, etc.), attention has turned to investi-
gating EVs secreted by the cells.

Keywords Human amniotic membrane - Human amnion epithelial cells - Extracellular vesicles - Cellular and non-cellular
therapy - Regenerative medicine

Introduction

The amniotic membrane (AM) is a thin membrane on the
inner side of the fetal placenta, consisting of an epithelial coat
and a layer of mesenchymal connective tissue. It possesses
unique biological features, including anti-inflammatory, anti-
bacterial, anti-viral, and immunological characteristics as well
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as anti-angiogenic and pro-apoptotic qualities. The AM is
commonly used clinically for wound treatment and ocular
surface reconstruction. In more recent years, hAECs isolated
from the AM have been investigated as a form of regenerative
medicine given their immunomodulatory, anti-tumorigenic,
and anti-inflammatory properties. In this review article, we
focus on the hAECs and their role as a therapeutic source.
First, we discuss the historical use of the AM and highlight
more recent developments in amnion-derived products. Next,
we provide insight into hAECs themselves. This is followed
by a summary of preclinical models using hAECs and current
clinical trials investigating the safety of hAECs for cell thera-
py. Lastly, we describe tissue engineering using the AM as a
bio-scaffold and preclinical studies exploring extracellular
vesicles for cell-free therapy. This is summarized in Fig. 1.

History of the Amniotic Membrane in Medical
and Surgical Applications

The human placenta has been used traditionally for over cen-
turies in Chinese medicine. The Compendium of Materia
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Fig. 1 The amniotic membrane is a source of cells, extracellular vesicles,
and bio-scaffold materials

Medica, a Chinese record of substances with medicinal prop-
erties published in 1593 by Li Shi-Zhen, devotes an entire
section to the uses of the human placenta as a medicine [1].
More than 3 centuries later came the first documented use of
the fetal membrane/amniotic membrane as a surgical material
in skin transplantation in 1910 [2] and 1913 [3, 4]. The AM
was employed in skin grafting and gave superior results when
compared to xenografts or cadaveric coverings [2]. In 1913,
intact amniotic membranes were applied to varicose ulcers,
burns, scalds, and denudations of traumatic origin. Dr.
Maximillian Stern found that the amniotic cellular tissue was
taken up by the raw surface of the wound without remarkable
adverse effects [3]. It would be another 20 years before anoth-
er paper was published using the AM for wound repair or
surgery. In the late 1930s, the AM was used for genital recon-
structive surgery [5]. Then in the 1940s, it was used for the
first time in ophthalmology to repair conjunctival defects [6]
and ocular burns [7, 8]. Since then, the AM has been further
investigated with studies and a large number of clinical trials
reconfirming its successful use for skin injuries and in various
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clinical indications, including reconstructive surgery (genital
and abdominal) [9-16], prevention of adhesions [10, 17, 18],
ulcers [19-21], and burns [22, 23].

More Recent Developments with Amnion-Derived
Products for Wound Healing

Ophthalmologists embraced the use of AMs increasingly from
the 1990s [24], and they are now routinely used as a graft,
spread over the ocular surface to treat epithelial defects or
ulcers, or as a bandage to promote healing [25]. More recently,
the commercial market for AM-based products for skin
wounds has boomed. There are multiple companies offering
human amnion-derived products for wound healing, ranging
from sheets to cover wound beds to particulates used to “fill”
tunneled wounds (summarized in Table 1). Primarily these
products are applied as wound coverings (acute and chronic
wounds, burns, pressure ulcers, diabetic ulcers, venous stasis
ulcers). Additional uses in surgical procedures include ex-
tremity, vascular, spine, orthopedic, urological, colorectal,
and general surgery. Investigative clinical trials run with these
commercially available products focus primarily on the treat-
ment of diabetic foot ulcers and venous leg ulcers. The suc-
cessful use of the AM in wound healing and surgical applica-
tions is in part due to its low immunogenicity (see the section
“Clinical Trials”). The AM does not require preconditioning,
attributed to the low expression of classical major histocom-
patibility complex (MHC) classes I and II molecules and high
expression of HLA-G from hAECs (see the section “Stem-like
Cells from Amniotic Membranes”—“Physical
Characteristics”) and EVs [26].

Denuded Human Amniotic Membranes Can Be Used
as a Substrate for Growth of Other Stem Cells

Potential applications of the denuded AM as scaffolds have
been explored in both animal and human studies to target
tissues such as the eye, cartilage, peripheral nerve, and skin
tissue engineering (TE). The extracellular matrix of the human
amnion is an effective conduit for peripheral nerve regenera-
tion, and the AM is a biodegradable scaffold with unique
biochemical and mechanical characteristics for nerve regener-
ation [39, 40]. Miyamoto et al. showed that primate embryon-
ic stem cells had undifferentiated growth when cultured on
human amniotic epithelial feeder cells, while Ueno et al. uti-
lized the denuded AM as a feeder layer to direct the neuronal
differentiation of stem cells [41, 42]. Another group investi-
gated the denuded AM as a carrier matrix to promote chon-
drocyte growth and support cartilage regeneration [43]. When
epithelial and mesenchymal cells were seeded on an AM scaf-
fold, the cells became highly interconnected and capable of
penetrating the porous structure of the amnion scaffold. This
observation has led to the suggestion of a novel approach for
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repair of prematurely ruptured fetal membranes, a leading in-
dication for preterm delivery [44]. The seeding of epithelial
cells on an AM scaffold is frequently utilized for ocular sur-
face and skin reconstruction [45, 46]. The AM is able to ac-
celerate re-epithelization due to the presence of a basement
membrane and therefore is compatible as a unique biological
skin substitute for treating deep dermal and full-thickness
wounds [47]. Similarly, endothelial cells have been seeded
on an AM scaffold for vascular TE purposes [48].

Stem-like Cells from Amniotic Membranes

Amniotic epithelial cells (hAECs) and amniotic mesenchymal
stromal cells (hAMSCs) are the major stem and stem-like cells
of the human amnion. No invasive technique is required to
harvest hAEC and hAMSC as they are isolated from the epi-
thelial layer of the amniotic membrane, which is usually
discarded after birth along with the rest of the placenta.
Specialized protocols have been developed for their isolation.
Both hAEC and hAMSC possess unique properties that are
vital in regenerative medicine including their multipotent dif-
ferentiation potential, low immunogenicity [49], and anti-
fibrotic and anti-inflammatory properties [50]. In vitro,
hAMSC and hAEC have shown to develop into cells with
mesodermal, ectodermal, and endodermal lineages [50].
hAMSCs are a multipotent stem cell population that express
the classical MSC markers including CD90, CD44, CD73,
and CD105 [50, 51] while hAECs are pluripotent and express
different markers including OCT-4, NANOG, SOX-2, and
TRA-1-60 [52-54]. Typically, a healthy term placenta will
yield >10 times more hAEC compared to hAMSC [55]. In
this review, we will focus on the therapeutic effects of
hAEC. hAECs have been explored as a potential therapy for
fibrotic and inflammation-based disorders including respirato-
ry [56, 57, 58e, 59], gastroenterological [60e, 61, 62], neuro-
logical [63, 64], and cardiac conditions [65, 66].

Physical Characteristics

hAECs are small circular cells that have either a central or
eccentric nucleus with one or two nucleoli and an abun-
dant cytoplasm [53]. hAEC express embryonic stem cell
markers SSEA-3 and SSEA-4 (stage-specific embryonic
antigen 3 and 4) and tumor rejection antigens 1-60
(TRA 1-60) and 1-81 (TRA 1-81). The pluripotency of
hAECs has been attributed to the expression of these
markers as well as the expression of pluripotent stem cell
transcription factors, Oct-4, Sox-2, Nanog, and Rex-1
[52-54]. The low immunogenicity of hAEC can be attrib-
uted to the expression of the class I human leukocyte
antigen, HLA-G. The soluble form of HLA-G is known
to induce the apoptosis of activated CD8* T cells and

modulate natural killer cell [67] and allo-cytotoxic T cell
responses [68]. The membrane-bound form of HLA-G has
also been shown to inhibit natural killer cell and T cell-
mediated cytolysis [69, 70] and allo-specific CD4" T cell
proliferation [71, 72] and induce a Th2 response [73, 74].
Furthermore, hAECs express low levels of HLA class I
and II molecules (i.e., HLA-A, B, C, and DR) which
usually stimulate allogenic rejection [49, 75]. The immu-
nomodulatory effects of hAEC are evident through their
ability to suppress the T cell response, inhibit neutrophil
and macrophage infiltration, and induce macrophage po-
larization [54, 56].

In culture, hAECs exist in three subpopulations—adherent,
intermediate (loosely adherent), and free floating [76]. The
adherent population consists of cells that grow in a single layer
in culture with cobblestone epithelial morphology [77], the
intermediate population consists of cells that are weakly ad-
herent, and finally, there are a population of cells that remain
free floating in culture [76]. All three subpopulations have
been shown to have varying expression levels of OCT4,
NANOG, and stem cell surface markers SSEA-4, TRA1-60,
and TRA 1-81 [76]. hAECs reach replicative senescence after
6—-10 passages in cell culture [78] due to the activation of
epidermal growth factor receptor (EGFR) and cell-cell inter-
actions at high cell densities in culture [78].

Impact of Donors on hAEC Quality

A consequence of the poor proliferative capacity of hAECs
necessitates ongoing tissue donation. As a result, it would be
beneficial to assess donor-specific variations which potential-
ly affect the therapeutic potency [50, 79]. The level of HLA-G
in hAEC has been shown to vary between donors, with the
greatest association with gestational age [54]. Larger studies
to assess the impact of common maternal-fetal health compli-
cations and risk factors such as fetal growth restrictions, ma-
ternal smoking, or maternal obesity should be considered.

Preclinical Applications of hAEC

The therapeutic potential of hAEC has been evaluated in small
and large animal models of cardiorespiratory diseases, brain
injury and neurological disorders, liver disease, metabolic dis-
eases, and autoimmune diseases (summarized in Table 2).
hAECs have been shown to improve organ structure and func-
tion through their anti-inflammatory, anti-fibrotic, immuno-
modulatory, and regenerative effects as discussed earlier.
Furthermore, the application of hAECs has progressed into
clinical studies in diseases including bronchopulmonary dys-
plasia, chronic liver disease, and stroke.

@ Springer
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Table 2 (continued)

Main finding and/or potential mechanism of

action

Route of administration

Dose

Details of the disease

model

Disease model and species

Disease

Limited expansion of MOG-reactive T cells

Intravenous

2 million

MOG35-55 peptide and

Experimental autoimmune

Multiple sclerosis

and filtration into CNS, with decreased

monocyte infiltration [116]

pertussis toxin induced

EAE model
Porcine thyroglobin (pTg)

encephalomyelitis

(EAE) model; mouse
Experimental autoimmune

Prevented lymphocyte infiltration into the

Intravenous

1.5 million weekly

Hashimoto’s thyroiditis

thyroid and improved the damage of

induced EAT model

thyroiditis (EAT) model;

mouse

thyroid follicular. Downregulated ratio of
Th17/Tregs and upregulated Bregs [117]

Negative for anti-nuclear and anti-dsDNA

1.5 million Intravenous

MRL-Fas® mouse with

Genetically modified

Systemic lupus

antibodies. Reduced immunoglobulins

[117]

Regulated estrous cycles, promoted follicle

spontaneously occurring

SLE
Footpad injection of

model; mouse

erythematosus (SLE)

Intravenous

2 million

pZP3 induced AOD model;

Autoimmune ovarian

development, ameliorated cell apoptosis
and fibrosis in ovaries. Significantly

reversed Treg reduction [118]

600nmol pZP3

mouse

disease (AOD)

Clinical Trials

In recent years, multiple phase I clinical trials using allogenic
hAECs have commenced (Fig. 2).

Bronchopulmonary dysplasia (BPD)

A first-in-human phase I safety study (ACTRN12614000174684;
UTN: Ul111-1151-8685) using allogenic hAECs in premature
infants with BPD was successfully completed in 2018 [119].
Six premature infants with established severe BPD were en-
rolled to a single-center, open-label trial. Each infant received
one million cells/kg by intravenous infusion. The study
showed that allogeneic hAECs were well tolerated. A phase
I dose escalation study was subsequently registered
(ACTRN12618000920291) [120]. The study will include 24
infants, with the first 12 infants receiving a single infusion of 2
to 10 million/kg. Infants 13—18 will receive two infusions to
achieve 20 million/kg and infants 19-24 will receive three
infusions to total 30 million/kg. The study has recruited 14
infants to date.

Liver cirrhosis

In 2017, Lim et al. [121] published a study protocol for the
first phase I trial evaluating the safety and tolerability of intra-
venously delivered allogenic hAEC in 12 patients with com-
pensated liver cirrhosis (ACTRN12616000437460; UTN:
U1111-1181-4339). This is a single-center, open-label, dose
escalation of hAEC (0.5 to 3 million/kg) clinical trial with four
cohorts of three patients each. The study has recruited 6 pa-
tients to date.

Ischemic stroke

hAECs are also currently evaluated in patients who have suf-
fered an acute ischemic stroke (ACTRN12618000076279)
[122]. Eligibility criteria for this trial include an ischemic
stroke in the territory of the large main artery, within 24h of
stroke onset, ineligible for clot retrieval and NIH stroke sever-
ity (NIHSS) scale between 6 and 15. This is a phase I, open-
label, dose escalation 343 trial. Dosing starts at 2 million cells/
kg with the final group receiving 32 million cells/kg. It is open
for recruitment and has thus far treated 8 patients, with a target
of 15 total.

Perianal fistulae

A phase I clinical trial (ACTRN12618001883202) was regis-
tered in 2018 to evaluate the safety of locally administered
allogenic hAECs for the treatment of refractory perianal
fistulising Crohn’s disease. This open-label study aims to re-
cruit 10 adults with complex perianal Crohn’s fistulas who
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Clinical Trials

Limit infarct
development

Ischemic
stroke

Hepatic stellate
cells inactivation

Liver
cirrhosis

Fig. 2 Summary diagram of phase I clinical trials currently underway
using allogenic hAECs. The hAEC and their anti-inflammatory, anti-
fibrotic, and immunomodulatory properties as well as their ability to
support angiogenesis are being employed as a form of regenerative

have previously failed one conventional treatment. The par-
ticipants will receive a dose of 40 million cells/fistula, with up
to 3 fistulas treated per participant (maximum 120 million
cells). Four participants have been enrolled to date.
Interestingly, these clinical trials are not the first to inves-
tigate allogeneic hAEC clinically. The very first study in 1981
[123] was conducted in London, England, where a layer of
amniotic epithelial cells were transplanted into seven volun-
teers (six men and one woman, ages 28—80 years old) without
immunosuppressive treatment. The aim of the study was to
assess the immunogenicity and survival of the amniotic epi-
thelial membrane implants, with the intention of using the
implants for treating patients with enzyme defects.
Specifically, Adinolfi et al. [124] showed that hAECs produce
lysosomal enzymes that are capable of correcting in vitro the
enzymatic defects of patients with Hurler’s syndrome. None
of the volunteers showed signs of acute rejection and hAECs
were present in biopsies for up to 7 weeks post-implantation.

Niemann-Pick disease

In 1987, an Italian team published a successful treatment of
Niemann-Pick disease type B by implanting a suspension of
allogeneic amnion membrane tissue [125]. The tissue suspen-
sion was injected into a subcutaneous thoracic pouch under
the armpit. A total of six implants were placed at intervals of
1-4 months. Following the fifth and sixth implantations, se-
rous secretion from the wound was noted. This was thought to

@ Springer

Bronchopulmonary
dysplasia

medicine. hAEC therapies are treating bronchopulmonary dysplasia in
premature infants and liver disease (cirrhosis and liver fibrosis), acute
ischemic stroke, and fistulising perianal Crohn’s disease in adults (18—
85 years old)

be due to host-versus-graft rejection due to the presence of
donor fibroblasts and macrophages in the tissue suspension.
The investigators postulated that a pure suspension of amni-
otic epithelial cells might bypass the immune reaction.
Notably, they commented that “/n vitro culture and cryopres-
ervation of epithelial cells, ..., should allow us to store and
inject high numbers of non-immunogenic cells, thereby
avoiding graft rejection.” In 1992, the same team published
their findings using repeated implantations of hAECs to treat
Niemann-Pick disease in five patients over 4 years [126]. The
hAEC treatment resulted in the abolishment of recurring in-
fections, mainly of the respiratory tract, and improvements to
the general conditions of the patients.

Looking into the Future
Amniotic Membrane as Bioscaffolds

The interest in human AM for TE is on the rise due to its non-
xenogeneic origin, inexpensive, highly abundant source and
their regenerative properties. TE is defined as the development
of biological substitutes for the purpose of restoring, maintain-
ing, or improving tissue function. The three major pillars of
TE are scaffolds, cells, and growth factors. An important com-
ponent of TE is the supporting matrix upon which cells and
tissues grow, also known as the scaffold [127¢]. The special
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structure and biological nature of the AM allows it to be an
ideal candidate for the fabrication of TE scaffolds.

One of the oldest biomaterials used for scaffolds is the
AM as it is easily obtained, processed, and transported.
The extracellular matrix (ECM) components of the base-
ment membrane of the AM create an almost native scaf-
fold for cell seeding and the AM itself has important bi-
ological properties including anti-inflammatory, anti-mi-
crobial, anti-fibrotic, low immunogenicity and provide
mechanical stability. Scaffolds are developed to support
cell seeding in TE, promoting their differentiation and
proliferation in the formation of implantable tissue.
Design and selection of the biomaterials used for scaffold-
ing is a critical step because successful cell seeding of the
scaffold depends on the type and source of the living cells
as well as the ECM components of the scaffold.

A major prerequisite for choosing a TE scaffold is its bio-
compatibility. Furthermore, its mechanical properties should
include permeability, stability, elasticity, flexibility, plasticity,
and resorbability at a rate congruent with tissue replacement.
Scaffolds should also allow cell adhesion and the potential for
delivery of biological agents. Immunocompatibility is another
important feature of AM as a TE scaffold as it can bypass the
immunological complications of xenogenic biomaterials. The
presence or absence of certain ECM molecules within any
basement membrane also influences adhesion and growth of
the overlying cells as they detect and respond to the ECM
including the composition, adhesive ligands, matrix stiffness,
and spatial and topological organization of integrins [127¢].
The AM is a scaffold that can be used either with the epithelial
layer intact or denuded or decellularized. The spongy layer on
the stromal portion of the amnion has an abundance of hydrat-
ed proteoglycans and glycoproteins. The AM has a mechani-
cal response that is inherently dependent on the stage of preg-
nancy, described as “viscoelasticity.” This is a critical scaffold
property in a majority of tissues. One measure of elasticity is
Young’s modulus (the ratio of applied stress to strain) which is
3.6 MPa in preterm human AM (26-36 weeks) compared to
2.29 MPa at full term (3640 weeks) [128]. Therefore, pre-
term AM is stiffer than term AM and these properties are of
interest for matching mechanical integrity in TE application
where one such example is that stiff scaffolds will lack the
viscoelasticity of arteries.

Despite all these advantages, there are some potential
challenges that need to be addressed when applying any
biologically derived material to TE uses. For example,
transmission of infectious diseases is always a risk when
using human tissues; therefore, precautions and safety
criteria must be adhered to. Another issue with TE scaffolds
is the possibility of invoking an inflammatory reaction upon
implantation (i.e., foreign body reaction or immune rejec-
tion). AM has been reported to downregulate TGF-f3 and its
receptor expression by fibroblasts and in doing so, reduces

the risk of fibrosis and inflammation [127¢]. The physical
difficulty in handling and placement of thin AM sheets has
limited their use in routine clinical care. In TE applications
where AM function as a cell delivery matrix, strategies to
improve AM bio-stability are often utilized as it could take
longer for transplanted cells to home to the target site [47].
There is a plethora of investigations that focus on enhancing
AM usage as a TE scaffold by employing surface modifica-
tion targeted for various TE applications. When AM is ex-
pected to support the in vivo viability of the transplanted
cells; therefore, treating AM with crosslinking agents may
improve the bio-stability and mechanical strength of the
scaffold. One such example is the study by Gobinathan
et al. which showed that genipin-crosslinked AM has better
bio-stability and the slowest degradation rate compared to
decellularized and native AM [129].

Urethral Reconstruction

Xenografts of the urethra made with denuded human AM
have been used to minimize potential rejection and maximize
biocompatibility. Denuded human AM seeded with rabbit
urethral epithelial cells were subcutaneously implanted in a
rabbit model of urethral injury with resolution of urethral de-
fects in 1 month. The cell-seeded denuded AM grafts were
intact without obvious infiltration of inflammatory cells com-
pared to intact AM patches [130].

Ocular Regeneration

The application of AM in ocular disorders is often limited by
its relatively rapid degradation and resorption in vivo. To
overcome this, crosslinking of AM has been used to reinforce
the biomaterial structures. In particular, the fabrication of
photo-crosslinked AM using UV irradiation has been devel-
oped as a scaffold for limbal stem cell culture. These physi-
cally crosslinked AM matrices exhibited negligible cytotoxic-
ity to the corneal epithelial cells irrespective of the irradiation
time and maintained the undifferentiated cell phenotype [131].

Wound Healing

Solubilized AM combined with a hyaluronic acid (HA-SAM)
hydrogel was developed to provide a wound treatment that is
easy to produce, store, and apply to wounds. Using murine
and porcine models of full-thickness wound healing, HA-
SAM significantly accelerated wound closure through re-
epithelialization and prevented wound contraction [132, 133]
and conformed to a non-uniform wound shape. A major ben-
efit of using a hydrogel is its potential to match the rate of
growth factor release to specific wound types, e.g., fast release
hydrogel for acute burns and slow release hydrogel for diabet-
ic wounds. Moreover, an aseptically processed human amnion
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and chorion allograft (AmnioBand) has been shown to be
superior for wound healing in patients with diabetic foot ul-
cers compared to FDA-approved engineered skin substitutes
(Apligraf). AmnioBand brings even greater value for the pa-
tients in terms of the healing efficacy endpoints, graft cost, and
graft wastage [27].

Skin Regeneration

The poor mechanical and handling characteristics of AM have
led to the development of a 3D skin substitute by reinforcing
an AM scaffold with biodegradable polymer [134]. Silver
nanoparticles incorporated with poly-[Lactide-co-Glycolide-
co-Caprolactone] terpolymer (PLGC) and fibrin coating are
used to reinforce the AM and to deliver bioactive molecules
to the wound site. This combination scaffold has excellent
biocompatibility and the addition of PLGC-silver nanoparti-
cles is expected to provide excellent mechanical properties
and potential benefit in treating infectious wounds due to their
anti-microbial activity. A fibrin sealant can also act as a he-
mostat to minimize bleeding upon applying to the wound site;
hence, a combined scaffold has potential use for dermal re-
generation with better clinical handling.

Cartilage Regeneration

The collagen-rich ECM of AM has been investigated as a
potential scaffold for cartilage regeneration. Fabrication of
hybrid denuded AM-chitosan hydrogels has been proposed
for articular cartilage TE as a rich source of collagen and the
study has demonstrated that these hydrogels had a higher elas-
tic modulus than chitosan or collagen hydrogels [135].

hAEC-Derived EVs

In the last decade, significant strides have been made in the
regenerative medicine sector with a number of cellular thera-
pies attaining market approval. While there are reports of stem
cell-based therapies showing benefit in preclinical disease
models, there is increasing evidence that the cells themselves
are not critical to the functional outcome. Instead, stem cells
serve as bio-factories releasing bioactive products including
extracellular vesicles (EVs) (Fig. 3) and growth factors. EVs
are naturally occurring nanoparticles (70—120nm) shed by vir-
tually all cell types. Cells selectively package bioactive mate-
rials (e.g., proteins, miRNAs) into their exosomal cargo,
which then serve as signaling packets to allow intercellular
communication [136, 137]. Indeed, the so-called paracrine
effects of stem cells are increasingly attributed to EV release
and targeting [138, 139].

EVs have several advantages over cell therapies. Unlike
their cells of origin, EVs are non-replicative, non-living bio-
stable nanoparticles that do not require complex storage,
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Fig. 3 Amnion epithelial cell-derived extracellular vesicles. Electron
microscopy showing cup-shaped morphology of EVs

transport, and handling [140]. The manufacturing, formula-
tion, and clinical delivery of EV therapeutics are significantly
simpler compared to cell therapies, thereby representing a
more cost-effective form of regenerative medicine. EVs are
enclosed by lipid bilayers and this protects and stabilizes their
bioactive cargo compared to the direct delivery of growth
factors, nucleic acids, or cells alone. EVs are easy to isolate
and remain stable over long periods of time without the need
for liquid nitrogen storage. There is therefore a potential to
deliver regenerative medicine with a simplified cold chain
and significantly lower cost of goods.

The topology of EVs is similar to that of cells, with lipid
bilayer membranes decorated with extracellular receptors and
ligands as well as cytoplasmic proteins and RNAs contained
within. Membrane proteins such as tetraspanins and integrins
are central to the identity and function of EVs, and these pro-
teins could also be used to identify the cell type and influence
EV uptake by recipient cells.

EVs from hAECs contain a myriad of growth and signaling
factors that have immunomodulatory properties and can reg-
ulate cell differentiation. Recently, we have shown that
hAECs release EVs that have similar regenerative properties
to the cells themselves in the setting of experimental stroke
and lung and liver fibrosis models [60e, 61, 141, 142, 143].
We reported that hAEC-EVs exhibit anti-fibrotic properties
by decreasing the number of activated hepatic stellate cells
resulting in reduced collagen deposition. In addition, we have
shown through potency assays that hAEC-EVs exert their
anti-inflammatory effect by reducing neutrophil
myeloperoxidase activity, suppressing CD3/CD28 activated
T cell proliferation, increasing macrophage phagocytic activ-
ity, and shifting their polarization state [141, 142¢]. These EVs
are enriched with various microRNAs such as miR-27a, miR-
23a, miR-203a, miR-34a, miR-150, and miR-194 which exert
anti-fibrotic properties. The combination of the anti-fibrotic
drug serelaxin and hAEC-EV in a model of experimental lung
fibrosis demonstrated broader protection compared to
pirfenidone, the standard of care. The therapeutic efficacy of
hAEC-EV in treating basement membrane-induced fibrosis
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and related airway dysfunction can be enhanced by the co-
administration of serelaxin [85].

Zhao et al. demonstrated that local injection of hAEC-EV
could reduce collagen deposition in the rat full-thickness skin
wound model [144¢]. Another study also reported that hAEC-
EV promoted proliferation and migration of fibroblasts and
therefore could play an effective role in promoting scarless
wound healing [145]. In a study by Zhang et al., the therapeu-
tic potential of hAEC-EV in restoring ovarian functions fol-
lowing chemotherapy was investigated. They demonstrated
an increased number of follicles and improved ovarian func-
tion in a murine premature ovarian failure model upon hAEC-
EV transplantation [146].

Overall, EVs from hAECs contain cargo consistent with
their biological properties to potentiate tissue regeneration,
participate in immune modulation, and function as potential
alternatives to stem cell therapy. As such, their untapped po-
tential as cell-free therapeutics and the further possibility to
bioengineer EVs to mediate specific biological functions, fa-
cilitate EV uptake, and EV targeting warrant future research
exploration.

Conclusions

While hAECs have proven promising as a cell-based therapy,
they remain a challenging treatment to integrate into the
healthcare system due to their production cost and the chal-
lenges of delivering to smaller hospitals and remote commu-
nities. In order to overcome these geographical and socioeco-
nomic barriers, the focus has shifted to investigating cell-free
regenerative medicines that utilize the amniotic cells’ innate
capacity to secrete EVs. Clinical application of EVs should be
considered in the near future as numerous animal studies have
shown the therapeutic potential of EVs as a cell-free form of
regenerative medicine.
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