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Abstract
Purpose of Review In this review, we will address the cardioprotective effect of low-dose radiation (LDR) on chemotherapeutic
agents.
Recent Findings Cancer has become the most important cause of death in the world, and the morbidity and mortality are
gradually increased. The application of anti-tumor drugs is an important therapeutic tool for cancer therapy at present, while
its potential cardiotoxicity cannot be ignored. How to prevent and reduce the occurrence of cardiotoxicities needs further
exploration.
Summary LDR induces an adaptive or hormetic response in cells and tissues, showing a tolerance to subsequently high dose of
radiation- or chemical-induced damage in vitro and in vivo. LDR may exert its cardioprotective effects through different
mechanisms, such as stimulating the proliferation of normal cells during anti-tumor therapy, enhancing anti-tumor immunity,
stimulating antioxidative functions in normal tissues, activating DNA damage repair system, and improving metabolic function
in normal tissues. Therefore, there may be a potential to apply LDR as an adjunct to myocardial protection for anti-tumor therapy.
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Introduction

Distinct from high-dose radiation that causes cytotoxic effects
in vitro and in vivo, LDR has been proven able to stimulate
immune function, increase expression and function of antioxi-
dant molecules, and activate DNA repair systems, all of which
are enhancements as a consequence of its hormetic effects [1–3,
4•]. The hormetic effects of LDR also are reflected by the effects
of stimulating proliferation in normal cells, increasing lifespan,

and enhancing fertility.When the cells or tissues pre-irradiated by
LDR with the induction of hormesis receive subsequently high-
dose radiation (HDR), the cells with LDR and HDR show less
damage than the cells with HDR alone, i.e., LDR adaptive re-
sponses. Increasing evidence shows that LDR protects normal
tissues around the tumors from impairment caused by subsequent
HDR treatment by increasing normal tissue antioxidant activity
and DNA repair capacity [1, 5]. However, these hormetic effects
and adaptive responses are not observed in some malignant cell
types, or at least the optimal dose frames for LDR to induce the
hormetic effect may be different between tumor cells [2, 6].
There aremany investigators with different experimentalmodels,
including cultured cells and experimental animals [3, 7–9],
studying the role of LDR. A study reported that pre-
chemotherapeutic LDR was able to alleviate anticancer drug,
cyclophosphamide-induced damaging effects on the liver [10].

In 2016, it was reported that human exposure to LDR (CT
scans of the brain) might relieve symptoms of both
Alzheimer’s disease (AD) and Parkinson’s disease (PD), for
which the mechanism may be related to X-ray stimulation of
the patient’s adaptive systems against neurodegenerative dis-
eases [11]. Some studies also have shown that LDR has
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positive effects on the proliferation of cell types such as fibro-
blasts, osteoblasts, hippocampal neurons, mesenchymal stem
cells, and mouse bone marrow hematopoietic progenitor cells
[12, 13, 14•]. Otsuka et al. [12] demonstrated that animals
primed with pre-exposure to γ-rays at 0.5 Gy developed in-
creased resistance to DNA damage caused by subsequent ex-
posure to 1.6 Gy radiation, compared with mice irradiated
with the high-dose radiation alone, indicative of a
radioadaptive response. Our previous study also suggested
that 75 mGy LDR-stimulated growth of normal cells but not
leukemia or solid tumor cells in vitro and LDR also did not
stimulate growth of solid tumor cells in vivo [5]. However,
there were few studies that have explored whether LDR could
provide protective effect against Dox-induced cardiotoxicity
in vivo.

The Cardiotoxicity of the Chemotherapy

Chemotherapy has shown great progress over the past two
decades, leading to the gradual increase in the survival of
cancer patients [15]. However, along with this benefit, the
cardiotoxic effects have also become an increasing problem,
even years after completion of therapy [16, 17•]. The devel-
opment of cardiotoxic effects not only has a negative impact
on the patient’s cardiac prognosis but also considerably re-
stricts the therapeutic opportunities. The clinical manifesta-
tions of cardiotoxicity cover a broad spectrum of disorders,
ranging from mild transient arrhythmias to potentially lethal
conditions such as myocardial ischemia or infarction and car-
diomyopathy. There are two main types of anticancer drugs
more frequently correlated with cardiotoxic effects: (1) che-
motherapeutic agents: including anthracycline, taxanes,
alkylating agents, and antimetabolites; and (2) molecular-
targeted drugs: such as trastuzumab and vascular endothelial
growth factor (VEGF) inhibitors.

The Cardiotoxicity of Chemotherapeutic Agents

The Cardiotoxicity of Anthracycline

Anthracycline (ANT)-chemotherapeutic agents have been
employed in the treatment of a wide variety of solid tu-
mors and hematologic malignancies, including leukemia,
lymphoma, breast cancer, lung cancer, multiple myeloma,
and sarcoma. However, its clinical utility is markedly
hampered by the high incidence of a dose-dependent
cardiotoxicity [18]. The most feared is the chronic forms
of cardiotoxicity, characterized by irreversible cardiac
damage and congestive heart failure [19]. Four types of
ANT cardiotoxicity can be recognized [20–23]: (1)
BAcute^ cardiotoxicity occurs during ANT administration
o r immed i a t e l y a f t e rwa rd s ; ( 2 ) BSubch ron i c^

cardiotoxicity is extremely uncommon; (3) BEarly chron-
ic^ ANT cardiotoxicity develops later in the treatment
course, or weeks to months after the completion of che-
motherapy; (4) BDelayed^ cardiotoxicity is also called
Blate-onset chronic^. Whereas acute cardiotoxicity does
not constitute a major clinical problem and it usually re-
solves shortly after the end of an infusion, the types of
chronic toxicity are serious, clinically significant, and
substantially affecting the overall morbidity and mortality,
which is required for a long-term therapy. Given the dif-
ficulty or even impossibility of effective treatment, the
prevention of ANT cardiotoxicity is highly urgent and of
crucial importance.

The Cardiotoxicity of Alkylating Agents

Cisplatin is used to treat osteosarcoma and ovarian, head and
neck, esophageal, bladder, and lung cancers [24]. It can cause
atrial fibrillation, supraventricular tachycardia, left bundle
branch block, myocardial ischemia, myocardial infarction,
and so on [25]. It is usually related to vascular toxicities,
hypertension, and cerebral ischemia.

Cyclophosphamide is used to treat lymphoma, leukemia,
multiple myeloma, lung cancer, and breast cancer.
Cyclophosphamide’s cardiotoxicity is associated with a high
dose of cyclophosphamide (> 150 mg/kg and 1.5 g/m2/day)
and the incidence of heart failure is 7–28% [18]. The common
expressions are tachyarrhythmias, low voltage of QRS, non-
specific T or ST segment abnormalities, and AV conduction
disturbances [25, 26].

Ifosfamide is an analogue of cyclophosphamide which is
used to treat soft tissue sarcoma and non-small-cell lung can-
cer and is associated with arrhythmias, ST segment changes,
and heart failure [27].

The Cardiotoxicity of Antimetabolite Agent

The synthetic pyrimidine metabolite 5-FU is used to treat
breast, gastrointestinal, head and neck, and ovarian cancers.
Angina-like pain is common during 5-FU treatment which is
difficult to discriminate from myocardial ischemia or infarc-
tion, particularly with the administration method use of con-
tinuous infusion. However, myocardial ischemia, heart failure,
arrhythmias (including atrial fibrillation, VT, and VF), and
cardiogenic shock have rarely been reported [28]. The inci-
dence of myocardial ischemia associated with 5-FU ranged
from 1 to 68% [18].

Capecitabine is an oral prodrug of 5-FU used to treat met-
astatic breast and colorectal cancers. The incidence and risk
factors of capecitabine-associated cardiotoxicity are not well
defined. The slight change of ST segment and cardiac markers
have been noted.
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The Cardiotoxicity of Molecular-Targeted Agent

The Cardiotoxicity of Trastuzumab

Trastuzumab, an HER2-targeted agent, is used in the treat-
ment of metastatic breast neoplasm. It interferes with cellular
repair, leading to increased apoptosis that can cause reversible
and transient cardiomyopathy and even left ventricular systol-
ic dysfunction or heart failure [29], particularly when used
concomitantly with ANT/cyclophosphamide.

The Cardiotoxicity of VEGF Inhibitors

VEGF inhibitors, which include tyrosine kinase inhibitors
(TKIs) sorafenib and sunitinib, as well as monoclonal antibod-
ies bevacizumab and ramucirumab, not only contributes to the
development of cancer via the formation of new blood vessels
in tumors but also has an important role in the normal physi-
ologic function of endothelial and renal cell survival, vasodi-
lation, and cardiac contractile function. Therefore, its inhibi-
tion has significant cardiovascular side effects. Specifically,
VEGF inhibition induces conditions such as hypertension,
thromboembolism, ischemia, cardiac contractile dysfunction,
and heart failure. A retrospective analysis of clinical trials
demonstrated elevated blood pressure within 4 weeks of initi-
ating therapy with sunitinib [30].

The Possible Mechanism of Cardiotoxicity
Induced by Chemotherapy

Chemotherapeutic cardiotoxicity can be characterized as ei-
ther type 1 or type 2 cardiotoxicity based on the effect of the
agent on cardiomyocytes [31]. Type I cardiotoxicity is caused
by cardiomyocyte death, either through necrosis or apoptosis,
and the result is irreversible. Type II cardiotoxicity is caused
by cardiomyocyte dysfunction rather than cell death and there-
fore may be reversible. Chemotherapy-induced cardiotoxicity
includes a combination of mechanisms which influence sev-
eral intracellular signaling cascades, critical to both cancer
progression and normal function of the heart. In view of the
extensive research and general application of ANT, this paper
will introduce the mechanism of myocardial injury of chemo-
therapeutic drugs with doxorubicin (DOX), as well as ANTas
the representative.

The Possible Mechanism of Cardiotoxicity Induced
by ANT

Thelong-termcardiotoxicitycausedbyANTincludescardiomyo-
cyte death and therefore represents a type I toxicity. The generally
accepted mechanisms for ANT-induced cardiomyopathy include
oxidative stress, inflammation, dysregulation of calciumhandling

and cellular contractility, mitochondrial degeneration, and necro-
sis or apoptosis [17•, 32, 33, 34•]. However, oxidative stress is the
major contributor in triggering and progressing ANT-induced
myocardial biochemical and pathological changes, leading to the
final structural remodeling and dysfunction [32, 35]. A consider-
able body of evidence points thatmitochondria are the key targets
for ANT-induced cardiotoxicity, and therefore, it could be also
crucial for effective cardioprotection [36].

Oxidative Stress

Reactive oxygen species (ROS), such as the hydroxyl radical
(•OH), whose reactivity is so high that it reacts very close to its
site of formation [37], andother species, such as superoxide (O2

·−)
and hydrogen peroxide (H2O2). ROSwere considered one of the
key players in tissue injury, when an imbalance occurs in favor of
the ROS generation rather than increasing antioxidant capacity,
oxidative stress ensues [38]. Oxidative stress is related to the de-
velopment of many pathological conditions including cardiovas-
cular disease, diabetes, rheumatoid arthritis, cancer, and neurode-
generative disorders [39]. One hypothesis was that ANT-induced
cardiotoxicity is primarily mediated by the generation of ROS in
cardiomyocytes and increased oxidative stress in the cardiomyo-
cyte mitochondria [40, 41]. Oxidative stress is also a trigger for
cardiomyocyte death by apoptosis or necrosis [42, 43].

ANTs are well known for their ability to produce ROS
through multiple pathways [21, 35, 44]. First, one-electron
reduction of ring C of the ANT tetracycle leads to the forma-
tion of a semiquinone free radical. Suitable flavoproteins cat-
alyze the formation of reduced semiquinone radicals by
accepting electrons fromNADHorNADPH and passing them
to ANT in a sequence of redox cycling reactions. This process
was accompanied by the formation of O2

·−, and the further
formation of •OH could be catalyzed by SOD, and very slow
unless catalyzed by transition metals—especially iron [45].
Thomas et al. [46] have shown that ANTs may increase the
amount of free redox-active iron by generating O2

·−, which
mediates an iron release from ferritin. The •OH reacts with
every oxidizable compound in its vicinity and thus can induce
damage to all types of macromolecules, including lipids,
nucleic acids, and proteins [45]. The second basic mechanism
by which iron may promote the oxidative stress induced by
ANTs is the formation of ANT-Fe complexes [44]. No matter
in the presence of a reducing system or not the ANT-Fe3+

oxidized and reduced to •ANT-Fe2+ resulting in •OH.
Furthermore, apart from the ROS, cardiac exposure to ANTs
may be also connected with the deregulation of the nitric ox-
ide (NO) network [47]. Involvement of iron in the ANT-
induced oxidative stress and cardiotoxicity has been supported
by rich experimental evidence as reviewed in detail elsewhere
[35]. In both vivo/vitro studies, the unfavorable effects of iron
on ANT-induced cardiotoxicity could be eliminated by the
iron chelator deferoxamine (DFO) [48, 49].
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Mitochondrial Damage

Mitochondria are abundant and dynamic organelles that not
only produce ATP for cellular function but also participate in a
number of intracellular processes such as cell division, the
initiation of mitochondrial signaling pathways, modulation
of cytosolic metabolic pathways, and modulation of cytosolic
Ca2+ signals and concentration, and ultimately, determination
of cell life or death. In addition, mitochondria is a continuous
source of O2

·− and their ROS products [50–52] particularly
during cell injury. ANT causes significant cardiotoxicity char-
acterized by marked increases in oxidative stress and mito-
chondrial dysfunction.

The target organelle of ANT-induced toxicity in
cardiomyocytes is mitochondria. ANTs are well known for
their ability to inhibit mitochondrial function through multiple
pathways. First, ANT accumulated in mitochondria and the
mitochondrial concentration of ANTwas several folds greater
than the simultaneous clinical relevant serum concentration
[53], which leads to increased oxidative stress. It has been
shown that the ANT redox cycling takes place in the mito-
chondrial electron transport chain (METC) [54], more specif-
ically at complex-I, which, alongside complex-III, is more of a
substantial ROS generator in the heart [55]. High mitochon-
drial ROS production after Adriamycin (ADR or DOX) ad-
ministration results in molecular oxidative damage that affects
membrane-bound proteins and enzymes, lipids, the mitochon-
drial genome, as well as significant other biomolecules [56].
Second, DOX-induced accumulation of ROS in mitochondria
results in dissipation of the ΔΨm, direct activation of the
MPTP, cytochrome C release followed by caspase-3 activa-
tion and DNA fragmentation [57]. Mitochondrial fragmenta-
tion during apoptosis was connected with the collapse of the
ΔΨm that was considered an irreversible point in the death
cascade [58]. Third, DOX treatment of cardiomyocytes causes
caspase-9 and caspase-3 activation [59–61], opening of the
mitochondrial permeability transition pore, and subsequent
release of cytochrome C into the cytosol [57, 62].
Furthermore, DOX binds directly to the mitochondrial phos-
pholipid and cardiolipin, disrupting the association of inner
mitochondrial membrane proteins with cardiolipin [63–65],
which could enhance cytochrome C release in response to
oxidative stress.

Apoptosis and Other Mechanisms

Apoptosis is a tightly regulated physiologic process of pro-
grammed cell death occurs in both normal and pathologic
tissues. Numerous in vitro or in vivo studies have indicated
that cardiomyocyte death through apoptosis or necrosis is a
primary contributor to the progression of ANT-induced car-
diomyopathy. The twomain pathways that stimulate apoptosis
are the intrinsic and the extrinsic pathways [34•]. The intrinsic

apoptotic pathway is always initiated by the p53 tumor sup-
pressor gene, a sensor of cellular stress, which can directly
regulate a host of Bcl-2 family proteins such as Bcl-2 anti-
apoptotic and Bax pro-apoptotic proteins in DOX-induced
cardiomyocyte apoptosis [66, 67]. A study proposed that these
proteins can regulate the collapse of mitochondrial membrane
potential, cytochrome C release, activation of caspase-9, and
subsequent activation of caspase-3, which is the key execu-
tioner of apoptosis [68, 69]. Previous reports indicate that the
mitogen-activated protein kinase (MAPK) family is responsi-
ble for the expression of p53 and Bcl-2 family-mediated apo-
ptosis [70–72]. MAPK consists of three major signaling cas-
cades: the extracellular signal-related kinases (ERK1/2), the c-
Jun N-terminal kinases (JNK), and the p38MAPK. Numerous
studies suggest that MAPK activation is involved in cardio-
myocyte apoptosis induced by DOX [66, 73]. In addition to
the activation of the intrinsic mitochondrial apoptotic path-
way, activation of extrinsic apoptotic pathway also contributes
to ANT-induced cardiomyocyte apoptosis [34•]. ANTs acti-
vate the extrinsic apoptotic pathway by several mechanisms
which include (1) activation of nuclear factor-activated T cell-
4 (NFAT4) by increased mitochondrial ROS production and
activation of the calcium/calcineurin signaling pathway, lead-
ing to upregulation of Fas/FasL [74]; (2) activation of tran-
scription factor NF-κB by ROS leading to increased Fas/FasL
and p53 [75–77]; (3) downregulated expression of FLIP, a
FLICE/caspase-8 inhibitory protein, by ROS thereby sensitiz-
ing Fas-mediated apoptosis [78]; and (4) downregulation of
ARC, an endogenous inhibitor of the extrinsic pathway
through interaction with Fas, FADD, and caspase-8 to prevent
the formation of DISC [79, 80].

In cardiomyocytes, Ca2+ cycling is essential for effective
myocyte contraction and relaxation [81], and the precise con-
trol of intracellular Ca2+ homeostasis relies on a series of spe-
cialized regulatory proteins, including transcription factors,
ion channels, and Ca2+-binding proteins. DOX-mediated al-
ternation of Ca2+ homeostasis is another possible mechanism
of cardiotoxicity [82]. The main causes of calcium overload in
cardiomyocytes caused by DOX were (1) increased perme-
ability of myocardial membrane and influx of Ca2+ [83, 84];
(2) inhibited the expression of Ca2+ ATPase-related genes,
causing the decrease uptake of Ca2+ in the sarcoplasmic retic-
ulum and disturbance of the formation of ATP, eventually lead
to energy metabolism disorder [85, 86]. (3) activated the Ca2+

channel in sarcoplasmic reticulum to increase the release of
Ca2+ [86].

Autophagy, regarded generally as a protective mechanism
that maintains cell viability by recycling unwanted and dam-
aged cellular constituents, is nevertheless subject to dysregu-
lation having detrimental effects for the cell. Autophagic cell
death has been described and has been proposed to contribute
to DOX-induced cardiotoxicity. Additionally, mitophagy, au-
tophagic removal of damaged mitochondria, is affected by
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DOX in a manner contributing to toxicity [87•]. There is
strong evidence based on in vitro and in vivo studies in rat,
mouse, and rabbit models that DOX inhibits mTOR, an inhi-
bition that is expected to contribute to cardiomyocyte injury
[88–92], possibly by causing an exacerbated autophagy-
initiation response. Another pathway by which DOX can pro-
mote autophagy initiation may be through the p53-mediated
suppression of the transcription factor GATA-4 and the
resulting downregulation of the pro-survival protein Bcl-2.
Bcl-2 binds to Beclin-1 and thus prevents it from interacting
with VPS34, and from initiating autophagy [87•]. DOX can
also promote Bcl-2 phosphorylation which inhibits the Bcl-2/
Beclin-1 interaction again facilitating autophagy initiation
[87•]. Overall, DOX affects a number of signaling pathways
converging to a robust initiation of autophagy and stimulation
of autophagosome formation.

The Possible Mechanism of Cardiotoxicity Induced
by Other Chemotherapeutic Drugs

Inhibition of HER2 (also known as ErbB2) by trastuzumabmod-
ifies mitochondrial integrity via the Bcl-X protein family, deplet-
ing ATP, and leading to contractile dysfunction [93, 94]. HER2
conjugates with HER4/neureguline-1 complex forming heterodi-
mers that promote the activation of several signaling pathways,
such as sarcoma-focal adhesion kinase complex (Src–FAK),
which increases intercellular contact and mechanical junction
[95], or phosphatidylinositol 3-kinase and MAPK, which stimu-
late the proliferation, survival, and contractile function of cardiac
myocytes [96]. Experimental studies have shown that HER2,
HER4, and neuregulin-1 play an essential role in heart develop-
ment, considering the fact that thedevelopmentofmouseembryos
is impossible if one of them is absent.

There are two classes of anti-angiogenesis therapies for the
use of cancer therapeutics: (1) antibodies specific for VEGF
and (2) small molecular tyrosine kinase inhibitors (TKI)
against the VEGF receptor. Mechanisms that contribute to
these pathophysiological states include inhibition of NO and
prostacyclin, increased production of endothelin-1, and oxida-
tive stress and cell apoptosis [16].

Although the cardiotoxicity mechanisms of 5-FU are not
fully understood, small coronary artery thrombosis, arteritis of
small-sized vessels, and vasospasm have been suggested as
possible mechanisms [27].

The Possible Mechanism by which LDR
Affords Cardioprotective Effect on Cancer
Chemotherapy

It has been generally accepted that both natural and man-made
sources of ionizing radiation contribute to human exposure and
consequently pose a possible risk to human health. Therefore,

studying the effects ofLDR is of great interest. There is increasing
evidence indicating that radiation below certain doses could stim-
ulate repair mechanisms to reverse the initial damage and protect
the organism from subsequent radiation or other exposures that
might otherwise cause cancer, such as the evidence that the epide-
miological data from Japanese atomic bomb survivors and occu-
pationally exposed workers [97–104]. Based on these findings,
further studies were conducted to explore the protective role of
LDR in anti-tumor therapy and the underlying mechanisms.

LDR Stimulates the Proliferation of Normal Cells
during Anti-Cancer Therapy

In previous studies, LDR-induced proliferative effects were
documented extensively in different normal cell types such
as thymocytes, splenocytes, lymphocytes, lung fibroblasts,
and diploid cells [105–110]. Some studies showed that LDR
can activate the Raf, AKT signaling pathway which remodels
the chromatin structure and regulates cell cycle, resulting in
induced expression of genes related to cell survival [107].
LDR can also activate several members of the MAPK/ERK
signaling pathways because inhibition of MEK function sig-
nificantly abolished LDR-induced ERK1/2 activation and
LDR-stimulated cell proliferation [2].

LDR Enhances Anti-Tumor Immunity in Anti-Tumor
Therapy

Radiotherapy with HDR induces time-restricted immune sup-
pression by directly destroying the immune cells [111].
However, in contrast with HDR, LDR offers an effective treat-
ment for cancer through the stimulation of innate and adaptive
immune response. In innate immune, LDR played an anti-
tumor effect through (1) enhancing the expansion and cyto-
toxicity of NK cells by activating the P38 MAPK pathway
[112] and (2) enhancing the cytotoxic function of macro-
phages against tumor cells and programs macrophage differ-
entiation to an iNOS+/M1 phenotype that overcomes the bar-
rier of cancer immunotherapy through efficiently recruiting
tumor-specific T cells in malignant solid tumors [113, 114].
The adaptive immune plays an anti- tumor effect through (1)
augmenting the proliferative response of T cells to antigenic,
allogeneic, and mitogenic stimulation enhance the adaptive
immune response directly, with a concomitant increase cyto-
toxic effects on tumor cells [115–117]; (2) enhancing the ex-
pression of surface markers both on antigen-presenting cells
(APCs) and on T cells which lead to a reduction of self-
tolerance induced by cancer cells [118, 119]; (3) affecting
the T regulatory cells, which was used by cancer cell to com-
prise an important immune-evasion strategy [120–122]; and
(4) increasing antibody secretion and enhancing the antibody-
dependent cellular cytotoxicity response in tumor-bearing
mice [123].
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LDR Stimulates Antioxidative Functions in Normal
Tissues

It is well known that radiotherapy may promote ROS forma-
tion, which can kill tumor cells via necrosis or apoptosis, but
the exceeding ROS can also lead to DNA fragmentation, lipid
peroxidation, and other negative effects of normal cell struc-
tural molecules [1]. LDR has been reported to increase the
level of various kinds of antioxidants in vitro and in vivo. It
is reported that LDR can regulate the expression of most an-
tioxidants through increasing the activity of nuclear factor
erythroid-2-related factor 2 (Nrf2), a major transcription factor
of the antioxidative system [124].

LDR Activates DNA Damage Repair and Metabolic
Modification in Normal Tissues

To ensure genome stability in irradiated cells, mammalian cells
harbor cellular defense systems against radiation-induced single-
strand breaks (DSBs). It is clear that DNA damage response
(DDR) is one of themechanisms involved inLDR-induced adap-
tive immune [6, 125, 126].However, howandwhichDNA repair
pathway coordinates in the DDR in response to LDR still need
more in-depth research. The DDR associated with DSB repair
pathways includes homologous recombination (HR) and non-
homologousendjoining(NHEJ)andasignal transductionprocess
relatedwith ataxia telangiectasia-mutated kinase. TheDSB repair
pathway is always controlled by the cell cycle phase. LDR may
activate one pathway of single-strand break repair to stimulate the
expression of DNA repair enzymes either in cycling or in resting
normal cells, which leads to genetic stability and, eventually,
radioresistance [1].

It has been reported that the aerobic glycolysis and oxida-
tive phosphorylation included in metabolic pathways of glu-
cose were related with radiosensitivity and radioresistance of
cells [127]. The increase of aerobic glycolysis leads to the
resistance of cell to radiation. Research showed that LDR
could induce a metabolic shift from oxidative phosphorylation
to aerobic glycolysis leading to the increase of radiation resis-
tance in both cell and animal models [128].

The Protective Role of LDR
on Chemotherapy-Induced Cardiotoxicity

It is known that LDR triggers repair mechanisms via adaptive
response mechanism that can be recast in more qualitative terms
as physical or metabolic processes. Physical mechanisms include
molecular repair of cellular structures such as DNA; removal of
the damaged cells by apoptosis, necrosis, and phagocytosis; cell
differentiation and senescence; and response of the immune sys-
tem to facilitate removal of damaged cells [11]. Experimental and
clinical data have reported thatLDRcanmitigate damage through

antioxidativedefenses;mitigateEAEthroughupregulationof reg-
ulatoryTcellsandsuppressionofproinflammatorycytokinessuch
as IFN-γ, IL-6, and IL-17; and also can impede tumor growth,
diminishmetastasis, as well as alleviate the suppression of immu-
nity due to tumor burden [11, 129]. Abdel-Rafei et al. [12] dem-
onstrated that exposure to fractionated 0.5Gy (twice 0.25Gy at 2-
day interval) γ irradiation prior to biochemical insult can amelio-
rate lipid peroxidation and produce an anti-apoptotic effect in the
hippocampus, whilst also increasing levels of glutathione, SOD,
and catalase activity in this region. Studies also demonstrated that
LDR can accelerate skin wound healing and ameliorate renal in-
jury in diabetic rats [130]. Interestingly, in studies of medical pro-
fessionals and hospital staff, blood antioxidant levels were signif-
icantly higher in participants exposed to LDR ranging from0.1 to
3.8 mGy per month compared with unexposed controls [12].

The effects of LDRcould contribute to antioxidative potential,
reduce cancer incidence, and modulate a variety of immune re-
sponses [130]. Several experimental findings were reviewed re-
centlyandshowedthatLDRinducesanti-inflammatoryproperties
and may thereby protect against inflammatory disease [131]. We
have additionally demonstrated that diabetic mice exposed to re-
petitive LDR at 25 mGy showed significant prevention of
diabetes-induced renal and cardiac damage in type 1 and type 2
diabetes in animal studies. Exposure of normal or tumor-bearing
mice to 25–75 mGy LDR significantly prevented the tumor
growth and metastasis [132]. The fact that LDR has the potential
to prevent chemotherapy-induced cardiotoxicity has garnered sig-
nificant interest. Based on the evidence that LDR increases anti-
oxidant activity and DNA repairing capacity, many studies were
conducted to explore the role of cardioprotective and the possible
underlyingmechanisms of LDR in chemotherapywith Dox. Our
study [133••] demonstrated that LDR-stimulated cardiac antioxi-
dative capacity in reducing oxidative stress derived from
mitochondria-dependent ROS/RNS generation which suggests
that LDR could induce adaptation of the heart to DOX-induced
toxicity. In addition, the cardiac protection by LDRmay attribute
to attenuate DOX-induced cell death via suppressing
mitochondrial-dependentoxidativestressandapoptosissignaling.

Conclusions

All together, the above evidence offers a rationale chemother-
apy protocol that LDR exposure before chemotherapy could
properly prevent chemotherapy-induced cardiotoxicity. The
mechanism of cardioprotection is not yet clear and needs fur-
ther study. We can further study whether its cardioprotective
effect in chemotherapy is related to inflammation, immune
mechanism, autophagy, or others. Therefore, LDR may be a
novel approach to prevent chemotherapy-induced
cardiotoxicity and enhance the effectiveness of cancer thera-
peutics via stimulating multiple functions in the heart without
impact on tumors.
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mitochondrial-dependent oxidative stress and apoptosis
signaling.
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