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Abstract
We present a comprehensive review of the optical response of graphene, in both the
linear and nonlinear regime. This will serve as a reference for both beginners andmore
experienced researchers in the field. We introduce, derive, and extensively discuss the
Dirac–Bloch equations framework, central to describing electron–photon interaction
in nonperturbative, gapless materials. We use this model to re-derive several known
results in the linear regime, such as the universal absorption law, and to describe the
nonlinear interaction of ultrashort pulses with graphene. We compare the validity of
the Dirac–Bloch equations model with the traditional Semiconductor-Bloch equations
and point out advantages and shortcomings of the two models. Lastly, we present a
cutting-edge model for describing the nonlinear optical response of graphene when
bending becomes important, a situation that deeply affects the output spectra, and can
provide insight to a novel, effective way tomanipulate light in two-dimensional media.

Keywords Graphene · Optical nonlinearity · Harmonic generation · Artificial gauge
fields

1 Introduction

It is hard to believe that any well-rounded scientist or science enthusiast, up-to-date
with the latest developments in Physics and technology, has not heard of the word
“graphene” in some form or another. “Graphene is the name given to a single layer of
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carbon atoms densely packed into a benzene-ring structure”, as was described in the
seminal paper reporting its experimental realisation [1].

As an atom-thick layer of carbon atoms arranged in a hexagonal structure, graphene
provides the basis of many nanostructures of carbon (known by the jargon allotropes):
carbon nanotubes can be thought as rolled-up sheets of graphene; graphite can be
construed as a particular stacking of such layers, and Buckminsterfullerene C60, also
known as a “buckyball”, can also be thought of a spherical version of graphene.

These structures can now be produced in the laboratory, but this was not the case
until very recently. Long theoretically predicted by Wallace [2], who determined the
energy spectrum of a single electron in graphene in 1947, graphene was thought
to be an abstract artefact of Solid State Physics, never to be produced in the lab-
oratory. Most notably, Physics heavyweights, such as Landau [3], Peierls [4] and,
later, Mermin [5] invoked thermodynamical arguments to dispute the notion that
two-dimensional crystals can be stable, due to a divergent contribution of thermal fluc-
tuations in low-dimensional crystal lattices. The rest is history—Geim and Novoselov
[1] were successful in producing the first sample that would be unequivocally charac-
terised as graphene in 2004. For those efforts, they won the Nobel prize in Physics in
2010.

The physics of graphene and related materials, such as black transition metal
dichalcogenides (TMDs) [6], black phosphorous [7], and hexagonal boron nitride
[8], to name a few, has attracted an ardent interest since the initial experimental real-
isation of graphene monolayers [1]. What exactly is so special about this particular
material? How come is the research output concerning graphene still so abundant so
many years after its physical realisation?

Firstly, the electronic structure displayed by the carriers is remarkable: at relative
low energies, graphene shows a unique Dirac-like band structure and this implies that
quasielectrons behave as if they were massless Dirac fermions [9], akin to charged
photons or neutrinos.

It is not surprising that under certain conditions, quasiparticles may also be pseu-
dorelativistic. Electrons in graphene are ballistic in the sense that their Fermi velocity
is about 0.3% of the speed of light. While it is true that they do not attain velocities
compared to the speed of light, where relativistic effects take place, the absence of
both a gap, a crucial aspect of semiconductors, and curvature in the energy dispersion
for low-lying electronic states, suggest this tempting analogy, namely to model them
with a relativistic equation.

Due to this special property, graphene electronics is quite different from con-
ventional semiconductor electronics, and holds the promise of revolutionising the
technological landscape in many different ways [9]. It is no surprise that graphene has
been the spotlight inMaterial Science research and, involuntarily, shaped the direction
of two-dimensional crystals research in many unrelated directions.

Furthermore, on the technological side, a tremendous effort to link novel effects
and properties to new devices and related applications have reached so far as to use
graphene as an “atomic sieve” and as a biosensor [10, 11]. Its mechanical properties
truly are amazing. Reports that “establish graphene as the strongest material ever
measured” [12] motivate this claim.
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For the theorist, graphene provides a joyful playground for studying and idealising a
myriad of theoretical concepts. Given its quasirelativistic nature, graphene is expected
to show signatures of features found in (high-energy) Quantum Electrodynamics, such
as Klein tunneling [13], or Zitterbewegung [14]. Furthermore, graphene eventually led
the research community to a true paradigm change in an abundant scope of areas: a
deeper understanding of universal electronic properties through a topological analysis
of the underlying Hamiltonian, leading to the discovery of many novel topological
states [15, 16]. With this understanding, the Quantum Hall effect has been established
alongside experimental observations [17]. Astonishing reports of superconductivity in
twisted bilayer graphene have been recently published [18]. Graphene has prominently
kickedoff awhole newambition inCondensedMatter Physics to engineer systemswith
generalised topological properties to new realms [19]. Examples of this are given by the
observation of (three-dimensional) Dirac semimetals [20, 21], Weyl semimetals [22,
23] and, very recently, to startling new quasiparticles known as type-II Dirac fermions,
which seem to breakLorentz invariance [24, 25], and to possess an intriguing nonlinear
optical response [26]. The future seems promising for the field.

This work is concerned with understanding the optical properties of Dirac fermions
and it relies on a particular employment of methods to predict optical phenomena
of graphene and, at large, two-dimensional quasirelativistic materials. It begs the
question: In what way are these quasirelativistic features present in the optical inter-
actions? Apart from their noteworthy electronic properties, massless Dirac fermions,
the term used to describe the carriers in monolayer graphene, have already been shown
extraordinary optical features [27] which have already been employed in photonics
for ultrafast photodetectors [28], optical modulation [29], molecular sensing [30], and
several nonlinear applications [31, 32].The conical dispersion itself is known to induce
highly nonlinear dynamics for light [33]. Graphene’s optical response is characterised
by a highly-saturated absorption at rather modest light intensities [34], a remarkable
property which has already been exploited for mode-locking in ultrafast fiber-lasers
[35]. The high nonlinear response of graphene leads to the efficient generation of
higher harmonics [36, 37].

The understanding of how these fermions interact with light in extreme and ultra-
short conditions remains, to a large extent, incomplete. The work presented in this
Review tries to address this point with the aid of a set of equations, termed the Dirac–
Bloch Equations (DBEs), which will be derived precisely and analysed with realistic
probing parameters typical of intense (high electric field amplitudes) and short (few
pulse optical cycles) electromagnetic pulses.

For the sake of completeness, it is worth mentioning that the DBE approach is not
the only possibility, when tackling the problem of calculating the nonlinear optical
response of graphene. There are, in fact, other methods available, such as the ran-
dom phase approximation, the time-dependent density functional theory and other
quantum chemistry methods [38]. These are in general more complex and resource-
demanding, but provide an answer beyond the simple two-band model of graphene
implicitly assumed in DBEs. An extensive discussion and comparison of these meth-
ods, their advantages and disadvantages compared to more traditional two-bands
model is presented in a recent review [39]. Moreover, analytical solutions for the
nonlinear susceptibility of graphene, within the framework of quantum mechanics,
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have been recently proposed. We refer the interested reader to, for example, the work
of Mikhailov [40].

Review structure

This review is organised as follows: in Sect. 2 we present the general theoretical frame-
work commonly used to describe electron dynamics in graphene. Here, we derive the
usual tight-binding Hamiltonian from its crystal lattice structure, discuss its linearised
dispersion relation in the vicinity of the Dirac points, and the correspondent density of
states. Section3 is instead dedicated to providing a continuum model for electrons in
graphene, based on the massless Dirac equation. In Sect. 4, we then discuss in detail
the optical properties of graphene; in particular, we construct a semiclassical frame-
work for light–matter interaction encompassing both linear and nonlinear effects, and
then discuss in detail the electric dipole approximation for graphene, and some con-
sequences of the linear optical response, such as universal absorption, and the linear
conductivity—with a numerical and computer simulation approach inmind. Sections5
and 6 represent the core of this review, where the analytical and numerical methods
used to calculate the optical response of graphene are analysed in detail, and sample
solutions to known problems, such as third-harmonic generation, are discussed. In par-
ticular, Sect. 5 reviews the well-known framework of semiconductor Bloch equations
and guides the reader on how to apply them to the case of graphene. Section6, instead,
generalises this method to the case of the so-called Dirac–Bloch equations, which
proves more useful to handle light–matter interaction in graphene, and 2D materials
in general. Then, the two methods are compared in Sect. 7, and advantages and dis-
advantages of both methods are discussed in a comparative manner. To conclude the
review, Sect. 8 presents recent developments concerning the role of artificial gauge
fields, emerging from bending and strain applied to graphene flakes, in their nonlinear
optical response, with particular attention to their role in the high-harmonic generation
spectrum of graphene. Finally, conclusions and outlook are drawn in Sect. 9.

To add value to thisReview, actuallymaking it useful not only for experts in the field,
but also, and most importantly, to readers approaching this research field for the first
time, we will re-derive many of the main linear properties found in the theoretical and
experimental literature, including the law of universal absorption and the behaviour
of transmitted and reflected fields (using the Dirac–Bloch equations framework), with
the hope that presenting the details of these calculations will help the reader in gaining
more insight on the physics of graphene and its theoretical models.

2 The physics of graphene

2.1 Overview

Graphene is simply a layered structure of carbon atoms. From this point of view, the
standard theory of crystals and solids may be used to understand it as a quantum
mechanical system. In this section, the basic theory that underpins most of how the
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electronic properties of crystals in a particular lattice arrangement are understood is
introduced. Most tools to study such condensed matter systems revolve around the
tight-binding approximation, introduced in Sect. 2.4.

With it, it will be shown that, for the particular case of a graphene monolayer,
the conduction and valence bands depend linearly on the magnitude of the crystal
momentum, touching each other at two special points in reciprocal space. Tied to
this observation, a reduction of the usual scalar wavefunction describing the carriers,
determined from the Schrödinger equation, to the two-component spinor described by
a (2+1)-dimensional Dirac equation, is presented.

To fully appreciate the physicochemical reasons behind this unusual property,
a brief explanation underlying the process of orbital hybridisation is given in
Sect. 2.3. Ultimately, the orbital hybridisation leads to the rather strong hexagonal
arrangement—known as a honeycomb lattice—that is responsible for its structural
stability.

The consequences of such a geometrical disposition are deep. Such a real-space
lattice is not aBravais lattice although it can be decomposed into twoBravais triangular
sublattices. As will be seen, this fact will allow such a decomposition to play the role
of a degree of freedom, in turn allowing the quasiparticles describing the unhybridised
electrons to bewritten in a relativistic fashion, leading to the celebratedDiracEquation.

Once the relativistic analogy is set up, mimicking the electronic features of the
carriers in the low-momentum regime, this framework yields startling features. For
instance, the density of states of a graphene monolayer is, contrary to what is pre-
dicted of usual two-dimensional semiconductors, shown to be linear in Sect. 3.1, as a
consequence of the linearity of the dispersion. Not surprisingly, its optical properties
are expected to differ from a conventional semiconductor. A brief exposition of the
tools and concepts necessary to understand them is given in Sect. 4.With them, the law
of universal absorption, another astonishing feature of graphene, is derived. As will
be discussed, this consideration leads to deep conclusions about the non-perturbative
nature of graphene.

2.2 Electronic band structure

To start off, the concept of a quasiparticle must be framed. Dynamical phenomena in
condensed matter systems, owing much to the system intrinsic geometrical configu-
ration, may sometimes be idealised with the aid of particles. Depending on whether
these obey fermionic or bosonic rules, they are termed quasiparticles or collective
excitations, respectively. Examples of such dynamical phenomena may be a transfer
of charge, energy, momentum or spin and are obviously a result of often complicated
and intricate many-body interactions across the system.

The quasiparticle picture is particularly helpful precisely because it can reduce
these phenomena to effective free-like single-particle excitations. For these reasons,
one must distinguish conceptually the idea of an electron dispersing in free space, and
of one constrained in a particular atomic arrangement, interacting with many other
constituent parts of the system (including other electrons). For brevity purposes, the
mouthful “quasielectron”, used to describe electronic quasiparticles, will not be used
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throughout this Review. Any subsequent description of “electrons” are meant in this
way.

2.3 Hybridisation

Before engaging in discussions about the structure of graphene, it is enlightening to
understand how those particular geometric arrangementsmake themselvesmanifest. In
the jargon of Chemical Physics (or Physical Chemistry), the quasiparticles of interest
in graphene are known as π electrons. The fundamental reason why such electrons
may be represented by 2-component states is related to the geometrical arrangements,
which arises from the sp2 hybridisation of the outer shell electrons of the carbon
ions—conceptualised through its hexagonal, honeycomb lattice.

A carbon atom has six electrons in a configuration 1 s22 s22p2. The first shell is
normally irrelevant to chemical bonding, leaving the second shell, containing 2 elec-
trons in the 2s orbital and another 2 in the |2px 〉, |2py〉, |2pz〉, available to participate
in bonding. As intuition tells, the 2s orbital is energetically more favourable than the
remaining energy-degenerate 2p orbitals, being 4 eV lower. A comprehensive discus-
sion of the chemical properties of carbon can be found, for example, in the lecture
notes by Fuchs and Goerbig [41].

However, while bonding with other elements, namely carbon itself, this argument
breaks down. The energy gain can be even higher if one 2s electron is promoted to one
of the 2p orbitals, so that the three of them have one unpaired electron. This entails the
basic idea behind hybridisation: the electrons are to be understood as a superposition
of the |2s〉 and |2p〉 states. It turns out that the planar configuration of the layer is
obtained through sp2 hybridisation, resulting in three new orbitals |sp2i 〉 (i = 1, 2, 3)
comprised of linear combinations of the |2s〉 and two p orbitals, arbitrarily taken as
|2px 〉 and |2py〉.

Through this process, all orbitals in the n = 2 shell—the |sp2i 〉 and the remain-
ing |2p〉—have one unpaired electron. The geometric shape of these new hybridised
orbitals indeed reveals three (σ ) carbon bonds along the horizontal plane, which are
120◦ apart and hence organise the atoms in a hexagonal, honeycomb arrangement.
Moreover, the separation between the carbon atoms, dictated by these orbitals, is the
lattice constant a = 0.142 nm. The unhybridised (π ) orbital, |2pz〉 has upper and
lower symmetrical lobes and is perpendicular to the plane. The chemically-reactive
electrons are the ones belonging to these orbitals and, any mention of “electrons” in
graphene will be meant to denote these. π bonding between close-by π electrons is at
the heart of the production of surface currents in graphene.

Even though all lattice sites, located at the corners of the hexagons, are composed
of identical carbon atoms, it is clear that the honeycomb lattice arrangement does not
represent a Bravais lattice T , a type of geometric arrangements where all lattice sites
can be obtained through a suitable linear combination of a particular set of of vectors
ai :

T = {n1a1 + n2a2 | n1, n2 ∈ Z}, (1)
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Fig. 1 Diagram representation
of the two sublattices—A (blue)
and B (purple)—within the real
lattice of graphene, including the
next neighbour vectors δi and
next-neighbour vectors ai . The
unit cell is the turquoise rhombus

where the basis of this space is known as the primitive vectors. The minimal area
spanned by the basis is known as the unit cell.

This is a relevant observation. To see why the honeycomb lattice is not Bravais,
consider Fig. 1. The vectors δi connecting the nearest neighbours, all purple, to the blue
site would have to also connect any purple site to all surrounding blue ones. However,
it is clear that these vectors would have to be rotated by 60◦. The blue and purple
sites are hence not physically equivalent. If only alternate sites are considered, i.e.
only the blue or purples sites, it can now be seen that the underlying triangular lattice
T is indeed Bravais, leading to all sites to be related by a unique set of translational
vectors and hence a Bravais lattice defined as Eq. (1) requires by taking, for instance,

the primitive vectors a1 = √
3a(1, 0) and a2 =

√
3a
2 (1,

√
3).

This construction holds for either colour of sites separately. This distinction of
“species” is not made aimlessly: it is now clear that the honeycomb lattice can be
decomposed into two Bravais sublattices, blue and purple, each containing one site per
unit cell.Given that there is only oneπ electron per lattice site, the unit cell contains two
valence electrons. This leads to the conclusion that the underlying lattice of graphene
is a triangular with two sites per unit cell, which is depicted as the turquoise rhombus
in Fig. 1. As will be seen shortly, the physical meaning behind this decomposition is
vital to understand the electronics of the π electrons.

These triangular sublattices are normally denoted by A and B. In this case, they are
not too different: one is simply shifted by ±δ3 with respect to the other. Therefore,
for a sublattice index j ( j = A, B), a shift vector δ j can associate any point of the
honeycomb lattice to a point on that particular triangular sublattice j .Many choices for
such shift vectors can be found although a rather simple choice is to fix one sublattice
j with the honeycomb lattice (leading to δ j = 0) and describe any other point in the
other sublattice i �= j with a shift of δi = δ3.

The reciprocal lattice of each triangular sublattice is also a triangular sublattice, but
now spanned by the vectors b1 = 2π/(

√
3a)(1,−1/

√
3) and b2 = 4π/(3a)(1, 0).

If only inequivalent vectors are considered, i.e. vectors which cannot be obtained
by a shift of any other vector in the reciprocal lattice, are considered, the Brillouin
zone (BZ) is obtained. This region defines the crystal momentum: all possible lattice
excitations must therefore be identifiable with one such vector.

Figure 2 depicts the reciprocal lattice, with the Brillouin zone. It resembles a
hexagon, bounded by six corners. These points cannot all belong to the interior, since
four of them are related to the other two by a reciprocal vector shift. The two remaining,
inequivalent points are termed the Dirac points and noted by K and K′. Importantly,
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Fig. 2 Depiction of the reciprocal lattice of the honeycomb lattice. Given the sublattice decomposition, two
non-equivalent points in momentum space appear K and K′, contained in the reciprocal unit cell, the blue
rhombus. All non-equivalent points are contained within the first Brillouin zone, depicted in orange

there is one unfilled π electron state per atom, as the three σ bonds that resulted
from the sp2 hybridisation of the orbitals leave the remaining π electron available
for pairing. Therefore, the relevant dispersion to understand the electronic properties
of graphene is the π bands, composed of the chemically and physically reactive π

electrons.
Aswill be shortly seen, the Dirac points are crucial in understanding the low-energy

properties of the π electrons in graphene, i.e. far from the � point, located exactly in
the centre of the hexagon. The next section will introduce methodologies to describe
the electronic band of such electrons.

2.4 Tight-binding approximation

To calculate the electronic bands of the π electrons, the tight-binding formalism is
used. In this method, the wavefunction of the overall many-body system is assumed to
be a linear superposition of atomic wavefunctions, localised at a particular lattice site.
The latter is calculated without any reference to the lattice, i.e. without accounting
for any environmental interaction. For this reason, the atomic wavefunction is not
a true eigenstate of the system. This difference is assumed to stem from overlaps
of neighbouring atomic wavefunctions at different sites. Furthermore, the overlap is
assumed to decay quickly given the localisation of the electron on its site—hence why
it is “tightly-bound”.

To see this, an atomic Hamiltonian at a lattice site l in position Rl is considered:

Hl = −�
2∇2

2m
+ Vl(r − Rl), (2)

where ∇2 is the Laplacian, m the mass of the free electron and Vl(r − Rl) is the
potential at site l. The electron wavefunction at that site is the eigenfunction of the
atomic Hamiltonian, satisfying:

Hl(r)φn(r − Rl) = εnφn(r − Rl), (3)

where n is an index labelling the different orbitals composing the atom at site l and
εn their energy. In a mean-field approach, the full Hamiltonian is composed of the
single-particle contributions Hl , leading to an effective potential that may be treated
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as a perturbation �V (r):

H =
∑

l

Hl = −�
2∇2

2m
+
∑

Rl

Vl(r − Rl)

︸ ︷︷ ︸
�V (r)

. (4)

At this stage, the goal is to find the n eigenstates ψk(r) and their respective eigen-
values εn of this Hamiltonian. Before one attempts to calculate them, an Ansatz that
solves Eq. (4) must be found. The symmetries of the underlying lattice constraint the
wavefunction across the lattice itself.

The technicalities of such statement lie deep in what is known as Bloch’s theorem.
Given the physical invariance of the lattice sites in a Bravais lattice, the wavefunction
must not behave differently when shifted by any lattice vector R. In particular, this
means that a suitable translation operator T (R) must commute with the Hamiltonian.
Consequently, both operators share the same eigenfunctions:

T (R)ψk ≡ ψk(r + R) = eik·Rψk(r). (5)

Given the Bravais decomposition of the honeycomb lattice just discussed, the wave-
function must in general be written as a linear combination of two components, one
describing amplitudes from each sublattice:

ψk(r) = akψ
(A)
k (r) + bkψ

(B)
k (r). (6)

In this fashion, each component satisfies Bloch’s Theorem, whenever R is a vector
of each underlying triangular sublattice. The coefficients α(k) and β(k) naturally
quantify the probability of finding the electron in each sublattices.

Given the alternate nature of the lattice sites, the essence of the tight-binding phi-
losophy becomes clear: an electron of momentum k is initially assumed to be fairly
localised at an atomic site, belonging to a particular sublattice. The local site is itself
composed of its atomic orbitals, dependent on the atomic character of the site. How-
ever, due to the overlap of the wavefunction sitting this particular lattice site with
another electron wavefunction sitting on an adjacent lattice site, a non-zero proba-
bility of a transition into adjacent sites. Quantities pertaining to this mechanism are
usually not easily reachable given the intrinsic complexities of the orbitals in question.
In this instance, the p orbitals are not inherently challenging.

The Bloch functions ψ
( j)
k (r) of either sublattice are too general to compute. To

attain an Ansatz which satisfies Bloch’s Theorem, the tight-binding assumption relies
on constructing them using atomic wavefunctions φ( j), eigenfunctions of the atomic
Hamiltonian:

ψ
( j)
k (r) =

∑

Rl

eik·Rl φ( j)(r + δ j − Rl), (7)
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where the sum is performed over all Bravais lattice vectors. In the present case, these
correspond to the |pz〉 orbitals at each site. The connection to the sublattice index is
now clear: the primitive unit cell in graphene contains two atoms (one per sublattice),
as seen in Fig. 1.

Precisely because the wavefunction �k(r) must comply with Bloch’s Theorem,
itself not warranted if the underlying lattice is not Bravais, a decomposition into
Bravais sublattice must be found. This consideration alone leads to a decomposition
of the wavefunction into two independent components, each pertaining to the different
sublattices A and B and individually.

To obtain a matrix representation of the tight-binding Hamiltonian that will allow
for the energy dispersion to be obtained, one must solve the Schrödinger equation
Hψk = εkψk. In the sublattice basis chosen in Eq. (6), the matrix elements must
read:

Hi j
k = ψ

(i)∗
k Hψ

( j)
k . (8)

Given the expansion of each sublattice wavefunction in terms of the atomic orbitals
of Eq. (7), this is generally a hugely difficult task. However, after a rather lengthy
derivation which can be found in the lecture notes by Fuchs and Goerbig [41], the
Hamiltonian elements are calculated more easily if the following decomposition of
the Hamiltonian is performed:

Hi j
k = N

(
ε(i)si j

k + t i j
k

)
. (9)

In it, the first part contains the on-site energy εi of the orbital i , multiplied by what is
known as the overlap matrix si j

k ≡ ψ
(i)∗
k ψ

( j)
k . This matrix accounts for the orthogo-

nality between the orbital bases of each individual sublattice species:

si j
k (r) =

∑

Rl

eik·Rl

∫
φ(i)∗(r + δi )φ

( j)(r + δ j − Rl)d
2r. (10)

Given the usual normalisation condition of the atomic orbitals, the diagonal entries of
the overlap matrix are unity. The perturbation to the potential energy of Eq. ( 4) is fully
expressed in the hopping matrix t which, not surprisingly, is related to the expectation
value of the perturbation �V between sites i and j :

t i j
k (r) =

∑

Rl

eik·Rl

∫
φ(i)∗(r + δi )�V (r)φ( j)(r + δ j − Rl)d

2r, (11)

The factor of N accounts for the number of atomsper unit cell.As previously discussed,
if one fixes the relative shifts as δB = δ3 and δA = 0, the sum over the Bravais lattice
vectorsRl is performedon the sublatticewhich has δi = 0. Keeping the convention, the
sublattice A is chosen as such. The space integrals in each matrix yield the amplitude
of the process and are assumed a constant. Finally, the decomposition just presented
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allows for the energy dispersion ελ
k to be obtained by solving the secular equation:

det
[

Hi j
k − ελ

ksi j
k

]
= 0, (12)

leading to exactly N bands (λ = 1, . . . , N ). With the sublattice basis, two bands are
thus predicted.

Considering that the hopping matrix involves a challenging integral in space,
summed over all lattice vectors, it is not surprising that the underlying calculation of
its elements presents many difficulties. Further simplifications are often taken given
the particular system.

Since both sublattices are comprised of the same atomic orbitals, the out-of-plane,
vertically-oriented pz orbitals contribute the same amount to the on-site energy and
would yield an irrelevant shift in the dispersion given in Eq. (12). Furthermore, since
it can be reasonably assumed that contributions from neighbouring atoms are more
relevant, the sum over the lattice vectors may be performed by first considering the
nearest neighbours, followed by the next-nearest neighbours and so on.

Given the alternate nature of thedispositionof the sublattices, the nearest neighbours
are always located at different sublattices. The amplitude of this particular element is
known as the (nearest neighbour) hopping factor:

t =
∫

φA∗
(r)�V φB(r + δ3)d

2r. (13)

For graphene, it has a value t = 2.8 eV [8]. To compute the remaining phases in the
hopping matrix t given in Eq. (11), the associated phases to each hopping are simply
given by the appropriate triangular Bravais lattice vectors that connect an arbitrary A
site, at position r , to the nearest B sites—B1, B2, B3, illustrated in Fig. 1. To find the
shift in the position argument of the wavefunction at those points, one can use a2 − δ3
for B1, a3 − δ3 for B2 and 0 − δ3 for B3. Therefore, the off-diagonal entries of the
hopping matrix are simply t AB

k = t B A ∗
k = tγk, where the phase acquired by each

hopping is γk:

γk = 1 + e−ik·a2 + e−ik·a3 . (14)

The nearest-neighbour approximation assumes that the contribution to the atomic
potential does not need to consider interactions between lattice sites farther away than
the second smallest distance. Given the alternate nature of the honeycomb lattice, any
contribution will come from sites separated by ‖a1,2‖. This approximation already
yields satisfactory results for most solids for which the tight-binding treatment applies
and depends on the type of orbitals.

The addition of further sites to the calculation is similar in style: the next-nearest
neighbours (nnn) are now of the same sublattice type:

t ′ =
∫

φA∗
(r)�V φA(r + a1)d2r, (15)
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where a1 is the vector connecting the amplitude of this nnn-hopping was obtained
using the A sublattice but the B sublattice produces the same hopping factor. Again,
from an arbitrary A sublattice site, six connections to other A sites are found, with the
overall phase γ ′

k:

γ ′
k = eik·a1 + eik·a2 + eik·a3 + e−ik·a1 + e−ik·a2 + e−ik·a3

= 2
3∑

i=1

cos(k · ai ) (16)

Gathering all hopping terms leads to the hopping matrix:

t(k) =
(

t ′γ ′
k tγk

tγ ∗
k t ′γ ′

k

)
. (17)

As one may expect, the contributions from the the overlap matrix s tend to be very
small in comparison to their hopping counterparts. Going up to nearest-neighbours
only, the sum is performed exactly like was performed for t . The normalisation of
each sublattice Bloch wavefunction leads to the diagonal entries being 1. As for its
off-diagonal entries, their amplitude is given by:

s =
∫

φA∗(r)φB(r + δ3)d
2r, (18)

and the overall phase exactly equal to t i.e. equal to γk, leading to a matrix:

s(k) =
(

1 sγk
sγ ∗

k 1

)
, (19)

finally allowing the tight-binding dispersion to be written to a great accuracy as:

ελ
k = t ′γ ′

k + λt |γk|
1 + λs|γk| , (20)

where the secular equation of Eq. (12) was used. Given that the overlap amplitude s
is much smaller than the others, the denominator can be Taylor-expanded as

1/(1 + x) ≈ 1 − x , leading to:

ελ
k ≈ t ′γ ′

k + λ
(
t − t ′sγ ′

k
) |γk| − ts|γk|2

≈ t ′γ ′
k + λt |γk| − ts|γk|2, (21)

where the last step assumes t ′ << t . A bit of algebra yields a relation between the
phases as γ ′

k = |γk|2 − 3, which allows the dispersion to be written as:

ελ
k = (t ′ − st)︸ ︷︷ ︸

t ′eff

|γk|2 + λt |γk| − 3t ′. (22)
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The factor 3t ′ corresponds to a constant shift and is therefore irrelevant. What is
interesting is that the inclusion of the overlaps leads to a renormalisation of the nnn
hopping amplitude. This effect is incredibly feeble in graphene, since t ′ is measured
to be t ′ ≈ 0.01t = 0.028 eV. As for the overlap amplitude, it is impossible to obtain
given that measurements cannot differentiate t ′ from t ′eff .

It is now clear that if only the nn hoppings are considered, the dispersion is simply:

ελ
k = λt |γk| = λt

√√√√1 + 4 cos

(√
3kx a

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)
, (23)

where the explicit components of ai were used. a3 is not part of the basis that was
previously chosen: it is the combination a3 = a2 − a1. If this dispersion of Eq. (23)
is now Taylor-expanded, for small k, it becomes linear with the momentum, leading
to the famous Dirac cones:

ελ
k = λ�vF‖k‖, (24)

where the constant vF ≡ 3ta/(2�) is known as the Fermi velocity and plays a crucial
role in the reduction of the π electrons to two-dimensional Dirac spinors.

The applicability of this approximation holds up to energies of ≈ 1 eV, where a
bending naturally arises so a peak is reached at the � point, as illustrated in Fig. 3
from [8].

This regime is nonetheless intriguing. Firstly, it indicates that graphene behaves
like a zero-gap semiconductor. The positive and negative signs of Eq. (24) imply
the existence of two symmetrical bands, naturally interpreted as the conduction and
valence bands, respectively. Furthermore, this symmetry implies something deeper,
namely the equivalence between electron and hole states occupying each band. The
Fermi energy lies at the band-touching.

In principle, the introduction of a next-nearest neighbour interactions breaks such
symmetry, as seen in Eq. (22). The rather strong covalent bonding of the nearest neigh-
bour corrections in graphene absolutely dominate the overall perturbation expansion.
Indeed, as was previously discussed, measurements of the nnn hopping amplitude put
this figure as t ′ ≈ 0.01 eV, compared to its nn amplitude counterpart of t ≈ 2.8 eV
[8].

3 Massless Dirac fermions

The previous section offered insightful clues to the adequacy of thinking of the carriers
in graphene as massless Dirac fermions. In particular, the linear dispersion provides
an exciting result since it mimics the dispersion found for massless quasiparticles
notably neutrinos and photons, which are known to be ultra-relativistic. Many in the
research community ponder the implication of such a connection. Is it possible to probe
high-energy physics concepts, adequate for such relativistic particles in a low-energy
framework?
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In this section, the quasirelativistic nature of the carriers is formalised. The con-
nection between the Dirac equation in (3 + 1) dimensions will be shown to model
the plane-confined carriers in (2+1) dimensions, allowing interesting analogies to be
presented between both models. The material presented in this Section can be found in
many different standard textbooks on quantum mechanics, such as the book by Dirac
[42], and in the book by M. I. Katsnelson on graphene physics [44], and it is intended
to be a concise introduction to the topic. We refer the interested reader to these books
for mode details about Dirac equation and its role in graphene physics.

TheDirac Equation was formulated byDirac in 1928 [43] in the hope of reconciling
SpecialRelativitywith the then short-livedQuantumMechanics for a spin 1/2 fermion.
The particle, of rest mass m, is described with the aid of a 4-dimensional spinor �

and, in free-space, must satisfy:

(i�γ μ∂μ − mc)� = 0, (25)

where c is the speed of light. The γ matrices are 4-dimensional objects and not uniquely
defined. A suitable representation for themmust however satisfy the Clifford algebra:

{γ μ, γ ν} = 2ημν
I4, (26)

where {·, ·} denotes the anti-commutator and I4 the identity operator. Additionally,
they must satisfy the Hermiticity condition:

(γ 0)† = γ 0 (γ i )† = −γ i . (27)

If Eq. (25) is left-multiplied by γ 0 and the definition αμ ≡ γ 0γ μ defined:

(i�αμ∂μ − mcγ 0)� = 0. (28)

The metric tensor is taken as ημν = diag(1,−1,−1,−1). The differential 4-vector
has covariant components ∂μ = {(1/c)∂t ,∇} and contravariant components ∂μ =
{(1/c)∂t ,−∇}. The remaining dot product thus takes the form:

αμ∂μ = ημνα
μ∂ν = α0∂0 + α · ∇ =

(
1

c

)
∂t + α · ∇, (29)

where α0 = (γ 0)2 = I by the anticommutation relation.
This is a partial differential equation, depending on space. However, through the

canonical relation p = −i�∇, the equation is Fourier-transformed, becoming an
ordinary differential equation in time. This form is, of course, reminiscent of the
Schrödinger equation.

i�
d

dt
� =

(
cα · p + mc2γ 0

)

︸ ︷︷ ︸
HD

�. (30)
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Theoperator on the right-hand side becomes associated to the (Dirac)Hamiltonian HD .
For a massless fermion, m = 0 and γ0 becomes irrelevant. As for ai , and consequently
γi , the Dirac representation can be constructed with the aid of the two-dimensional
Pauli matrices:

σ 1 =
(
0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
. (31)

The Dirac representation of γ matrices is simply taken as:

γ 0 =
(

I 0
0 −I

)
, γ i =

(
0 σ i

−σ i 0

)
. (32)

In such representation, the Dirac Hamiltonian in the Dirac representation:

H (D)
D =

(
0 c σ · p

c σ · p 0

)
. (33)

The analogy is now clear: if c is replaced with vF, the (3+1) Dirac Equation for a
massless fermion is composed of two 2-dimensional equivalent blocks of the form:

H(k) = �vFσ · k. (34)

This Hamiltonian measures the energy from the K point. For the purpose of this
section, only one such valley will be considered given their symmetric role in the
physics of ungapped graphene. In it, σ is known as the pseudospin and characterises
many important properties of the quasiparticles [44].

The dot product is to be taken as σ ·k = σx kx +σyky over the in-plane wavevector,
where σμ (μ = 1, 2) are the Paulimatrices. Inmatrix form, theHamiltonian of Eq. (34)
reads:

H(k) = �vF

(
0 kx − iky

kx + iky 0

)
= �vF |k|

(
0 e−iφk

eiφk 0

)
, (35)

where the phase is given by φk = arctan
(

ky
kx

)
. As expected, this model accounts for

the linearity of the dispersion calculated from first principles, that resulted in Eq. (24).
The eigenvalues of H(k) in Eq. (35) are:

ελ
k = λ�vF|k|, (36)

with two symmetric branches λ = 1,−1. Its associated normalised eigenstates may
be obtained as:

|λk〉 = 1√
2

(
e− i

2φk

λe
i
2φk

)
. (37)
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The wavefunction of each band λ, represented by �λ
k (r), is a solution of the Time-

Independent Schrödinger Equation:

H(k)�λ
k (r) = ελ,k�

λ
k (r), (38)

and simply is the r-representation of the ket states:

�λ
k (r) = 〈r|λk〉 = 1√

A
eik·r

(
e− i

2φk

λe
i
2φk

)
, (39)

where A is the area of the sample. The splitting of the upper and lower components
in this fashion is beneficial for future calculations. Consider the normalisation of such
wavefunctions:
∫

〈�λ′
k′ (r)|�λ

k (r)〉d2r = 1

A
〈λ′k′|λk〉

∫
e−i(k′−k)·rd2r = 2π

A
〈λ′k′|λk〉δ(k′ − k).

(40)

As for the spinor normalisation, it reads:

〈λ′k′|λk〉 = 1

2

(
e

i
2 (φk′−φk) + λλ′e− i

2 (φk′−φk)
)

=
{
cos(φk − φk′) if λ = λ′
i sin(φk − φk′) if λ �= λ′ . (41)

Evidently, for k′ = k, one obtains 〈λ′k′|λk〉 = δλ′λ. With the knowledge of the
wavefunction, many properties and features of the system may be unravelled.

3.1 Density of states

The density of states plays a particularly important role in the dynamics and inter-
actions of electrons within a condensed matter system. It can be seen as a degree of
degeneracy, accounting for the number of available quantum states for a given fixed
energy interval.

Unlike an electron in two dimensionsmodelled by the Schrödinger Equation, which
admits a constant density of states (per unit volume per unit energy) [45], the linearity
of the dispersion of low-momentum electrons just discussed leads, by extension, to
another interesting result—the density of states of the carriers in graphene is also
linearly proportional to their energy.

The calculation for a then-hypothetical graphene monolayer in 1952, a mere five
years after the dispersion had been obtained by Wallace, was already well established
[46], by a direct calculation of the specific heat using a Debye frequency distribution.
In addition to that, the appearance of non-differentiable points in the density of states
leads to fascinating phenomena, such as enhancement in the electric resistance and
optical conductivity of thematerial [47]. Formore physically-relevant graphene flakes,
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the effect of geometry, size and edge terminations have been reported to create various
van Hove singularities which in turn affect the optical response of the flake [48].

Before engaging in this particular calculation, the general definition is given, where
g(ε) denotes the density of states of the states in the interval [ε − δε, ε + δε]:

g(ε) = gvgs

∑

k

δ(ε − ε(k)). (42)

Since the dispersion of Eq. (24) is not dependent on which Dirac point the Hamilto-
nian is measured from nor on the spin contributions, since they do not appear in the
quasirelativistic model so far developed, onemust introduce the valley and spin degen-
eracy factors, respectively given by gv and gs . These are gv = gs = 2, respectively
for the K and K′ valleys and for the spin up and down contributions.

The calculation of the density of states, as dictated by Eq. (42) is in general rarely
obtained through analytical methods, given the intrinsic complexity of general dis-
persions. However, in the linear regime of the dispersion, the general definition of
Eq. (42) can be simplified using the continuum approximation:

∑

k

�→ A

(2π)2

∫
d2k, (43)

where A is the area of the monolayer sample and the sum performed over momentum.
Using the energydispersionofEq. (24) and integratingwith polar coordinates k ≡ ‖k‖,
φ ≡ arctan

(
ky/kx

)
, it becomes:

1

(2π)2

∫
d2kδ(ε − ε(k)) = 1

(2π)2

∫ ∞

0
dkk

∫ 2π

0
dφδ(ε − ε(k))

= 2π

(2π)2

∫ ∞

0
dkkδ(ε − ε(k))

= 2π

(2π)2

∫ ∞

0
dkkδ(ε − �vFk), (44)

where the integration in both variables is independent given the dispersion is purely
radial. The evaluation of the integrand is performed using the following identity of the
Dirac-δ distribution:

δ( f (k)) =
∑

ki

δ(k − ki )

| f ′(ki )| , (45)

where the sum is performed over the zeroes of f (k), ki . Letting f (k) := ε − ε(k),
and given that k is necessarily non-negative, a unique solution k0 arises for a fixed ε,
namely whenever k0 = ε/(�vF), hence the density of states becomes:

g(ε) = gs gv

2π

(2π)2

∫ ∞

0
dkk

(
1

�vF

)
δ

(
k − ε

�vF

)
. (46)
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Finally, the sifting property of the δ distribution:

∫ ∞

−∞
f (k)δ(k − k0)dk = f (k0), (47)

implies that, for f (k) ≡ k, g(ε) takes the form:

g(ε) = gvgs
2π

(2π)2

|ε|
�2v2F

= 2|ε|
π�2v2F

, (48)

where the modulus sign arises from the equivalence of k0 for either a positive or
negative energy.

It can then be seen that the density of states is piecewise linear. This result is
surprising for a two-dimensional system and to be contrasted with a Fermi gas in two-
dimensions, which admits a constant density of states. The neutrality point occurs at
the Dirac point i.e. when ε = 0, where g(ε) becomes non-differentiable. From a QFT
point of view, the linearity of the spectrum is unique in that it implies the Coulomb
interactions between the carriers are not screened [49]. As will be seen throughout this
work, the Dirac points really are remarkable and dictate much of the physics observed
in graphene.

4 The optics of graphene

4.1 Overview

To understand how matter behaves optically, an obvious ingredient is missing—light.
Throughout this work, a semiclassical approach will be used to describe any light–
matter interactions. This is to say that any electromagnetic field are taken as classical
fields, while the carriers in the crystal are treated quantum mechanically. Maxwell
Equations provide the fundamental relationship between electromagnetic fields and
matter.

This relationship is not easy to quantify for most part: it is a feedback-based hierar-
chy of external and induced fields which act as a response to the external disturbance
on their charge configuration. Finding macroscopic quantities that describe these two
different types of contributions is at best challenging.

Light is classically understood, at the macroscopic level, by the specification of the
electric fieldE(r, t) and the magnetic fieldB(r, t). Depending on the coupling profile,
matter will respond to the perturbation. In the simplest picture, a charge distribution
will take place, leading to the medium polarisation. Dynamical charge distributions
create electric currents in the sample. The harmonic composition of such currents acts
in many ways as a means to probe the light–matter interactions. However intuitive,
this picture completely overlooks the difficulty of obtaining reliable estimates of such
quantities.

To further complicate the task, these estimates depend hugely on which optical
excitation regime is chosen. A rough separation of affairs concerns the electric field
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intensity. If the macroscopic polarisation responds linearly to the electric field, the
system is said to be excited in the linear optical regime. Otherwise, it is known as
nonlinear. It is known, and somewhat expected, that there is a remarkable qualitative
departure from the linear regime when the field intensity becomes large, leading to a
modification of the optical properties of the material itself when probed. Therefore,
these properties are field-dependent and thus frequency-dependent, in highly nontrivial
ways.

The features are also strictly dependent on the features of the medium and a gener-
alisation of the principles is not easy to achieve. The advancement of highly-coherent
laser devices, with which intense monochromatic beams can be created reliably in
the femtoscale has revolutionised the field, has provided to be a reliable platform to
study intense excitation regimes. The field of Nonlinear Optics has been irrevocably
linked to the methods and mechanisms that provide the framework for understanding
harmonic generation, sum and difference-frequency generation, saturable absorption,
self-induced transparency [50] and many other concepts not found in the more usual,
linear branch of Optics [51, 58] and has inspired more general treatments such as
Quantum Optics [59], where full quantum-mechanical properties of both matter and
light fields are taken into account.

Not surprisingly, the linearity of the spectrum of massless Dirac fermions makes
graphene an interesting platform to probe many optical phenomena. For instance,
diffusive electron transport and temperature-dependent resistivity and conductivity
vary from what is expected of a conventional semiconductor [60, 61].

As will be showed in Sect. 4.3, when excited with a weak electromagnetic field, a
graphenemonolayer absorbs all frequencies with the same efficiency of approximately
2.3%. Fascinatingly, this rate is not dependent on any excitation parameter, rendering
it universal, given by the fundamental constants:

π
e2

4πε0�c
= παQED, (49)

where αrm QE D is the fine-structure constant in Quantum Electrodynamics. Related to
this behaviour is the conductivity of a graphene sheet, which is also a constant [62]
and related to the quantum of conductance 2e2/h, as:

σ0 = e2

4�
. (50)

The frequency-dependent character of the conductivity as the excitation energy is
increased may be appreciated in [63]. Despite the existence of defects and other envi-
ronmental factors, the universal optical conductivity has been been experimentally
verified in the spectral range of 0.2–1.2 eV [64].

In this section, a brief review of the necessary main optical and optoelectronic
properties of graphene is given. The techniques needed to introduce light interactions
within the formalism just exposed will also be presented. With them, a calculation
of the electric dipole moment induced by photon absorption is presented and used to
compare the same quantity that is found for semiconductors. To make sense of what
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is meant by a weak field, a rather brief review of the concepts of linear optics will be
given here and used in later sections to retrieve results pertaining to this regime.

4.2 Semiclassical light–matter interactions

4.2.1 Nonlinear susceptibility

For simplicity, a space-independent electric field E(t) is considered for now. The
(macroscopic) polarisation P(t) is normally obtained through expansion in powers of
the field, as explained in detail in the book by Boyd [51],

P(t) = ε0

(
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·

)

≡ P(1)(t) + P(2)(t) + P(3)(t) + · · · , (51)

where ε0 is the permittivity of free space. The quantity χ(i) denotes the ith order of the
electric susceptibility. The information about the optical properties of the material is
encoded in it. Since the electric field is input as a scalar, the susceptibility is a constant,
dependent on the material.

Given the nature of the expansion, each order of the polarisation P(i) ≡ ε0χ
(i)Ei

only makes sense if subsequent terms become smaller i.e. P(i) > P(i+1). Field
intensities for which this expansion is broken are exceedingly high. For instance, an
estimation of the susceptibility of a hydrogen atom leads to a second-order suscepti-
bility χ(2) ≈ 1.94×10−12 mV−1 and a third-order susceptibility χ(3) ≈ 3.78×10−24

m2V−2 [51]. A critical electric field intensity is then:

Ecrit ≈ χ(2)

χ(3)
, (52)

leading to a critical intensity Icrit estimation of the order:

Icrit = 1

2
ε0cE2

crit ≈ 3.4 × 1020 Wm−2, (53)

a rather large value. It is therefore generally safe to assume the expansion ismeaningful.
If the electric field is now a vector field E = (Ex , Ey, Ez), the susceptibility is
much more complicated. Each expansion of it, χ(i+1), becomes a rank-(i + 1) tensor.
Anisotropic media need to be necessarily treated in this fashion.

The j th component of the polarisation is now expressed as [65]:

Pj = ε0

⎛

⎝
∑

k

χ
(1)
jk Ek +

∑

k,l

χ
(2)
jkl Ek El +

∑

k,l,m

χ
(3)
jklm Ek El Em + · · ·

⎞

⎠ . (54)

This formula assumes an instantaneous response: that the polarisation at a time t only
depends on the susceptibility at that instant. In reality, the response depends on past
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times t ′ < t too, leading to a more general form for the polarisation:

Pj (t) = ε0

[ 3∑

k=1

∫ ∞

0
χ

(1)
jk (τ )Ek(t − τ)dτ

+
3∑

k,l=1

∫ ∞

0
χ

(2)
jkl (τ )Ek(t − τ1)El(t − τ2)dτ

+
3∑

k,l,m=1

∫ ∞

0
χ

(3)
jklm(τ )Ek(t − τ1)El(t − τ2)Em(t − τ3)dτ + · · ·

]
, (55)

where τ denotes a vector τ = (τ1, τ2, τ3, . . .), with its differential being dτ =
dτ1dτ2dτ3 . . ..

In this fashion, the linear and nonlinear contributions can be retrieved easily. In
particular, the first-order susceptibility tensor χ(1) is a matrix that describes the linear
part of the polarisation. If only the linear contribution is considered, Eq. (55) allows
a simple decomposition to be made:

P(t) = ε0

∫ ∞

0
χ(1)(τ )E(t − τ)dτ. (56)

If Eq. (56) is Fourier-transformed, i.e. by obtaining the frequency-dependent polari-
sation and electric field:

P(ω) ≡ 1

2π

∫ ∞

−∞
P(t)e−iωtdt

E(ω) ≡ 1

2π

∫ ∞

−∞
E(t)e−iωtdt, (57)

one can see that a non-instantaneous response leads to a frequency-dependent sus-
ceptibility χ(1)(ω), a phenomenon that leads to a particular dispersion profile of the
medium. It can be simply obtained by the Convolution Theorem:

P(ω) = ε0χ
(1)(ω)E(ω). (58)

This equation defines the linear response of the system to the electric field. Interest-
ingly, the first nonlinearity in most materials is found when considering the third-order
term in the expansion i.e. the second-harmonic susceptibility contribution is null.

The condition for this phenomenon to occur is related to the centrosymmetry of
the material: whether the lattice has the property for which the mapping r �→ −r
preserves its structure. To appreciate the role of centrosymmetry in second-order sus-
ceptibility, onemust simply consider a simple homogeneous instantaneously-polarised
medium [51]. Then, from Eq. (51), its corresponding second-order contribution to the
polarisation is simply:

P(2)(t) = ε0χ
(2)E2(t). (59)
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It can now be seen that if E �→ −E , then P(2) �→ P(2). However, if the system is
centrosymmetric, P(2) must also change signwhen the electric field does. This leads to
the conclusion that P(2) must vanish. Since both ε0 and E(t) do not vanish, it follows
that χ(2) does i.e. χ(2) = 0.

This conclusion has deep consequences. For graphene, in particular, this means
that εk = −ε−k, since graphene is a centrosymmetric material and, therefore, doesn’t
exhibit any second order nonlinearity, i.e., χ(2)

graphene = 0. A more detailed discussion,
involving crystal symmetry and group theory, on the reason and justification of this
for materials with the same symmetry class of graphene can be found in the book by
Lax [52].

4.2.2 Minimal substitution

To couple light to electrons in a crystal structure, an accurate scheme to introduce
the light contributions into the Schrödinger equation, the equation which models the
dynamics of the carriers, must be found. Simple gauge arguments suffice and lead
to the establishment of two additional fields: the electromagnetic vector potential A
and the electromagnetic (scalar) potential U . These arguments are briefly presented
in this Section, but further details on them can be found in any standard textbook
on electrodynamics, such as the excellent book by Jackson [53] or Stratton [54].
Semiclassically, the interaction of radiationwithmattermaybe appropriately obtaining
by applying the minimal substitution—a change of the electronic momentum through
the vector electromagnetic potential as given by:

p �→ p − q

c
A = p + e

c
A, (60)

where q = −e is the electron charge. The relevance of these fields can be understood
by symmetry considerations: a free electron in the lattice is described by the time-
dependent Schrödinger equation:

i�
∂

∂t
ψ(r, t) +

[
�
2

2m
∇2 + V (r)

]
ψ(r, t) = 0, (61)

where V (r) is the lattice potential introduced in Eq. (2). If a physically irrelevant phase
χ(r, t) is applied to one of its solutions in the form of the local gauge transformation
�(r, t) �→ �(r, t)eiχ(r,t), the Schrödinger equation must be changed to:

i�
∂

∂t
�(r, t) +

[
�
2

2m

(
∇ + ie

�
A
)2

− eU + V

]
�(r, t) = 0, (62)

To comply with the invariance of the probability density |�(r, t)|2. In this fashion, the
equation was made gauge-invariant under such gauge transformation. Consequently,
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the potentials must transform as:

A(r, t) �→ A(r, t) − �

e
∇χ(r, t),

U (r, t) �→ U (r, t) + �

e

∂

∂t
χ(r, t), (63)

meaning both potentials are gauge-dependent and not physical. The physical electro-
magnetic fields can be unambiguously defined via:

E = −∇U − 1

c

∂

∂t
A,

B = ∇ × A, (64)

with the identification to the momentum operator p ≡ −i�∇ was used, the minimally-
coupled Hamiltonian takes the form:

H = 1

2m

(
p + e

c
A(r, t)

)2 − eU (r, t) + V (r). (65)

The electromagnetic four-potential aμ ≡ (U ,A), whereA denotes the three Carte-
sian components of the electromagnetic vector potential A, is not uniquely defined
given the constraints of Eq. (63). A useful complete gauge choice, and one that will
be extensively used in all theory and simulations developed in this work, is known as
the radiation gauge, achieved by the requirements that ∇ ·A = 0. The scalar electro-
magnetic potential can be set to U (r, t) = 0. In this way, E(r, t) is related to A(r, t)
simply as:

E(r, t) = −1

c

∂A(r, t)

∂t
. (66)

4.2.3 Dipole approximation

Another assumption that simplifies subsequent calculations is given by the dipole
approximation. The details of this approximation can be found in the book by Jackson
[53], or in more advanced textbooks, like the book on quantum optics by Loudon [55]
or Cohen-Tannoudji [56]. The electric field E(r, t) associated with light, under some
circumstances, may be assumed to be a function of time only. This results in no spatial
dependence when considering the effects of light on the dynamics of an electron.
The optical fields (both applied and induced) are supposed to have characteristic
wavelengths much larger than the next-neighbour separation and the atom diameter.
For instance, the applied electric field E(r, t), here taken in the form of a continuous
wave, remains uniform throughout the whole carbon atom since, for an atom sitting
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at r = r0:

E(r0 + r, t) = E(t)eik·(r0+r)

= E(t)eik·r0
(
1 + ik · r − (k · r)

2! + · · ·
)

≈ E(t)eik·r0 , (67)

where the approximation k · r � 1 was explicitly used. The same reasoning can be
applied to the electromagnetic vector potential A(r, t).

4.2.4 Slowly varying envelope approximation

In general, and in the context of pulsed excitations, E(r, t) is a fast-oscillating wave
over many optical cycles, bounded by an envelope E(r, t). This field configuration
does not admit, in general, analytical solutions to dynamical equations which depend
on it. Therefore, it becomes impractical—if not impossible—to retrieve E from its
primitive, A, as Eq. (66) suggests.

To find a method to relate E(r, t) toA(r, t), the Slowly Varying Envelope Approx-
imation (SVEA) allows a huge deal of complexity to be removed from many models,
while keeping the same physical information of the pulse. This of course is contingent
on excitation conditions.

Generally, an electric field E(r, t), of optical frequency ω0 may be decomposed
through its envelope E(r, t):

E(r, t) = 1

2

(
E(r, t)e−iω0t + E∗(r, t)eiω0t

)
, (68)

and likewise for A(r, t) with envelope A(r, t):

A(r, t) = 1

2
(A(r, t)e−iω0t + A∗(r, t)eiω0t ). (69)

Inserting Eqs. 68 and 69 into Eq. 66 yields

1

2

(
E(r, t)e−iω0t + E∗(r, t)eiω0t

)
= − 1

2c

(
Ȧe−iω0t − iω0e−iω0tA

)
, (70)

which leads to the following relation between the field envelopes (Fig. 3):

E = −1

c
(∂t − iω0)A. (71)

The Slowly Varying Envelope Approximation may now be used: one may assume that
the temporal rate of change of the envelope is negligible, i.e. |∂tA| � ω0 |A|. Then:

E ≈ iω0

c
A ⇔ A ≈ − ic

ω0
E . (72)
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Fig. 3 A typical electric field
E(r, t) pulse profile in the time
domain (gray line), bounded by
its envelope (blue thick line).
The pulse is well described by its
envelope if it is fast-oscillating

4.2.5 Optical absorption

As the field penetrates the medium, the intensity of its corresponding electric field will
decay. This decay can be associated with the sample’s absorption. To quantify this
process, the refractive index n(ω) is defined as:

n(ω) =
√

ε(1)(ω) =
√
1 + χ(1)(ω), (73)

where the dielectric function ε(ω) quantifies the electric permittivity of the material
when excited at a frequencyω. At this point, the reader should bewarned, that assigning
a refractive index to a 2D material in not formally correct, as by nature, the refractive
index is a concept associate to the bulk of a material, and not its surface. Nevertheless,
we can imagine associating, by analogy, a refractive index to graphene, so that we
can continue using standard optical techniques to describe its reflection, transmission,
and absorption properties. This is possible, for example, by depositing a single layer
of graphene onto a substrate and then calculate the effective refractive index of the
graphene+substrate compound with the so-called transfer matrix method, described in
the book by Born and Wolf [57]. For the case of two-dimensional materials without a
substrate, the background contributions to these two quantities will not be considered.
If they were, they would lead to a renormalisation of the field speed and the dielectric
function [61]. In this case, however, the concept of refractive index should be taken
more as an analogy, than a real physical concept, that allows one to use the standard
techniques of optics to evaluate the linear light–matter interaction at the macroscopic
level, using standard optics tools.

Also notice that in general, both the permittivity ε(ω) and the susceptibility χ(1)(ω)

are tensorial quantities (to be precise, they are both rank 2 tensors). However, in
this work we deliberately use scalar quantities, corresponding to optically isotropic
graphene, to keep the description simple and focus on the physical meaning, rather
than on the general formalism. The interested reader can find more information on
both the nature of the refractive index and the tensorial nature of permittivity and
susceptibility of materials in any standard book of nonlinear optics, such as that of
Boyd [51] or Shen [58].

As the pulse propagates throughout the sample, the field wavevector, which is not
to be confused with the electronic wavevector k, will satisfy a dispersion relation,
determined by the medium’s frequent-dependent properties:

q(ω)2 = ω2

c2
n2(ω) = ω2

c2
ε(ω). (74)
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The field will have its intensity decreased as it penetrates the material. If this decay is
exponential, then:

E(r, t) = E(0, t)exp(iq · r) = E(0, t)exp
(

i
ω

c
(n

′
(ω) + in

′′
(ω)) · r

)
, (75)

where the refractive index has been split in its real and imaginary parts n(ω) ≡
n′(ω) + in′′(ω). The damping is consequently related to the imaginary part of the
refractive index.

Assuming the wave only propagates in the direction perpendicular to the plane
occupied by the sample, its intensity may be computed as the average of the Poynting
vector S(r, t):

S(z, t) = |E(z, t) × H(z, t)| =
√

ε0

μ0
|E(z, t)|2 ẑ, (76)

and therefore proportional to |E|2. The auxiliary magnetic field H is simply pro-
portional to the magnetic field density B since no magnetisation is present. If the
time-dependent term is averaged, the spatial dependence on the intensity may be writ-
ten as I (z) = I0e−α(ω)z given that:

〈S(z)〉 = ε0

μ0
〈E2(0, t)〉exp

(
−2

ω

c
n′′(ω)z

)
. (77)

In this way, and attending to the definition in Eq. (73) and Taylor-expanding it up to
first-order, the absorption coefficient α(ω) is:

α(ω) = 2
ω

c
Im

(√
1 + χ(1)(ω)

)
≈ ω

c
χ(1)′′(ω), (78)

where the susceptibilitywas alsowritten asχ(1)(ω) ≡ χ(1)′(ω)+iχ(1)′′(ω). This result
will be used for Eq. (157), where the explicit evaluation of the linear susceptibility
leads to the prediction of the law of universal absorption of graphene.

4.3 Optical response

With all these ingredients presented, the light–matter coupling can be included in the
Hamiltonian describing massless Dirac fermions. To do this, the minimal substitution
that was given in Eq. (60) is applied to the Hamiltonian of Eq. (34):

Hk → vFσ · (p + e

c
A) = vFσ · p + evF

c
σ · A(t)

≡ H0 + Hint(t), (79)
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naturally yielding the explicit interaction term Hint . In SVEAconditions, Eq. 72 allows
the interaction operator to be expressed in terms of the electric field envelope:

Hint(t) = − ievF
2ω0

σ · E, (80)

which, if compared to the standard electric dipole moment operator μ, satisfying
Hint(t) = −μ · E(t), allows one to find the following representation of the electric
dipole operator for massless Dirac fermions:

μ̂ = ievF
2ω0

σ̂ . (81)

4.3.1 Electric dipole moment

With a representation of the interaction, the associated electric dipole moment, the
observable of this operator, is simply its expectation value. Conveniently, the calcu-
lation of expectations of a position-independent operator Q̂ is easily achieved due to
the orthogonality of the plane waves associated with different |λk〉 states, since (Fig.
4):

∫

R2
�

†
λ′,k′(r)Q̂�λ,k(r)d2r = 〈λ′k′|Q̂|λk〉

∫

R2
ei(k−k′)·rd2r

= (2π)2

A
δ(k − k′)〈λ′k′|Q̂|λk〉, (82)

where the following identity for the p-dimensional Dirac δ function was used:

(2π)pδ(p)(k − k′) =
∫

Rp
ei(k−k′)·rd pr, (83)

Fig. 4 If carrier–carrier
interactions are ignored, the only
transitions are vertical and are
between two energy eigenstates,
effectively making it a two-level
system. Due to the conical
dispersion, any optical
frequency will be in resonance
with a suitable two-level system
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the expectation value of Eq. (82) vanishes for k′ �= k, implying that only transi-
tions where the initial and final states have the same momentum are allowed (vertical
transitions i.e. k = k′:

∫

R2
�

†
λ′,k(r)Q̂�λ,k(r)d2r = 4π2

A
〈λ′k|Q̂|λk〉. (84)

Furthermore, two kinds of transitions at k can be differentiated: interband transi-
tions, satisfying λ′ = −λ and intraband transitions, satisfying λ′ = λ. The matrix
elements of the dipole moment operator μ̂ for a Cartesian component j are thus sim-
ply:

μ
λ,λ′
i (k) = 〈λ′k|μ̂i |λk〉, (85)

with the knowledge of the SVEA representation of Eq. (81), the contribution to both
in-plane coordinates x, y can be obtained.

For instance, the x component satisfies:

〈λk|μx |λ′,k〉 = ievF
2ω0

〈λk|σx |λ′,k〉 = ievF
4ω0

(
eiφk/2 λe−iφk/2

) (0 1
1 0

)(
e−iφk/2

λ′eiφk/2

)

= ievF
4ω0

(
λ′eiφk + λe−iφk

)

=
{

iλevF
2ω0

cosφk for λ′ = λ (intraband)
λevF
2ω0

sin φk for λ′ = −λ (interband)
. (86)

Similarly, the y component has:

〈λk|μy |λ′,k〉 = ievF
2ω0

〈λk|σy |λ′,k〉 = − evF
4ω0

(
eiφk/2 λe−iφk/2

) (0 −1
1 0

)(
e−iφk/2

λ′eiφk/2

)

= − evF
4ω0

(
−λ′eiφk + λe−iφk

)

=
{

iλevF
2ω0

sin φk for λ′ = λ (intraband)
λevF
2ω0

cosφk for λ′ = −λ (interband)
. (87)

This quantity has dimensions [μ] = QL/T
1/T

= [Q][L] as expected since classically, one
has μ = −e · r.

How to interpret the effects of the interaction Hamiltonian on the eigenstates? In the
picture that has been developed so far, electronic excitations can be collected according
to their energy, giving rise to bands. In suitable resonant conditions, photon absorption
leads to a change of the charge distribution throughout the sample, conceptualised as
the creation of a polarisation field. To quantify this change at a fundamental level, the
mechanism of photon absorption can be thought of as the creation of a dipole between
the newly-promoted valence electron to the conduction band and the vacant state in the
valence band, since they carry opposite charges. This dipole thus create an attractive
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Coulomb interaction. In the quasiparticle picture, a photon of energy �ω0 may, given a
vertical energy separation between a valence and conduction bands �ε < �ω0 induce
an electronic excitation of that electron. This process is thus equivalent to the creation
of a hole in the valence band and an electron in the conduction band.

Given the gapless nature of the spectrum, a spectrally-distributed pulse will have a
frequency component resonant with some two-level system of a fixed momentum k.
In this setting, graphene is idealised as an infinite, non-interacting two-level system.
This is a central concept throughout this work and will be dealt with in more detail in
Sect. 5.2.

4.3.2 Fine structure constant˛G

Without the machinery of linear optics which was just introduced, the law of universal
absorption can be obtained using Fermi’s golden rule. If the light–matter interaction
described by the dipole-field term in the Hamiltonian of Eq. 34 is treated as pertur-
bation, Fermi’s golden rule may be used to estimate the transition rate of valence to
conduction electronic eigenstates.
The application of this approach is well justified as all calculations have been per-
formed in the low field limit

The transition rate from |−λ,k〉 to |λ,k′〉 is:

T|−λ,k〉→|λ,k′〉 = 2π

�
|〈λk′|μk,k′ · E | − λ,k′〉|2g(εk′). (88)

Here, g(εk′) is the density of states at the energy of the final state |λ,k′〉. The optical
dipole matrix M for vertical transitions in k is diagonal. Using the symmetry of
the treatment in either the x or y components, one may, without loss of generality,
considerμx,k, given in Eq. (86). Again, considering the interband transitions λ′ = −λ

and k′ = k, M reads:

Mkk′ = [μkE ]δkk′ = evF
2ω0

sin(φk)E . (89)

This quantity is now angle-averaged i.e. 〈 f (φ)〉 ≡ 1/(2π)
∫ 2π
0 f (φ)dφ:

|〈μkE 〉|2 = e2v2F
4ω2

0

|E |2〈cos2(φk)〉 = e2v2F
4ω2

0

|E |2
∫ 2π
0 sin2(φk)dφk

2π
= e2v2F

8ω2
0

|E |2. (90)

In perfect resonance, at a transition energy ε0 exactly equal to the difference energy
between the initial and final states of δεk = 2εk, one has ε0 = εk/2 and the density
of final states is therefore:

g(ε0) = 2

π�2v2F

�ω0

2
= ω0

π�v2F
. (91)
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At this energy, the transition probability, the transition happens atk = k0 (thewavevec-
tor of the external electromagnetic wave), Tω0 takes the form:

Tω0 = 2π

�
|〈−λk0|μk0 · E |λ,k0〉|2g(ε0)

= 2π

�

e2v2F
8ω2

0

|E |2 ω2
0

π�v2F
= e2

4ω0�
2 |E |2. (92)

Therefore, the power of the absorbed radiation is PABS = Tω0ε0 = Tω0�ω0, whereas
the total power input by the radiation field is PIN = c

4π |E |2. The optical absorption
α(ω0) is given by their ratio:

α(ω0) = PABS

PIN
= 4πTω0�ω0

c|E |2 =
e2|E |2
4�

c|E |2
4π

= πe2

�c
= παQED, (93)

where αQED is the fine-structure constant from Quantum Electrodynamics (QED).
Measurements of the universal absorption have been reported in Fig. 1 of [66]. Two
features are prominent: (i) the decrease in the light transmittance isπα ≈ 2.3%and (ii)
this value is a constant for all wavelengths. This result explains why graphene, unlike
its related allotrope graphite, is optically transparent. The inset on the right shows
how the number of graphene layers impacts the absorbance. Naturally, by around five
layers the overall absorption is far greater and, for such a reduced number of layers,
this decrease occurs in units of the monolayer absorbance αG.

This constant also leads to other fundamental considerations regarding the nature of
quantumfield theories applied to graphene. This discussionwill bemade in Sect. 5.6.1.
In Sect. 5.11, this same result will be obtained via a rather different method, wherein
the Semiconductor Bloch Equations will provide a numerical validation of this result.

4.3.3 A qualitative comparison to semiconductors

The dipole moment calculated in the last section is vastly different to what is normally
expected of semiconductors. It is therefore instructive to see the qualitative difference
between their optical transitions. For the case of a simple free-electron in a semicon-
ductor the optical dipole matrix element changes depend on the modulus of k. For
a quadratic dispersion, with bands separated by � at k = 0, it can be written as a
Lorentzian curve [60]:

μλλ′(k) = μλλ′(0)
�

� + �2|k|2
2

(
1

me
+ 1

mh

) , (94)

whereme andmh correspond respectively to the electron and holemasses of each band.
Unlike the electrons in graphene, the electron and hole states in a semiconductor have
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a non-zero effective mass, determined by the curvature of their dispersion branch:

mi = �
2
(

∂2εi (k)

∂k2

)−1

. (95)

For graphene, the dipole moment can be seen to be inversely proportional to the
optical frequency and hence the electron–hole separation r = μ/e, for a fixed k.
Importantly, this quantity is not-well defined for k = 0, i.e. at the Dirac points.
In fact, the terms cosφk = kx/|k| and sin φk = ky/|k| defining the eigenstates in
Eq. (86)–(87), are undefined at k = 0. This is easily understandable since the two-
level system becomes degenerate there, given the band-touching. Charge separation
may be inferred from measurements of the dipole moment. For instance, for a pulse
of frequency ω0 = 484 THz (visible, red radiation), the optical dipole moment is
determined to be |μ| ≈ 6.88× 10−8 e cm, corresponding to a separation of r = 6.88
Å= 2.88a.

5 The semiconductor Bloch equations

5.1 Overview

The previous section was mainly concerned with the electronic properties of a general
condensed matter system, in the presence of of an underlying lattice configuration.
Subsequently, the two bands of the π electrons in graphene predicted in tight-binding
conditions were obtained in Sect. 2.2. These lead to two valleys, located at two special
points termed Dirac points, where the dispersion is linearly proportional to the crystal
momentum.

Having exposed the treatment underlying electrons in a lattice and a classical elec-
tromagnetic field, this section focuses on how to couple both elements. This task will
be implemented using the framework of a two-level system, a ubiquitous concept
permeating many areas of Physics. In particular, this section is devoted to one such
implementation, which became known as the Semiconductor Bloch Equations (SBEs).

The modus operandi behind the SBEs stems from well-established equations,
known as the Optical Bloch Equations (OBEs) or sometimes the Maxwell–Bloch
Equations which describe the dynamics of a single two-level system when coupled to
light, in particularly useful conditions. The first realisations of such systems came from
Atomic Physics, where energy levels in particular atomic systems can be manipulated
to achieve population inversion, leading to the first successful physical realisation of
the laser [67].

The notion that a many-body quantum system like a semiconductor, encoding
numerous complex scattering and responses when excitedwith light, may be described
with two-level systems is perhaps unanticipated. It turns out that the versatility of a
two-level treatment is excellently suited to treat light–matter interactions in many
condensed matter systems. The SBEs offer a striking and revolutionary application of
these principles in the realms of condensed matter physics.
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Research within this formalism has been intensively applied to semiconductors [60,
69–71] and it has been extremely successful in explaining many phenomena such as
dipole-dipole effects in dense media [72, 73], Rabi oscillations [74, 75] and optical
bistability [76], self-induced transparency [50] and even single-mode inhomogenously
broadened lasers [77]. The effect of ultrashort pulses on dense semiconducting media
was studied not long after the SBEs were formulated [76]. The scope of the SBEs can
be expanded to allow various incoherent and scattering contributions in the carrier
dynamics to be considered [78].

Theoretical approaches to model the nonlinear dynamics of graphene typically rely
on the Boltzmann transport equation, accounting only for intraband electron dynamics
[33]. As a zero-gap semiconductor, the SBEs have been applied to graphene [79] by
adapting the conical dispersion to the usual dispersion of a semiconductor in order to
account for the interband dynamics only.

Not surprisingly, the main goal of this section is thus to present results concerning
the application of the SBEs to monolayer graphene. To achieve that, the OBEs shall
be derived and discussed as a means of introducing the necessary jargon and concepts
to obtain the SBEs, whose predictions are analysed in Sect. 5.10. The main success
of the SBEs lies on the linear optical regime, wherein many well-established results
in the literature may be retrieved, providing a validation of these models to model
light–matter interactions accurately in such regime. In particular, the direct propor-
tionality between the absorption and the fine structure constant in graphene, discussed
in Sect. 4.3.2, may be retrieved. Conveniently, this regime also allows for analytical
solutions of the SBEs to be obtained in special probing conditions, which are derived
in Sect. 5.7.

5.2 The theory of two-level systems

The building blocks of any of themodels that will be presented throughout this Review
are what physicists like to term ’two-level systems’. Many realisations of this concept
may be obtained in various branches of both Physics and Mathematics, varying from
qbits, extensively exploited for Quantum Computing and Information, both theoreti-
cally [80] and experimentally [81], to the dynamics of a spin-1/2 particle interacting
with a time-dependent magnetic field, for instance by Rabi as early as 1937 [82]. In
the realm of Condensed Matter Physics, a myriad of systems display features that
can be understood in such a framework. An excellent starting point for studying the
physics of two level systems is the excellent book by Allen and Eberly [67]. For the
more quantum-information-oriented reader, good introductions to two-level systems
can be found in the books by Gruska [80] and Nielsen and Chuang [68].

It is surprising howmanyphysical systems can be adequately described by two-level
systems, given how simple it can be understood mathematically. A two-level system
refers to a quantum system whose features can be fully captured by a superposition
of two independent states, here denoted by the lower ket |1〉 and upper ket |2〉. The
representation in which states from the underlying two-dimensional Hilbert space are
presented is irrelevant at this level. For most applications to quantum systems, one
would choose the space representation |ψμ(r)〉 ≡ 〈r|i〉, with i = 1, 2.
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In this framework, the system dynamics can always be described, in this basis, with
the aid of a ket-state |ψ(t)〉

|ψ(t)〉 = c1(t)|1〉 + c2(t)|2〉 = c1(t)

(
1
0

)
+ c2(t)

(
0
1

)
=
(

c1(t)
c2(t)

)
, (96)

i.e., a linear combination of two states, described by a column vector, determined by
suitable coefficients ci (t). The element |ci (t)|2 will evidently return the probability
per unit time of observing the system in the state |i〉. The basis is now assumed to
be comprised of the eigenstates of the Hamiltonian of the system, H0, with energies
as given by H0|i〉 = εi |i〉. The general state of Eq. (96) must therefore solve the
Time-Dependent Schrödinger Equation:

i�
d

dt
|ψ(r, t)〉 = H0|ψ(r, t)〉, (97)

whose solution is straightforwardly given by:

|ψ(r, t)〉 =
∑

i

ci exp

(
− iεi t

�

)
|ψi (r)〉. (98)

where ψi (r) are eigenstates of H0 and ci the weight of such eigenstates in the linear
superposition.

An important consequence of the existence of such a basis is that an Hermitian Q̂
operator acting on the state space may always be written in the form:

Q̂ =
(

α γ e−iθ

γ eiθ β

)
, (99)

provided α, β, γ and θ ∈ R. Clearly, Q̂ = Q̂†. Such operators are obviously of
importance since their eigenvalues are real. To obtain a matrix representation of such
operator in this particular basis, one may exploit the fact that there must be 2 × 2
linearly independent operators, the projectors, acting on the ket-space and defined
as the outer product |i〉〈 j |, (i, j = 1, 2), with the aid of the completeness relation∑

i |i〉〈i | = I, I being the identity operator.
The Hamiltonian H0 is thus easily found to be:

H0 = I · H0 · I =
(
∑

i

|i〉〈i |
)
H0

⎛

⎝
∑

j

| j〉〈 j |
⎞

⎠ =
∑

i, j

|i〉〈i |H0| j〉〈 j |

=
∑

i, j

|i〉ε jδi j 〈 j | =
∑

i

εi |i〉〈i | = ε1|1〉〈1| + ε2|2〉〈2|

=
(

ε1 0
0 ε2

)
. (100)
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The system thus far does not seem very interesting: each state of Eq. (98) will oscillate
sinusoidally at its particular frequency ωi = εi/�. The HamiltonianH0 is interpreted
as being determined and known—after all this is why onemay assume that the energies
of such states are known.What if the two-level system is now coupled to a perturbation
that modifies such energies and perhaps even the basis? In that instance, the dynamics
could in principle become exceedingly complex, in turn leading to a much more
challenging task of computing the time evolution of the coefficients ci (t).

A feasible way to incorporate interactions with the two-level system is to write the
Hamiltonian of the system as a sum of a Hamiltonian known for a particular regime
and a perturbation part as H = H0 + HI. The expected value of such a perturbation
is then:

〈ψ(t)|HI|ψ(t)〉 = (c∗
1(t)〈1| + c∗

2(t)〈2|)HI(c1(t)|1〉 + c2(t)|2〉)
= |c1(t)|2〈1|HI|1〉 + |c2(t)|2〈2|HI|2〉

+ c1(t)c2(t)
∗〈2|HI|1〉 + c2(t)c1(t)

∗〈1|HI|2〉. (101)

This interaction will be assumed to only induce a perturbation between the two states,
meaning that 〈i |HI|i〉 = 0. This assumption is generally warranted, as will be seen
in Sect. 5.4, when the interaction Hamiltonian will be explicitly given. In the same
fashion, the matrix form of such a general interaction Hamiltonian may be obtained
as:

HI = I · HI · I =
(
∑

i

|i〉〈i |
)
HI

⎛

⎝
∑

j

| j〉〈 j |
⎞

⎠

=
∑

i, j

|i〉 〈i |HI| j〉︸ ︷︷ ︸
εIi j

〈 j | = εI12|1〉〈2| + εI21|2〉〈1|

=
(

0 εI12
εI21 0

)
. (102)

Naturally, since HI must be hermitian, one has εI12 = εI21
∗
and a polar representation

εIi j ≡ |εIi j |eiφ is possible, leading to a full Hamiltonian in the general form of Eq. (99):

H = H0 + HI =
(

ε1 |εI12|eiφ

|εI12|e−iφ ε2

)
. (103)

This step is exactly what allows light–matter interactions to be obtained between an
external optical field and the two-level system. The two-level system is a mathematical
realisation of matter, as was developed in Sect. 2.2, whereas the interaction Hamilto-
nian allows an external parameter to drive its dynamics. An appropriate form of HI
is of course necessary to ultimately solve the Schrödinger equation encompassing the
full dynamics and that is achieved in the next section.
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5.3 The optical Bloch equations

A first step to solve the dynamics of the full Hamiltonian is now given, following
the explanations provided in the book on quantum optics by Scully [59]. Another
excellent reference for optical Bloch equations is represented by the book by Koch
on semiconductor physics [60]. If the field is assumed constant in space and only
varies in time, the interaction between the atom and the field is classically written as
a dipole-like interaction:

HI (t) = −er · E(t), (104)

where both vectors are given in their Cartesian coordinates. For the sake of simplicity,
the field is now assumed to be linearly polarised in the x̂ direction. In this dipole-type
interaction, diagonal entries in the interaction Hamiltonian would imply a permanent
dipole moment and so for this treatment one shall assume that these vanish.

From Eq. (101), it can thus be seen that the system will have zero dipole moment if
the product c1c∗

2(t) �= 0 i.e. whenever the atom is in a superposition of both states. In
accordance with the expansion in the equation, the interaction Hamiltonian elements
may be split as εIi j = −E(t)μi j , where μi j = e〈i |x̂ | j〉.

Finally, the Hamiltonian matrix of Eq. (103) is applied to the general state of
Eq. (96) using the TDSE (Eq. (97)). At this stage, and for simplicity purposes, the
electric field is taken to be a monochromatic plane wave of frequency ω0, of the form
E(t) = E cos(ω0t), where E is its amplitude. Splitting the magnitude and phase of
the dipole moment μ12 = |μ12|eiφ , the following system of differential equations is
obtained:

ċ1(t) = −iω1c1(t) + i�Re−iφ cos(ω0t)c2(t)
ċ2(t) = −iω2c2(t) + i�Reiφ cos(ω0t)c1(t)

. (105)

The parameter �R = |μ12|E /� is the Rabi frequency and describes the driving fre-
quency at which the populations will oscillate when coupled to the field.

However neatly expressed, this set of differential equations is in general not possible
to be solved analytically given the fast oscillation of the coefficients. One reasonable
way out is to express the coefficients ci in terms of their slowly-varying amplitudes
c̃i = ci eiωi t . If the transition frequency is denoted by �ω ≡ ω2 − ω1, the equations
become:

˙̃c1(t) = i�R
2 e−iφ

(
ei(ω0−�ω)t + e−i(ω0+�ω)t

)
c̃2(t)˙̃c2(t) = i�R

2 eiφ
(
e−i(ω0−�ω)t + ei(ω0+�ω)t

)
c̃1(t)

. (106)

The RotatingWave Approximation (RWA) is now applied, by only keeping the coher-
ent terms i.e. terms close to resonance. Terms proportional to exp (±i(�ω + ω0)) are
therefore ignored. This is in general a good assumption for many systems. However,
as will be seen in the next section, these terms are important in dealing with ultra-
short pulses, where the notion of a slow-varying oscillation is often ill-defined, if the
frequency of the pulse is comparable with the inverse pulse duration.
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Solving this set of equations leads to the Optical Bloch Equations (also known as
the Maxwell–Bloch Equations). These were derived as far as 1965 [83] and provide
a way to describe the dynamics of a single two-level system when coupled with a
classical electromagnetic field of a single frequency mode:

c1(t) =
(

a1ei �t
2 + a2e−i �t

2

)
ei �t

2

c2(t) =
(

b1ei �t
2 + b2e−i �t

2

)
e−i �t

2 (107)

The coefficients a1/2 and b1/2 are determined by the system’s initial conditions and
provide no insight into the physics. What is remarkable is that the two-level system
is described by two characteristic frequencies, namely the detuning frequency � =
�ω − ω0 and the generalised Rabi frequency � = √�R + �2.

A sensible boundary condition is given as c2(0) = 0 and c1(0) = 1, meaning
that the two-level system is initially in the ground state. It is customary to introduce
more physically relevant dynamical variables than the coefficients themselves. Equa-
tion (102) already hinted at a definition: the polarisation p(t) = c̃∗

1 c̃2μ12 + c̃1c̃∗
2μ

∗
12

and takes the form:

p(t) = 2Re

(
i�R

�
μ12

(
cos

(
�t

2

)
+ i�

�
sin

(
�t

2

))
sin

(
�t

2

)
ei(φ+ω0t)

)
(108)

The inversion of a two-level system is defined as the difference of the occupation
probabilities and may be expressed as:

w(t) = |c2(t)|2 − |c1(t)|2 =
(

�2 − �2
R

�2

)
sin2

(
�t

2

)
+ cos2

(
�t

2

)
. (109)

Interestingly, the polarisation oscillates with the same frequency as the field. As for
the inversion, different detunings yield different Rabi cycles, reflecting different oscil-
lations profiles between the ground and excited states. For a vanishing detuning, the
system is said to be on resonance and the inversion is total—w(t) = cos(�Rt), mean-
ing that the populations will shift sinusoidally between the lower and upper states.
For extremely detuned systems, the interaction is minimal and the inversion does not
change much from its initial conditions, leading to an inversion w(t) ≈ −1.

5.4 Derivation

To understand the philosophy of the SBEs, their derivation is now shown, following the
outline presented in [60]. The main elements in it are conceptually very close to what
was presented in the previous section. The notation will nonetheless bemore suited for
a condensed matter system. In particular, the variables needed to describe the system’s
evolution will be chosen to be physically more transparent. Despite such similarities,
the density matrix of the two-level system will be used instead. The convenience of
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it relies on the fact that at no point of the derivation neither the knowledge of the
eigenstates nor the Time-Dependent Schrödinger equation are needed.

Electronic transitions in semiconductors are adequately understood with the aid
of the electronic bands that originate as an aggregate of reactive orbitals. Since the
bands are functions of the crystal momentum, it is convenient to take the two levels
as the eigenstates of the free Hamiltonian for fixed momentum k—here denoted by
|v,k〉 and |c,k〉. The energy of each state |c/v,k〉 will be denoted as εc/v,k. The
wavefunction in direct space of such states can be simply obtained by taking the scalar
product ψk(r) = 〈r|λ,k〉.

As usual, the two-level system may be generally represented as:

|ψk(t)〉 = ηv(t)|v,k〉 + ηc(t)|c,k〉. (110)

It is natural to associate the coefficients ηv and ηc to the valence and conduction bands,
respectively, given the considerations that led to Eq. (96). The density matrix of the
two-level system is simply given by the general definition:

ρk(t) = |ψk(t)〉〈ψk(t)| =
(

ηv,k(t)
ηc,k(t)

) (
η∗

v,k(t) η∗
c,k(t)

)

=
(

η2v,k(t) ηv,k(t)η∗
c,k(t)

ηc,k(t)η∗
v,k(t) η2c,k(t)

)

≡
(

nv,k(t) p∗
k(t)

pk(t) nc,k(t)

)
. (111)

Similarly to the OBEs, new dynamical variables were chosen. In this new picture,
the excitation is a combination of valence and conduction states, situated in their
respective branches of the dispersion. Subsequently, the occupation number for each
band is simply the square nc/v,k ≡ η2c/v,k, naturally a real quantity. The system is
conservative, as seen by the normalisation of the density matrix—Tr(ρk) = 1:

nc,k + nv,k = 1, (112)

which in turn implies quasiparticle number conservation and rendering the electron
and hole occupations dependent.

The microscopic polarisation was introduced as the product in the off-diagonal
entries and is a measure of the mixing of two states in the basis: only when the
excitation is in a combination of valence and conduction stateswill the productηv,kη

∗
c,k

be nonzero.
Employing the dipole approximation, the coupling to light is introduced as usual,

leading to purely off-diagonal electric dipole momentum operator, as shown in
Eq. (102):

H I
k =

(
0 −μ∗

k · E
−μk · E 0

)
, (113)
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where the dot product is performed over the Cartesian components of the field and the
dipole moment. The full Hamiltonian of the two-level system at wavevector k under
consideration is then:

Hk = H0
k + HI

k =
(

εv,k −μ∗
k · E

−μk · E εc,k

)
. (114)

Given the properties of the density matrix, it follows that for a general operator Q̂, its

expectation value may be calculated as 〈Q̂〉 = Tr
(
ρk Q̂

)
. This fact allows the energy

of the Hamiltonian of Eq. (114) to be calculated as:

〈Ĥk〉 = Tr

((
εv,k −μ∗

k · E
−μk · E εc,k

)(
nv,k p∗

k
pk nc,k

))

= εv,knv,k + εc,knc,k − pkμ
∗
k · E − p∗

kμk · E. (115)

With all necessary elements in place, the evolution of this mixed state, is determined
by the Liouville-von Neumann Equation:

ρ̇k = − i

�
[Hk, ρk] − ρ̇k

∣∣
decoh (116)

The last term was added to account for decoherence mechanisms, naturally present
in any open system. There are many ways to achieve such a term that preserves the
properties of the density matrix, the most notable being given by the Lindblad master
equation [84]. Alternatively, phenomenological decay rates γ1 and γ2, respectively
for the inversion and microscopic polarisation and whose physical relevance will be
examined in Sect. 5.6.2, may adequately be added, given that incoherent effects are
not central in this work.

In this way, the free-carrier Semiconductor Bloch equations are obtained:

ṗk + i(ωk − iγ2)pk + i
�
wkE · μk = 0 (117)

ẇk + γ1(wk − w0
k) − 2i

�
E · (μk p∗

k − μ∗
k pk
) = 0. (118)

Here, the detuning is different for each state i.e. ωk = (εc,k − εv,k)/� and therefore
dependent on the shape of the dispersion.w0

k is the equilibriumvalue of the populations
for each momentum and a broader discussion of it may be found in Sect. 5.6.2 whereas
μk is the interband dipole moment matrix element that was introduced in Sect. 4.3.1.

In the absence of dephasing i.e. for γ1 = γ2 = 0, the conservation of probability,
given by the normalisation of Eq. (112) is re-expressed in the new dynamical variables
as:

w2
k + 4|qk|2 = 1. (119)

As performed previously, these equations can be adapted to model the slowly-varying
part of the oscillations. In this case, the microscopic polarisation is split as pk =
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qke−iω0t and, using the decomposition of Eq. (68) for a space-independent electric
field E(t), the SVEA-approximated becomes:

q̇k + i(ωk − ω0 − iγ2)qk + i

2�
wkEμk = 0,

ẇk + γ1(wk − w0
k) − i

�

(
Eμkq∗

k − E∗μ∗
kqk
) = 0. (120)

The polarisation oscillates now with the detuning δk ≡ ωk − ω0. Importantly, only
terms oscillating with e−iω0t were kept. It will be seen in the next section that this
assumption is equivalent to applying the Rotating Wave Approximation.

5.5 Macroscopic polarisation

Following the discussion in Sect. 4.2, the polarisation of the medium, through its
susceptibility, which acts as a response to the interaction with an electromagnetic field,
encompasses a breadth of information about the light–matter interactions present.

The SBEs allow for the identification between the microscopic dynamics of the
two-level systems to the polarisation described by Eq. (55) to be obtained.

To obtain the time dynamics of the polarisation, the carrier-field contribution ĤF−C

from the Hamiltonian in Eq. (34) allows for a sensible definition of it, namely from
the condition:

E(t)
∑

k

(
μkα

†
kβ

†
−k + μ∗

kβ̂−kα̂k

)
= ε0V P̂(t)E(t), (121)

where the volume of the sample V = Ad is comprised of its area and the atomic
thickness d ≈ 0.33 nm and ε0 the electric permittivity of free space. The polarisation
operator is thus:

P̂(t) = 1

ε0V

∑

k

(
μkα

†
kβ

†
−k + μ∗

kβ̂−kα̂k

)
, (122)

with the aid of the density matrix of Eq. (111), its expectation value, describing the
time dynamics of the polarisation is:

P(t) = 〈P̂〉 = T r(P̂ρk) = 1

ε0V

∑

k

Tr

((
0 μ∗

k
μk 0

)(
nv,k p∗

k
pk nc,k

))

= 1

ε0V

∑

k

pkμ
∗
k + p∗

kμk. (123)

Furthermore, since the polarisation is real-valued, and all dipole moments rotate with
the frequency of the incident field, the following decomposition is possible:

P(t) = 1

2

(
Q(t)e−iω0t + Q∗(t)eiω0t

)
. (124)
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Equating (124) to (123) and again decomposing themicroscopic polarisation via pk =
qke−iω0t , give:

1

2

(
Q(t)e−iω0t + Q∗(t)eiω0t

)
= 1

ε0V

∑

k

μ∗
kqke−iω0t + μkq∗

keiω0t . (125)

The polarisation can thus be obtained by adequately calculating thek-dependent polar-
isation, weighting it by the dipole moment and average this quantity over momentum
space:

Q(t) = 2

ε0V

∑

k

μ∗
kqk(t). (126)

This scheme is rather useful. If the SBEs can be numerically retrieved, it is, in principle,
possible to produce the macroscopic polarisation of the sample due to the optical
excitation. This is exactly what shall be done in the Sect. 5.10.

5.6 Additional effects andmechanisms

5.6.1 Coulomb interactions

A major question not discussed up to this stage concerns the addition of Coulomb
interactions. After all, electron–electron interactions are the fundamental mechanism
driving an overwhelming number of phenomena in compounds and structures. To
introduce such effects, and in view of what has been developed so far, two-level
systems at different momenta must be able to exchange energy.

Rather surprisingly, their effect can be beautifully understood in terms of the pic-
ture so far developed. Equations(117)–(118) are coupled in two variables at the same
k. Once a Coulomb potential is introduced in the dynamics of the carriers, the corre-
sponding optical variables depend on any other across momentum space, meaning all
two-level systems are now coupled.

The effective consequence is that the two-level systems suffer a renormalisation of
all the parameters so far discussed. To see this, a second quantisation of the Hamil-
tonian is more suitable. The interested reader can find an extensive discussion on the
renormalisation of Coulomb interactions in semiconductors in the book by Koch [60].
In the remaining of this Section, we are going to sketch out this procedure, using the
language of second quantisation, i.e., using fermionic creation and annihilation oper-
ators. The unfamiliar reader, however, can skip the rest of the section entirely and just
look at the final result, represented by Eqs. (132) and (133), and compare in particular
Eq. (132)with the standard semiconductorBloch equations derived above inEqs. (117)
and (118). A careful comparison will reveal that the renormalisation procedure gives
rise to the same set of semiconductor Bloch equations, but with different coefficients,
namely the quasiparticles energy and Rabi frequency, which have been renormalised,
i.e., their new expression contains the effect of the Coulomb potential, thus allowing
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the Coulomb interaction to be conveniently absorbed in the new definition of these
quantities.

Let us now briefly sketch the renormalisation procedure. In this setting, and for this
particular problem, the operators of interest will be the usual creation and annihilation
operators for each band. Using the band index c(v) for conduction (valence), the
creation (annihilation) of an electron of momentum k is denoted by â†

c/v,k(âc/v,k).
In the electron–hole picture, one speaks strictly of creation and annihilation of these
quasiparticles, rendering the band index unnecessary. For this purpose, one defines
the electron creation and annihilation operators respectively by α̂

†
k ≡ â†

c,k. Likewise,

the hole creation and annihilation operators are respectively defined as β̂
†
−k ≡ âv,k,

leading to a Hamiltonian:

Ĥ =
∑

k

(
εe,kα̂

†
kα̂k + εh,kβ̂

†
−kβ̂−k

)

︸ ︷︷ ︸
ĤK

−
∑

k

E(t)
(
μkα

†
kβ

†
−k + μ∗

kβ̂−kα̂k

)

︸ ︷︷ ︸
ĤF−C

+ 1

2

∑

k,k′,qq �=0

Vq

(
α̂
†
k+qα̂

†
k′−qα̂k′ α̂k + β̂

†
k+qβ̂

†
k′−qβ̂k′ β̂k − 2α̂†

k+qβ̂
†
k′−qβ̂k′ α̂k

)

︸ ︷︷ ︸
HC−C

,

(127)

Where the free Hamiltonian ĤK denotes the kinetic contributions of the carriers,
ĤC−C denotes the carrier-carrier Coulomb interactions (electron–electron, hole-hole
and electron–hole) and ĤF−C contains the dipole coupling to the optical field E(t).

Through this formalism, the occupation probability ne/h,k(t) and the transition
probability pk are expressed as the expectation value of suitable creation and annihi-
lation operators:

ne,k(t) = 〈α̂†
kα̂k〉,

nh,k(t) = 〈β̂†
−kβ̂−k〉,

pk(t) = 〈β̂−kα̂k〉. (128)

Unfortunately, this procedure is recursive, demonstrating the richness of many-body
correlations among the carriers. A closed-form of a dynamical equation describing
the evolution of some interaction operator is in general not possible to be found. This
can be seen through the Heisenberg equation of motion. For an operator Q̂:

d

dt
Q̂ = i

�

[
Ĥ, Q̂

]
(129)

If the Hamiltonian of Eq. (127) is introduced in it, the evaluation of the commutator
will indefinitely create new higher-order expectations: in the first step, four-operator
expectation values coming fromHC−C would have to be determined. In principle, they
can be evaluated again using Eq. (129), yielding new, longer products of operators.
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Even though this procedure clearly does not terminate, an exact decomposition of
its left-hand side is possible.1 In particular, the expectation value of the operator in
question may be split in a Hartree-Fock term and a scattering term:

d

dt
〈Q̂〉 ≡ d

dt
〈Q̂〉
∣∣∣∣
HF

+ d

dt
〈Q̂〉
∣∣∣∣
scatter

. (130)

TheHartree–Fock term contains the exactly-solvable contributionswhereas the second
term contains scattering events which are responsible for the higher-order correlations.
Any model therefore requires a truncation so an approximation to the solution may be
obtained.

If one truncates the expansion at the level of four-operators, the Hartree–Fock (or
mean-field approximation) decomposes its expectation value in terms of the two-
operator expectation values in Eq. (128). For instance:

〈α†
k′+qβ−k+qαk′αk〉 ≈ pk′ne,kδk−q,k′ . (131)

This decomposition allows the equations of motion of the variables to be obtained as:

ṗk + i(ω̃e,k + ω̃h,k)pk + i(ne,k + nh,k − 1)ω̃R,k − ṗk|scatter = 0,

ṅe,k + 2Im
(
ω̃R,k p∗

k
)− ṅe,k|scatter = 0,

ṅh,k + 2Im
(
ω̃R,k p∗

k
)− ṅh,k|scatter = 0. (132)

Equations in (132) resemble the carrier-free Semiconductor Bloch Equations in
Eqs. (117)–(118). Apart from the scattering contributions, the Hartree-Fock part is
formally the same. The difference is, of course, that the quasiparticles’ energy and the
Rabi frequency have been renormalised, respectively as:

ω̃i = ωi − 1

�

∑

q

V|k−q|ni,q,

ω̃R,k = ωR,k + 1

�

∑

q �=k

V|k−q| pk. (133)

In practice, due to the the conservation expressed in Eq. (112) and the fact that the
Coulomb scattering terms inHC−C conserve quasiparticle number, the quasiparticles’
occupations are not independent of each other and can thus be lumped into a single
variable wk ≡ 2ne,k − 1, i.e. the inversion at k.

This renormalisation is manifested in optical and electronic properties of semi-
conductors. Graphene again defies the expectable: it seems that the Rabi frequency
renormalisation may be ignored in some energy scales. Firstly, Quantum Field The-
ories of graphene are not easy to obtain due to its non-perturbative nature. This is to

1 A derivation of this decomposition may be found in the Appendix of [60]
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be contrasted with perturbative renormalisation group methods, which are known to
converge reliably. The fine-structure constant of (suspended) graphene is

αG = e2

�vF
≈ 2.2. (134)

This expression is obtained through the replacement c �→ vF in the QED fine struc-
ture αQED ≈ 1/137, a number well below unity. Consequently, since vF ≈ c/300,
this means that αG ≈ 300αQED, a figure above unity and thus troublesome to apply
perturbative methods.

Most metals are described as Landau fermi liquids and their Coulomb interactions
appropriately accounted for in such framework. A QED analysis of graphene reveals
some differences, due to its quasirelativistic nature [49]. The vanishing of the density
of states at the Fermi level leads to short-range interactions being irrelevant [85].
Similar conclusionswere obtained byHofmann et al [86] by applying non-perturbative
Random Phase Approximation methods to conclude that long-ranged interactions are
screened in the layer and themany-body system shows features of aweekly-interacting
Landau Fermi Liquid. The screening effect no longer applies at very low electronic
densities, at which stage a renormalisation of the Fermi velocity is both predicted [87]
and measured [88]. For these reasons, the conceptualisation of graphene as a non-
interacting ensemble of two-level systems should not lead to any major disagreement
about its physics. This is what is assumed from now and no Coulomb interactions
shall be considered in the graphene SBEs and, later in Sect. 6, in the DBEs.

5.6.2 Temperature and doping

Up until this point, the decay rates which render the two-level system decoherent have
not been explained or introduced conceptually. This section is devoted to shed some
light on the physics behind it and how to incorporate these mechanisms in the SBEs.2

Since the band occupations nλ,k arise from electron and hole distributions in
momentum space and changes thereof, it is not surprising that the inversion is given
by them. In particular:

wk = nk,e + nk,h − 1 = nk + (1 − n−k) − 1

= nk − n−k. (135)

If the sample is in a quasi-equilibrium regime described by a temperature T , and the
system is doped by μ so that the Fermi level no longer sits at the Dirac points, an
approximation of the carrier distribution in momentum space may be obtained with
the aid of the Fermi-Dirac distribution of the each type of carrier.

2 The Dirac–Bloch Equations, the subject-matter of Sect. 6, models the two-level system decoherence in
the exact same fashion.
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For μe = μh ≡ μ, the quasi-equilibrium populations follow:

n0
k = fk − f−k = 1

1 + exp
(

�vF |k|−μ
kB T

) − 1

1 + exp
(
−�vF |k|+μ

kB T

)

= −
sinh

(
�vF |k|

kB T

)

cosh
(

μ
kB T

)
+ cosh

(
�vF |k|

kB T

) . (136)

Scattering mechanisms, such as carrier-carrier or carrier-phonon, radiative recombi-
nation, or defects in the sample drive the occupation distribution to change towards a
quasi-equilibrium distribution, as alluded in the previous section.

In general, this re-equilibration takes time in a certain scale and is not easy to
quantify. Moreover, many different processes take place. For a sample initially in
thermal equilibrium, the carriers show a very narrow, isotropic occupation distribution
in momentum space. After the application of an optical field, over a time in the order
of approximately 5–15 fs, the system is no longer thermally distributed and a highly
anisotropic, broad distribution is found to promote high-momentum states. Within
a certain thermalisation time, this distribution is again equilibrated. This process is
achieved mainly due to electron–electron scattering, especially of high momentum
and, in graphene, takes roughly 50 fs. This results in a narrow, quasi-equilibrium
distribution at a different temperature than the initial one. Subsequently, phonon-
electron scattering, optical-to-phonon decay fully thermalise the distribution within a
much slower time interval, of approximately 1 ps.

Modelling this situation presents many theoretical and experimental challenges. In
particular, an estimate of such decay rates for suspended graphene seems unlikely to
be accurately taken. To further complicate the matter, experimental measurements of
samples on a substrates vary significantly given their composition and chemical prepa-
ration. Time and Angle-Resolved Photoemission Spectroscopy (ARPES) techniques
estimate these relaxation times as T1 ≈ 150 fs and T2 ≈ 0.8 ps [89]. These figures
are heavily affected by a combination of initial temperature, doping, pump fluence,
excitation energy and substrate type. On the theoretical side, the SBEs themselves
have been used in order to model such mechanisms [90].

With these figures, an estimate of the decay rates can be taken simply as the inverse
of these lifetimes i.e. γi ≡ T −1

i . In the context of this work, the optical excitation
considered is an ultrafast regime, allowing to safely disregard the decoherence rates
altogether. This is approximately true for ultrashort pulses in the coherent regime, i.e.
for pulse durations much shorter than the dephasing times, t0 � T1,2, where t0 is
the input pulse duration. For more information on how to model the effect of finite
temperature on the nonlinear optical response of graphene, we address the interested
reader to a recent work by Sipe et al., where the finite temperature nonlinear conduc-
tivity is constructed starting from an analytical expression of the linear conductivity at
zero temperature and investigating perturbative corrections at finite temperature to the
Bloch equations around theDirac point [91].Many other details that are not mentioned
in this Review for space reasons can be found in the classic book by Haug and Koch
[60].
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5.7 Low-field regime

As a starting point to understand nonlinear interactions, it is instructive to analyse
the predictions of the SBEs when the external electric field intensity is small. The
results that are obtained should be in conformity with the principles of Linear Optics,
outlined in Sect. 4. The SBEs are explicitly dependent on the field and thus exceedingly
complicated to solve analytically.

However, the k-dependent microscopic polarisation pk in the regime of low field
intensity can be obtained analytically by solving the SBEs with suitable conditions.
If one further assumes that the system is initially found in its ground state i.e. wk[t =
0] ≈ −1, this situation reflects a picture where all carriers are in a suitable k-state in
the valence band and only a negligible subset of carriers undergoes optical excitation or
de-excitation. If the field dynamics is assumed to maintain this situation, the inversion
becomes a simple constant dictated by this initial condition. Mathematically, this
instance presents an advantage since theSBEsmaybe solved analytically.Although the
SBEs are composed of two coupled equations, this prescription allows the dynamical
equation governing the population inversion in the regime of low field intensity to be
dismissed, leading to

wk(t) = ne,k(t) + nh,k(t) − 1 ≈ −1, (137)

for all momenta.
The solutions vary given the electric field profile and will be explored shortly.

Before engaging in the derivation, the SVEA-approximated SBEs of Eq. (120) may
be computed numerically.

The pulse central frequency is now described by the dimensionless parameter �0,
quantifying the number of optical cycles per pulse. The dimensionless field intensity
parameter E0 runs between 0 and roughly 10 in order to capture linear to extreme
nonlinear intensities, as will be shortly seen. In order not to confuse other usages of
the symbol τ , the dimensionless time parameter will still be denoted by t .

To have a taste of what the SBEs predict, the complex-valued microscopic polari-
sation qk and the real-valued inversion wk are now shown for a field of dimensionless
amplitude E0 = 10−2 and frequency �0 = 30, ensuring the field envelope describes
the field fairly well. A momentum state will be denoted by |k̃, φk̃〉—the dimension-
less momentummagnitude and angle, respectively. k̃ is scaled so that electronic states
for which the band separation exactly matches the photon energy have dimensionless
momentum k̃ = 1. The dimensionless detuning is then simply δk̃ = k̃ − 1.

Figure 5 shows the dynamics of the real and imaginary part of the microscopic
polarisation qk̃ when probed with a sech plotted for various values of the detuning,
for a fixed angle φk̃ = π/3. The dimensionless electromagnetic field and respective
vector potential may be found in Eq. (205). Figure6a shows the same situation as
before, but now showing how the detuning affects the inversion. In both figures, it is
clear that the dynamics of the two-level system is heavily affected by the detuning δk̃:
resonant or near-resonant states attain higher values of the inversion and have greater
coherence amplitudes. Conversely, very detuned states are barely affected by the field.
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�0 = 30. b Inversion for different input pulse shapes at zero detuning. An angle φk̃ = π/3 is fixed

5.8 Analytical solutions of the SBEs

Setting wk = −1, and making use of the field decomposition in Eq. (68), the SVEA-
approximated equation governing the microscopic polarisation (the first equation in
Eq. (120)) reads:

q̇k + i(ωk − ω0 − iγ2)qk = iμk

2�
E (t). (138)

The solution is obtained using the integrating factor e
∫

i(ωk−ω0−iγ2)dt = ei(ωk−ω0−iγ2)t ,
leading to:

qk(t) = i

2�
e−i(ωk−ω0−iγ2)t

∫ t

−∞
ei(ωk−ω0−iγ2)t ′μkE (t ′)dt . (139)

Noting that the dipole moment is not time-dependent and introducing a new variable
τ = t − t ′, it becomes:

qk(t) = i

2�
μk

∫ ∞

0
E (t − τ)e−i(ωk−ω0−iγ2)τdτ. (140)

This form is useful as long as such integral may be expressed analytically. Its formal
simplicity stems from something more fundamental. The SVEA that was applied to
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the electric field implies the Rotating Wave Approximation (RWA). To see this, the
full field is now kept in Eq. (120), leading to:

qk(t) = i

2�
μke−i(ωk−ω0−iγ2)t

∫ t

−∞
ei(ωk−ω0−iγ2)t ′

(
E (t ′) + E ∗(t ′)e2iω0t ′

)
dt ′.

(141)

For the sake of simplicity, a continuous wave of amplitude E0 is assumed so the field
may be taken out of the integral, which can be evaluated as:

qk(t) = μkE0
2�

(
1

ωk − ω0 − iγ2
+ e2iω0t

ωk + ω0 − iγ2

)
. (142)

It is clear that the resonant term, for which ωk − ω0 ≈ 0, dominate over the non-
resonant term for which ωk + ω0 ≈ 2ω0, meaning:

1

ωk − ω0
� 1

ωk + ω0
, (143)

and therefore neglecting the terms rotating with eiω0t in the SBEs is congruent with
the RWA.

The condition wk = −1 can be somewhat relaxed in an approximation known as
the quasi-equilibrium approximation [92], in which the inversion is simply assumed to
vary little in the dephasing time 1/γ2 i.e. wk(t ′) ≈ wk(t) for t ′ < 1/γ2, conveniently
allowing this term to be taken out of the integral.

The form just found in Eq. (140) is very suggesting. If causality is imposed through
the imposition of theHeaviside�-step function, the integration rangemay be extended
to the reals:

qk(t) = i

2�
μk

∫ ∞

−∞
E (t − τ)e−i(δk−ω0−iγ2)τ�(τ)dτ, (144)

thus allowing a response function R(τ ) = e−i(ωk−ω0−iγ2)τ�(τ) to be identified. This
looks remarkably similar to the linear response expressed in Eq. (56). The time-
dependent polarisation is then expressed as a convolution of the field and the response
function. A frequency-dependent polarisation may be obtained as:

qk(t) = iμk

2�
(R(t) � E (t)) ⇔ q̃k(δω) = iμk

2�
R̃(δω)Ẽ (δω), (145)

where the tilded variables represent the Fourier transform of their time-dependent
counterparts and � denotes the convolution operation. This is nothing more than re-
expressing Eq. (58) in its microscopic version. Given the SVEA treatment taken, the
frequency argument refers to the detuning frequency i.e. δω = ω − ω0. The response
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function can be easily Fourier-transformed to:

R̃(δω) = F[e−i(δk−iγ2)τ�(τ)] = �̃(δω + δk − iγ2)

= 1

i (δω + δk − iγ2)
+ πδ(δω + δk − iγ2), (146)

yielding a Fourier-transformed microscopic polarisation:

q̃k(δω) = μk

2�
Ẽ (δω)

(
1

δω + δk − iγ2
+ iπδ(δω + δk − iγ2)

)
. (147)

Even after applying a generous number of assumptions to simplify the problem,
time-dependent solutions to Eq. (144) are challenging to obtain given the generality
of the field profile. A continuous wave presented no difficulty, resulting in the solution
in Eq. (142).

Analytical solutions for two pulse-like excitations are now shown—a Gaussian
and sech profiles. The effect of dephasing is also ignored by setting γ2 = 0. The
dipole moment, approximated by SVEA and calculated in Eq. (86), rescales simply
to μk̃ = sin φk̃.

Gaussian pulse

If the electric field is taken as a Gaussian pulse, whose electric field envelope is E(t)
of the form:

E(t) = E0e− 1
2 (t−tf )2 , (148)

where E0 is the field peak amplitude, attained when t = t f , the polarisation is found
to be:

qk̃(t) = i

√
π

2
E0 sin φk̃e

1
4 (2i(tf−2t)−δk̃)δk̃ Erfc

(
1

2

(
tf − 2t + iδk̃

))
. (149)

Here, δk̃ is the dimensionless detuning and Erfc the complex complementary error
function. The analytical form of the microscopic polarisation just derived may be
comparedwith the its numerical output, computed fromEq. (120). For this comparison
to bemeaningful, a field intensitymust be chosen so that the approximation inEq. (137)
holds. Note that, on resonance, the polarisation is purely imaginary. As for a general
off-resonant state, real and imaginary part of themicroscopic polarisation showgeneral
features: its real part is roughly similar in shape as the electric field, whereas its
imaginary part is roughly similar to the derivative of the field.

Hyperbolic secant pulse

If the excitation is now chosen to be a sech pulse given by E(t) = E0sech (t) and with
the aid of new variables s = 1

2 (1+ iδk̃) and y = et , the polarisation of Eq. (140) takes
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the form:

qs(y) = iE0 sin φk̃

( y

s

)
2F1(1; s; s + 1;−y2), (150)

where 2F1(a; b; c; x) is the Gauss hypergeometric function [93]. Hypergeometric
functions are known to be incredibly general. In fact, most elementary functions may
be expressed as a limiting case of them, for particular functional relations in its four
defining parameters. One such instance is provided by the resonant two-level systems
with dimensionless wavevector k̃ = 1, i.e. δk̃ = 0 and consequently s = 1

2 . In the
original variables, the resonant polarisation becomes:

q1/2(t) = 2iE0 sin φk̃

∞∑

k=0

(−1)k

2k + 1
(et )2k+1 = 2iE0 sin φk̃ arctan(e

t ), (151)

a purely imaginary function. A detailed derivation of this result is reported inAppendix
A. Equation (150) also admits a simpler analytical form, based on another special
function, i.e., the incomplete Beta function, for the case of off-resonant states in
the presence of a general detuning. To get this result, we need to manipulate the
hypergeometric function, keeping a general expression for the parameter s, since we
are now considering detuning. For the sake of clarity, here we only give the final result
of this calculations. For the interested reader, the details are provided in Appendix B.
The final result is given as follows

qs(t) = iE0y sin φk̃

∞∑

k=0

(
1

k + s

)
(−1)k y2k

= iE0y sin φk̃

[
1

s
+
(
−e2t

)−s
B
(
−e2t , s + 1, 0

)]
, (152)

where B(x, a, b) is the incomplete Beta function [93].
As expected, all the machinery developed so far must break down when the condi-

tionwk(t) ≈ −1 is violated. From this expectation, a reasonable critical field intensity
E0 may be inferred, separating the linear from the nonlinear regime.

To verify this condition, the inversion wk is plotted alongside the comparison of
the polarisation obtained from analytical and numerical methods.

Figure 7 shows, as before, the comparison between the low-field-approximated
microscopic polarisation, alongside its corresponding inversion obtained numerically
from Eq. (120), for varying electric field amplitudes E0 for a state on resonance i.e. for
δk̃ = 0. The imaginary part of the coherence in increasing field intensity are shown
with their respective inversions.

These allow to capture three different situations after the low-field assumption
is broken. The first regime is described by a slight dephasing from the numerical
microscopic polarisation, retaining the main shape. This happens for instances that
change the inversion in time, but never enough to reach a positive value. For fields
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Fig. 7 Comparison of Im(qk) between SBEs simulations (blue, full) and analytical forms (red, dashed) for
the resonant momentum state |k̃, φk̃〉 = |1, π/3〉, and various input pulse amplitudes, for a Gaussian pulse.
Insets show the corresponding inversion. One notices a drastic departure from the approximation wk = −1
(linear low-field case) and thus the failure of the analytical formulas in the prediction of the polarisation
field

with intensity E0 ≈ 0.5 it can be seen that the difference in the saturation value of the
polarisation is very considerable. Its inversion is still always negative.

The assumption is then severely broken for field intensities that allow the inversion
to attain positive values, happening for around E0 = 1. In that instance, the theoret-
ical prediction fails to account for the inflection point occurring when the inversion
switches sign. Subsequently, higher fields further modulate the inversion, as seen for
a field intensity of E0 = 5.

The low-field breaking can be made more transparent mathematically if the con-
servation law of Eq. (119) is analysed: if the inversion is solved from it, it follows:

wk = ±
√
1 − 4|qk|2. (153)

In the low excitation regime, the negative root is used, since the initial condition
w0
k = −1. However, if the field is strong enough to excite the system so |qk| ≈ 1/2,

the inversion will take either branches throughout the time dynamics.
With this analysis, one may take an educated guess that a departure from the linear

optical regime is attained for field intensity parameters of around E0 = 0.2. By E0 = 1
the complete divergence between the predictions from linear response is notable and
linear theory no longer applies at all.

In the next section, these notions will become clearer as the macroscopic polari-
sation will be obtained. Most importantly, it will be seen that, particularly for high
field intensities, and most importantly ultrashort pulses, the slowly-varying amplitude
of the field and its effect on the slowly-varying polarisation fails to capture the exact
light–matter dynamics.
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5.9 Law of universal absorption

The framework of the SBEs allow for a rather important result of linear optics to be
obtained. It was derived in Sect. 4.3.2 that, for low field amplitudes, the absorbance of a
graphene monolayer, a quantity which measures the efficiency of light absorbed from
a source, is a constant across the frequency spectrum i.e. independent of the input
pulse frequency. This constant is known as the fine structure constant of graphene
αG = παQED ≈ 2.3%.

For this result to be retrieved from the SBEs, a low-field regime must naturally be
assumed, by neglecting the inversion dynamics. In this regime, the microscopic polar-
isation, which in frequency domain takes the form given in Eq. (147) may be inserted
into the definition of the macroscopic polarisation envelope Q, given in Eq. (125):

Q̃(δω) = gs gv

�ε0AdG

∑

k

(
|μk|2

(
1

δω + δk − iγ2
+ iπδ(δω + δk − iγ2)

))
Ẽ (δω)d2k.

(154)

In this fashion, the linear optical susceptibility χ(1)(δω), as introduced in Eq. (58) can
easily be read off as the function multiplying the Fourier-transformed field envelope.
The absorption is related to its imaginary partχ

′′
(δω), as was derived in Eq. (78). In the

limit of vanishing dephasing i.e. γ2 → 0, and applying the continuum approximation,
it is:

χ
′′
(δω) = 1

�ε0dGπ

∫ 2π

0
|μk|2dφk

∫ ∞

0
δ(δω + δk)kdk, (155)

where the the integral was split in its angular and radial variables. With the interband-
driven SVEA-approximated dipole moment μk = (evF/ω0) sin(φk) from Eq. (86).

As for the radial integration, the integrand is expressed in terms of the linear variable
k with the aid of Eq. (45) which, with the sifting property of the(Eq. (47)) gives:

∫ ∞

0
δ(δk + δω)kdk = 1

2vF

∫ ∞

0
δ

(
k − ω0 − δω

2vF

)
kdk = ω0 − δω

4v2F
, (156)

where the momentum detuning is δk = ωk − ω0 = 2vFk − ω0. Therefore, at the
optical frequency i.e. δω = 0, the linear optical absorption coefficient is, as dictated
by the calculation obtained in Eq. (78):

α(ω0) = ω0

c
χ

′′
(0) = e2

4ε0�cdG
= παQEDdG, (157)

i.e., a constant and, more importantly, independent of optical frequencies, as expected.
Note that theαG is the absorption i.e. the absorption per unit length times (absorbance)
multiplied by the distance dG.

The response function that dictated the introduction of the δ distribution is, strictly
speaking, an abuse of notation as it is meaningless without being integrated. The same
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result could be obtained by starting from the microscopic polarisation of Eq. (142)
and integrating it to obtain Q, leading to:

χ(δω) = 1

�ε0dGπ2

∫ 2π

0
|μk|2dφk

∫ ∞

0

1

ωk − ω0 − iγ2
kdk. (158)

The radial complex integral can be evaluated with the aid of the Sokhotski-Plemelj
theorem stating that for a function f : C → C continuous on R:

lim
γ2→0+

∫ β

α

f (ζ )

ζ ± iγ2
dζ = P

[∫ β

α

f (ζ )

ζ
dζ

]
∓iπ f (0), (159)

P[ f ] denotes the Cauchy principal value of f , which expresses the improper integral
without its singularity at ζ = ζ0:

P

[∫ β

α

f (ζ )dζ

]
≡ lim

γ2→0+

[∫ ζ0−γ2

α

f (ζ )dζ +
∫ β

ζ0+γ2

f (ζ )dζ

]
. (160)

The real part is irrelevant for this purpose. By inspection, if the variable ζ is chosen
as ζ = ωk − ω0 = 2vFk − ω0, one has f (ζ ) = (ζ + ω0)/(2vF) and hence Eq. (159)
can be used, yielding the same imaginary part as obtained in Eq. (157).

This result will be verified in the next section, where a method will be devised to
verify this law numerically. To do this, the reflected and transmitted fields have to be
constructed from the macroscopic polarisation. For these objects to constructed, the
SBEs have to be obtained numerically.

5.10 Simulations of optical properties

So far, the variables under consideration refer to microscopic quantities, bearing no
significance to the observables of the sample. In the framework so far developed, the
system is comprised of all allowed momentum states, each one a two-level system.
In this section, the connection between the microscopic quantities pertaining to all
two-levels and described by the SBEs to macroscopic responses of the system will be
made.

The regime that was used in obtaining the dynamics of the two-level system deter-
mineswhichmomentum states are necessary to account for themacroscopic dynamics.
If the full electric field and the polarisation are considered, any macroscopic quan-
tity will be defined once all contributions are considered i.e. all momentum states
considered. Naturally, the numerical realisation of this integral must contain a finite,
momentum cutoff kc.

Conversely, if SVEA is applied to the SBEs, the resonant momentum states i.e.
k̃ ≈ 1 will contribute the most. It is thus natural to introduce a cutoff in the magnitude
of k to ensure only states within a width x from resonance are considered i.e. the
region (k0 − x, k0 + x), where k0 is the photon momentum.

123



Nonlinear optics in graphene. . . 347

Hence for a general k dependent function fk, its macroscopic counterpart is:

∑

k

fk =
{

A
(2π)2

∫ 2π
0

∫ x
−x fσdσdφ (SVEA)

A
(2π)2

∫ 2π
0

∫ kc
0 fkkdkdφ (Full Field)

. (161)

where σ = k − k0 is the detuning from the photon momentum k0.

5.10.1 Macroscopic polarisation

In Sect. 5.8, a straightforward comparison against the predictions from low-field theory
allowed a quick estimate for when nonlinear effects should be relevant in the dynamics
of a two-level system coupled to light. This resulted in a critical value E0 ≈ 0.2.

The same methodology can now be applied to the averaged, macroscopic polarisa-
tion Q(t), as given by Eq. (126), and reported here for the sake of simplicity

Q(t) = 2

ε0V

∑

k

μ∗
kqk(t). (162)

Typically Q is normalised by the quantity Q0 = eω0/(2vFπ2ε0dG), where dG is the
graphene thickness. The linear regime can be roughly estimated when the sample is
probed with a field intensity approximately within the range satisfying E0 � �0vF/c.

As one would expect, the dynamics of the polarisation in the nonlinear regime is
non-trivial and depends hugely on the incident field profile, leading to very different
time dynamics of the polarisation for the same field amplitude.

5.11 Dynamics of the reflected and transmitted fields

With the knowledge of the macroscopic polarisation, which accounts for the field
generated by the time variation of the electric dipoles in the sample as a result of the
optical excitation, it is possible to construct the reflected and transmitted fields that
are set up as a consequence of the optical interaction.

If an incident wave of electric field E0 propagates in a medium of refractive index
n1, the Maxwell equations can be used to model the light propagation in the graphene
sample and construct the reflected field ER, which propagates in the outgoing direction,
and transmitted field ET, which propagates in the incoming direction in a medium of
refractive index n2. These naturally depend on the incoming field but also on the
generated polarisation of the medium:

ER(t) =
(

n1 − n2

n1 + n2

)
E0(t) +

(
Q0

A0

)
dG

(n1 + n2)c
(iω0Q − ∂t Q) , (163)

ET(t) =
(

2n1

n1 + n2

)
E0(t) +

(
Q0

A0

)
dG

(n1 + n2)c
(iω0Q − ∂t Q) . (164)

These fields are dimensionless, with Q0 = eω0
2vFε0dGπ2 and A0 = 2�ω0

evFt0
.
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Fig. 8 Absorbance of the sample
as a function of the log of the
incident field intensity, as
defined in Eq. (165). In the
linear regime, a plateau at
A = 2.3% confirms the law of
universal absorption
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5.12 Law of universal absorption: numerical proof

With the time dynamics of the reflected and transmitted fields set up, the reflectance
R, transmittance T and absorbance A are the coefficients satisfying:

R =
∫∞
−∞ |ER |2dt
∫∞
−∞ |E0|2dt

T =
∫∞
−∞ |ET |2dt
∫∞
−∞ |E0|2dt

A = 1 − R − T . (165)

After the SBEs are solved numerically and averaged, the reflected and transmitted
fields are constructed respectively through Eqs. (163) and (164) and consequently the
optical coefficients of Eq. (165) are retrieved through their numerical integration in
time. If the variation of two independent coefficients, in this case the absorbance A and
transmittance T , in terms of the field amplitude is shown, the same analysis regarding
the linear-to-nonlinear regime transition holds.

Figure 8 displays this exact setup, where the horizontal axis shows the logarithm of
the incident field intensity for easier visualisation. Firstly, the low-field intensity regime
shows a plateau in the absorbance, shown in window (a), at exactly the value of the
absorption παQED � 2.3%, confirming the law of universal absorption. Subsequent
higher values of the field lead to a decrease of the absorbance and an increase of the
transmittance. Field intensities for which this behaviour is no longer constant again set
a critical transition value. This is seen for log10 E0 ≈ −1, agreeing with the previous
estimate.

5.13 Third-harmonic generation

The construction of the reflected and transmitted fields is also useful since their har-
monic composition allows to infer the existence of harmonic generation in the sample,
through the nonlinear polarisation. A validation of the claim of strong χ(3) nonlinear-
ities in graphene can also be found using the SBEs.

For a clearly nonlinear incident field intensity E0 = 1, the full-field SBEs (Eqs.
(117)–(118)) may be employed and appropriately averaged according to the prescrip-
tion given in Eq. (161). The time-dependent profiles of all fields in the sample may
consequently be reconstructed with the help of the above formulas. The Fourier-
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Fig. 9 Fourier-transform of the transmitted fields generated from a graphene sample, simulated by the
SBEs, plotted against the harmonic order ω/ω0. The pump frequency is found at ω/ω0 = 1. Pulse duration
is t0 = 10 fs, central wavelength is λ0 = 800 nm, and �0 ≡ ω0t0 � 25. E0 = 0.5 corresponds to an
intensity I = 3.2 GW/cm2; E0 = 1 corresponds to an intensity I = 13 GW/cm2; E0 = 5 corresponds to
an intensity I = 320 GW/cm2

transform of the transmitted field are plotted in terms of the harmonic order ω/ω0
in Fig. 9. The pump frequency is thus found at ω/ω0 = 1.

As it is expected from centrosymmetric media, no even harmonics are generated,
meaning sample-produced optical fields should not have intensity peaks centered at
odd positions on the harmonic order axis. This is indeed observed. Interestingly, the
the third-harmonic components of the transmitted field is higher than its counterpart
in the reflected field. This behaviour is characteristic of materials with a high χ(3). In
this setting, one may see that graphene indeed shows nonlinear features, starting at
the first allowed nonlinear contribution, the third.

The reason why the full-field polarisation was considered is related to the fact that
the third-harmonic enhancement of the transmitted field cannot be captured by SVEA
conditions i.e. the peakswould overlapwith the peak of the reflectedfield. It is therefore
reasonable to assume that the full-field dynamics, containing the full oscillations of
the optical fields, is necessary to capture signatures of ultrashort, intense pulses. In
the next section, this treatment will be employed to graphene but using a different, yet
related, set of equations to model the carrier dynamics—the Dirac–Bloch Equations.

6 The Dirac–Bloch equations

6.1 Overview

In the previous section, the SBEswere used tomodel the optical behaviour of graphene.
Although the linear regime was well described by them, it was seen that the slowly-
varying polarisation used in the derivation of the SBEs fails to predict third harmonic
generation in graphene, a well-established result in the literature [51].

That in itself does not prove the unsuitability of the SBEs—it merely shows that
full field should be considered. This is particularly true for ultrashort pulses, whose
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envelope does not resemble the full field, leading to awrong estimation of the dynamics
of the two-level system and hence of any optical quantity which depends on it.

In Sect. 2, the reduction of the Schrödinger Equation to the Dirac Equation was
established. If next-nearest-neighbour effects are neglected and the dispersion is
expanded around two special, Dirac points, located at the corners of the first Bril-
louin zone, the bands become degenerate there, changing linearly with the momentum
of the electron—leading to the famous Dirac cones. For that reason, graphene is rather
peculiar, what is known as a zero-gap semiconductor.

Given this realisation, an appropriate question to ask is “why should graphene be
modelled by the Semiconductor Bloch Equations?” One can wonder if the two-level
systems modelling the carriers in graphene, obeying a completely different equation,
given their pseudo-relativistic nature, are suitably described by the SBEs. This section
tries to answer that question, by applying the machinery so far developed to a two-
level system described by the Dirac Equation, leading to the Dirac–Bloch Equations
(DBEs).

6.2 Derivation

The Dirac–Bloch Equations are now derived. The starting point must obviously be the
Dirac equation for amassless electron in graphene. To couple light, theminimal substi-
tution of Eq. (60), explained in Sect. 4.2, is applied to the corresponding Hamiltonian
of the Dirac Equation, given in Eq. (34), leading to:

i�
d

dt
|�ξ

k(t)〉 = vF σ (ξ) ·
(
p + e

c
A(t)

)

︸ ︷︷ ︸
H ξ
k (t)

|�ξ
k(t)〉, (166)

The operator on the right-hand side may be identified with the time-dependent Hamil-
tonian H ξ

k (t). In this formalism, both valleys—K (ξ = +1) and K′ (ξ = −1)—are
simultaneously considered through the inclusion of the valley degree of freedom ξ . As
usual, vF ≈ c/300 is the Fermi velocity in a graphene monolayer, c the speed of light
in vacuum, −e is electron charge, σ (ξ) ≡ (ξσx , σy) a valley-dependent 2D Pauli-
matrix vector. In this way, and ignoring the field dependence for now i.e. by setting
A(t) = 0, one can see that the Hamiltonian of a valley is related to the other simply by
making the transformation px �→ −px . The time-dependent 2-spinor |�ξ

k(t)〉 is the
solution to the equation and represents electrons in the conduction and valence bands
for a specific electronic momentum p ≡ �k.

This Hamiltonian has been minimally-coupled to light. The composition on the
momentum that originates from it leads to the promotion of the time-dependent
momentum to the field-dependent canonical momentum, with the following polar
representation:

p �→ p + e

c
A(t) ≡ πk(t) ⇔

⎧
⎨

⎩
φk �→ arctan

[
py

px + e
c A(t)

]
≡ θk(t)

|p| �→
√[

px + e
c A(t)

]2 + p2y ≡ |πk(t)|
. (167)
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The phase θk(t) is termed the dynamical angle. The electric field E ≡ −(1/c)Ȧ
is assumed linearly polarised. Without loss of generality, since the dispersion is
radial, such polarisation may be assumed to be along the arbitrary x̂ axis i.e.
A(t) = (A(t), 0, 0). As before, normal incidence conditions are assumed, as well
as the Coulomb gauge given by the condition ∇ · A = 0 and explained in Sect. 4.2.

A very subtle difference, which will only be lightly touched for now and expanded
in Sect. 7.1, is that, unlike the treatment applied to the OBEs, and consequently the
SBEs, the treatment in the DBEs is non-perturbative. Mathematically, this means that
the solution to Eq. (166) must be obtained with the presence of the field. The concept
of eigenstates in a time-dependent setting is a tricky one, as by definition these are
stationary states. This fact presents a challenge.

To see this, the field-free Hamiltonian is considered, i.e. with A = 0. Then, since
the Hamiltonian is time-independent, the solution to Eq. (166) is simply given by the

evolution operator Uk(t) = e− i t
�

H ξ
k , meaning |�ξ

k(t)〉 = Uk(t)|ψξ
k 〉, for an initial

spinor |ψξ
k 〉.

The reason is rather simple: if the evolution operator is Taylor-expanded:

Uk(t) =
∞∑

j=0

1

j !
(−i t

�

) j (
H ξ
k

) j
, (168)

it can be conveniently expressed as a matrix using an orthonormal basis comprised of
the Hamiltonian eigenstates |uξ

λ,k〉, i.e. two states (λ = −1, 1) for which H ξ
k |uξ

λ,k〉 =
ε
ξ
λ,k|uξ

λ,k〉 and 〈uξ

λ′,k|uξ
λ,k〉 = δλ,λ′ .

Given the Hamiltonian representation derived in Eq. (100), naturally diagonal, the
computation of Uk(t) follows directly:

Uk(t) =
∞∑

j=0

1

j !
(

− i t

�

) j
(
∑

λ

(
ε
ξ
λ,k

) j |uξ
λ,k〉〈uξ

λ,k|
)

=
∑

λ

e− i t
�

H ξ
k |uξ

λ,k〉〈uξ
λ,k|. (169)

This representation clearly satisfies the required time evolutiondictated by the solution:
for a general, time-independent |ψξ

k 〉 =∑λ′ cξ

λ′ |uξ

λ′,k〉:

Uk(t)|ψξ
k 〉 = e− i t

�
H ξ
k
∑

λ,λ′
cξ

λ′ |uξ
λ,k〉〈uξ

λ,k|uξ

λ′,k〉

= Uk(t)|ψξ
k 〉 = |�ξ

k(t)〉. (170)

The reasonwhy this solutionmaybeobtained is of course due to the time-independence
of the eigenstates. The addition of the electromagnetic potentialA(t)makes theHamil-
tonian time-dependent and the reasoning just exposed breaks down. Naively, one could

guess that the solution would be given by the integrating factor I (t) = T̂ e
∫ t ′
−∞ H ξ

k (t ′)dt ′ ,
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where T̂ is the time-ordering operator. However, the Hamiltonian is now a matrix,
which does not commute at different times and such quantity seems hard, if not impos-
sible, to retrieve.

Unlike what one could suppose, this issue is not solved by considering another
dynamical picture (or representation) of the system. It is often the case that such a
representation change does not allow the problem to be solved. For these reasons,
general analytical solutions of Eq. (166) are not known.

However, a procedure, originally outlined in two seminal papers by Ishikawa [95,
96], may be applied to yield an Ansatz i.e. a formal guess which is solves Eq. (166).
Conceptually, it is not terribly different to what was developed so far: the eigenstates
will be generalised to their instantaneous counterparts and the evolution phase factor
will now depend on time in such a way that the Dirac Equation is satisfied.

The instantaneous eigenstates are spinors which satisfy

H ξ
k (t)|uξ

λ,k(t)〉 = ε
ξ
λ,k(t)|uξ

λ,k(t)〉, (171)

where the instantaneous energy ε
ξ
λ,k(t) is now time-dependent too. In order to obtain

both, the Hamiltonian is first written in matrix form:

H ξ
k (t) =

(
0 vF(ξπx (t) − iπy(t))

vF(ξπx (t) + iπy(t)) 0

)

= ξvF|πk(t)|
(

0 e−iξθk(t)

eiξθk(t) 0

)
, (172)

where the canonicalmomentumpolar coordinateswere introduced through the identity
ξπx (t) − iπy(t) = ξ |πk(t)|e−iξθk(t).

Two symmetric dispersion branches arising from it take the form:

ε
ξ
λ,k(t) = λvF|πk(t)| = λvF

√(
px + e

c
A(t)

)2 + p2y . (173)

For this reason, the positive branch of the dispersion, equal for both valleys, will be
denoted as εk i.e. ε

ξ
λ,k = λεk. Unsurprisingly, the instantaneous eigenstates are not

formally different to the eigenstates found for the free Dirac fermions in Eq. (37),
albeit generalised to any valley ξ . The instantaneous eigenstate is now decomposed
into its upper and lower components:

|uξ
λ(t)〉 ≡

(
ϕ

ξ
λ,k(t)

φ
ξ
λ,k(t)

)
, (174)

in turn yielding the following system of equations to solve:

{
ξe−iξθkφ

ξ
λ,k = λϕ

ξ
λ,k

ξeiξθkϕ
ξ
λ,k = λφ

ξ
λ,k

(175)
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Both amplitudes must therefore satisfy ϕ
ξ
λ = ξe−iξθkφ

ξ
λ . It is convenient to explicitly

include the dynamical angle in the spinor. To do that, the lower component may be
fixed to φ

ξ
λ ≡ λe−iξθk/2. Noting that λ2 = ξ2 = 1, this choice leads to normalised

states satisfying 〈uξ
λ,k(t)|uξ

λ′,k(t)〉 = δλλ′ :

|uξ
λ,k(t)〉 = 1√

2

(
ξe−iξθk(t)/2

λeiξθk(t)/2

)
. (176)

Attending to the considerations that lead to the construction of the spinor when apply-
ing the tight-binding model for graphene in Sect. 2.4, it can be seen that the amplitude
of the upper and lower components, which correspond to each sublattice A and B,
are the same. This is a statement of sublattice equivalence and leads to the invariance
of physics under each sublattice. The next section will address a way to break such
symmetry.

Having obtained, in a sense, a time-dependent basis, the natural question to ask
is: how can a solution |�ξ

k(t)〉 be obtained? A sensible Ansatz is provided upon
constructing the superposition:

|�ξ
k(t)〉 =

∑

λ

cξ
λ,k(t)|uξ

λ,k(t)〉e−iλ�k(t), (177)

where an additional yet-to-be-determined phase �k(t) was added. In this fashion,
the field interaction is accounted for by generalising the field-free eigenstates to a
time-dependent Ansatz. After inserting this Ansatz in Eq. (166), its left-hand side
becomes:

i�
d

dt
|�ξ

k〉 = i�
∑

λ

(
ċξ
λ,k|uξ

λ,k〉 + cξ
λ,k|u̇ξ

λ,k〉 − iλ�̇kcξ
λ,k|uξ

λ,k〉
)

e−iλ�k . (178)

As for the right-hand side:

H ξ
k |�ξ

k〉 = H ξ
k

∑

λ

cξ
λ,k|uξ

λ,k〉e−iλ�k =
∑

λ

ε
ξ
λ,kcξ

λ,k|uξ
λ,k〉e−iλ�k , (179)

it is clear that the third term in Eq. (178) cancels with the term from Eq. (179) if
��̇k = εk. This phase, termed dynamical phase, is then:

�k(t) = 1

�

∫ t

−∞
εk(t

′)dt ′

= vF

�

∫ t

−∞

√(
px + e

c
A(t ′)

)2 + p2y dt ′. (180)

Now, noting that |u̇ξ
λk

〉 = (−iξ θ̇k/2)|uξ
−λ,k〉, the first two terms inEq. (178) can be pre-

multiplied by 〈uξ

λ̄,k
|. Then, using the state orthonormality, the sum over λ ∈ {λ̄,−λ̄}
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leads to the condition:

ċξ

λ̄
=
(

iξ θ̇k

2

)
cξ

−λ̄
e2i λ̄�k . (181)

As per usual, the coefficients dynamical variables are converted the optically-relevant
variables:

w
ξ
k ≡ |cξ

+,k|
2 − |cξ

−,k|
2

(inversion) (182)

qξ
k ≡ cξ

+,k

(
cξ
−,k

)∗
e−2i�k+iω0t (microscopic polarisation) (183)

In the framework of the DBEs, the variable ρ
ξ
k ≡ cξ

+,k

(
cξ
−,k

)∗
, previously used

in the OBEs and SBEs, is termed coherence. The additional phase just introduced
allows the DBEs to be conveniently written in same form as the OBEs. As usual, ω0
denotes the central frequency of the input pulse. The derivatives of Eqs. (182)–(183)
are straightforwardly obtained as:

ẇ
ξ
k = ċξ

+,k

(
cξ
+,k

)∗ + cξ
+,k

(
ċξ
+,k

)∗ − ċξ
−,k

(
cξ
−,k

)∗ − cξ
−,k

(
ċξ
−,k

)∗

q̇ξ
k = i(ω0 − 2�̇k)q

ξ
k +

(
ċξ
+,k(c

ξ
−,k)

∗ + cξ
+,k(ċ

ξ
−,k)

∗) ei(ω0t−2�k).

(184)

Using the condition in Eq. (181), the Dirac–Bloch Equations for monolayer graphene
are finally obtained as:

q̇ξ
k + i(2�̇k − ω0 − iγ2)q

ξ
k + iξ

2
w

ξ
kθ̇keiω0t = 0, (185)

ẇ
ξ
k + γ1(w

ξ
k − w0

k) + iξ θ̇k

(
qξ
ke−iω0t − qξ

k
∗
eiω0t

)
= 0. (186)

The dephasing effects are, as usual, included phenomenologically through the coef-
ficients γ1,2 ≡ 1/T1,2 whereas the effect of intrinsic, field-independent parameters
such as temperature and chemical potential can be incorporated in a momentum-
dependent equilibrium value of the populationsw0

k, following a methodology outlined
in Sect. 5.6.2.

Following the discussion in the same section, these equations do not take into
account any kind of effective Coulomb interactions amongst the carriers. Despite that,
no further approximations other than modelling graphene as non-interacting electrons
in a pair of Dirac cones, coming from the approximation of the tight-binding band
structure of graphene around the two inequivalent Dirac points, were applied in obtain-
ing the dynamics of the coefficients. In particular, no approximations on the shape of
the impinging electric field, whether, for example, its amplitude is slowly varying
or not, is necessary to derive the DBEs. This fact presents a remarkable possibility:
to express the electric current generated in the sample as a consequence of the opti-
cal excitation in an exact way. It is expected that the dynamics of two-level system,
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described by the evolution of w
ξ
k and qξ

k , determines such a current. This is indeed
verified in the next section, where the link between the evolution of the dynamical vari-
ables and the photo-generated current is established. The price to pay for this exact
form is, of course, that no analytical solutions of the DBEs may be found as was the
case for the SBEs in the linear regime. One must therefore apply reliable numerical
routines to solve the DBEs.

6.3 The relationship between the SBEs and DBEs

At this stage, the difference between the Semiconductor Bloch equations derived
in Sect. 5.4, a mere cosmetic conceptual adjustment to the Optical Bloch equations
given in Sect. 5.3 has not been justified beyond the introduction of the instantaneous
eigenstates that resulted from theminimal substitution in theHamiltonian of Eq. (166).
It may even feel like such a distinction is based on theoretical pedantry alone. However,
this feature is crucial in understanding the discrepancies in the current that is predicted
by both models.

What exactly makes the SBEs and DBEs different?The answer boils down to theway
thewavefunction is obtained and how it, in turn, relates to observables. The philosophy
underlying the DBEs must be contrasted with the one employed in the SBEs. The
Hamiltonian used in Eq. (166), unlike the OBEs and SBEs, is not understood as a
“free” plus “perturbed” one, of the form Hk(t) = H0

k + H int
k (t) but rather as a non-

separable time-dependent system, where the dependence comes from the composition
k �→ k+ e/(�c)A(t). Mathematically, this situation is reflected in the structure of the
wavefunction itself, which is accounted for by all contributions in the Hamiltonian,
as opposed to using the field-free wavefunction.

AnobservableO(t) is thus obtained as 〈�ξ
k(t)|Ô(t)|�ξ

k(t)〉, where the spinor solves
the full Hamiltonian, as opposed to the perturbative form 〈�ξ

k |Ô(t)|�ξ
k〉, where the

latter spinor is a solution to the field-free Hamiltonian.
The SBEs are exactly a limiting case of the DBEs. In order to reduce the DBEs in

Eqs. (185–186) to the SBEs in Eqs.(117)–(118), one must neglect the contribution of
the photon momentum (e/c)A(t) in the quantities �̇k and θ̇k, obtaining exactly the
SBEs used, for instance, in Ref. [97]. This reduction is never acceptable in gapless
media as will be shown shortly.

This difference leads, of course, to some differentiating features of the DBEs.
These may be appreciated by comparing the full-field SBEs in to the DBEs. After an
explicit computation from the definition of the dynamical angle given in Eq. (167) is
performed:

θ̇k = epy E(t)

|πk(t)|2 = e sin θkE(t)

|πk(t)| , (187)

the function that multiplies the electric field may be interpreted as the dipole moment:

μ
ξ
k(t) = ξ

θ̇k(t)

2E(t)
. (188)
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Consequently, if A(t) = 0 is set, the time-independent dipole moment of the SBEs is
obtained. Additionally, it is clear that the SVEA-approximated dipole moment calcu-
lated in Eq. (86) is obtained by evaluating the SBE dipole moment when the electronic
momentum is resonant with the photon’s i.e. whenever |k| = ω0/(2vF) ≡ |k0|:

μ
ξ
k(t) = ξ

2

epy(
(px + e

c A(t))2 + p2y
)

︸ ︷︷ ︸
DBEs

−−−−→
A(t)=0

ξe

2

sin φk

|k|︸ ︷︷ ︸
SBEs

−−−−→
k=k0
Kvalley

evF
ω0

sin φk

︸ ︷︷ ︸
SVEA−SBEs

.

(189)

The dipolemoment in theDBEs is a time-dependent quantity—meaning that the dipole
moment is temporally oscillating with the pulse. Given the lack of applications in any
other realistic physical situations in the literature, this is very unusual in the theory of
two-level systems. Furthermore, the light–matter coupling is not attained simply by
incorporating the electric field in the equations, as was done in the OBEs and SBEs;
the driving term now exhibits a complex coupling that includes both the electric field
E and the vector potential A.

Additionally, the frequency detuning between a specific two-level system with
wavevector k and the pulse frequency ω0 is also oscillating in time as:

2�̇k(t) − ω0 = 2vF
�

√(
px + e

c
A(t)

)2 + p2y − ω0, (190)

as seen in the second term in Eq. (185). In other words, the pulse itself modulates
the band structure continuously, leading to global dynamical oscillations of the Dirac
cone. This feature stems from the use of the dynamical phase of Eq. (180). It is expected
that this rather non-trivial phase affects the generation of currents. The confirmation
will be given when the significance of such a modulation in the generation of new
harmonics will be given in Sect. 7.1, where both models are compared.

6.3.1 Shortcomings of SBEs

More relevantly, the SBEs are often inadequate when studying gapless Dirac media
like graphene and, for pulses that are short or intense enough, they will also fail even
in the case of gapped Dirac media [98].

To show precise conditions for the failure of SBEs, the model of Eqs. (185)–(186)
is extended to a gapped layer solely for the purpose of obtaining its dispersion. For
simplicity, only the K valley is considered. To do this, a mass term in Eq. (166),
proportional to the energy gap � is inserted and only the K valley is considered i.e.
ξ = 1:

i�
d

dt
|�k(t)〉 =

[
vF σ ·

(
p + e

c
A
)

+ �

2
σz

]
|�k(t)〉, (191)

where σz is the diagonal Pauli matrix.
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From Eq. (191), one can write straightforwardly the instantaneous energy eigen-
states as

ελ,k(t) = λvF

√

(px + e

c
A(t))2 + p2y +

(
�

2vF

)2
. (192)

In the vicinity of the band gap centre (px = py = 0), the contribution of the photon
momentum can be neglected only for those pulse amplitudes satisfying |eA/c| �
�/2vF. In this case, the DBEs are identical to the SBEs, since in this way the time
dependence of the frequency detuning and the dipole moment μk are eliminated.
Therefore, the SBEs are a valid description of light–matter interaction in gapped 2D
Dirac media only when the pulse spectrum does not overlap substantially with the
Dirac point, or when the intensity of the pulse is not too large with respect to the gap
energy.

The above condition for the SBEs to be approximately valid can be translated into
a condition for the input pulse intensity: I � Icr, where

Icr ≡ 1

8
cε0

(
ω0�

evF

)2
. (193)

If the intensity of the pulse is such that I ≥ Icr, the SBEdescription loses its validity. To
make things worse, even for low-intensity light, short pulses satisfying the condition
ω0t0 < �/(4�ω0) will overlap too much with the Dirac point, also leading to the
breaking of the validity of the SBEs.

Therefore the SBEs description of gapped Dirac layers is approximately valid only
if pulses are neither too short nor too intense. It is crucial to observe that for gapless
media such as graphene, forwhich� = 0, it is in principle never possible to accurately
describe light–matter interactions via the SBE, since the condition I � Icr can never
be satisfied.

7 Currents

Given the considerations that established that the treatment employed in the DBEs
is nonperturbative in nature, since the full field is accounted for (as opposed to the
usual field expansion and order truncation methods shown in Sect. 4.2), as well as the
full pulse properties (as opposed to slowly-varying envelope/rotatingwave approxima-
tion conditions), a desirable quantity to study is the two-dimensional current generated
across the sample. Although the macroscopic polarisation produced in the sample pro-
vides many crucial insights, the photo-generated current allows for far more detailed
information.

In the same spirit as the one used for obtaining the macroscopic polarisation in
terms of the microscopic polarisation, the physical, macroscopic current generated
in the sample may be obtained by adequately averaging over all microscopic current
contributions generated by each momentum state.
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This method ultimately allows an analysis of the system response to be obtained
when probed in extreme nonlinear optical conditions, without any field expansion.
The procedure to attain this goal is shown in this section.

To obtain the time dynamics of the photo-generated current, one proceeds by first
determining the μ-component (μ = x, y) of the current contribution of a particular
momentum state p in a valley ξ , in time domain. For consistency purposes, such
contribution to the current is termed a microscopic current j ξμ,k and can be obtained

by applying a suitable current density operator ĵ ξμ to theAnsatz |�ξ
k〉given inEq. (177),

which reads:

〈�ξ
k | ĵ ξμ|�ξ

k〉 =
∑

λ,λ′
(cξ

λ)
∗cξ

λ′e−i(λ′−λ)�k〈uξ
λk| ĵ ξμ|uξ

λ′k〉

=
∑

λ

[
|cξ

λ|2〈uξ
λk| ĵ ξμ|uξ

λk〉 + (cξ
λ)

∗cξ
−λe2iλ�k 〈uξ

λk| ĵ ξμ|uξ
−λk〉

]
.

(194)

Naively, one may expect this element to give the current observable as it is the expec-
tation value of the current density operator for the wavefunction employed in this
framework. However, since the system admits time reversibility, it is known that
energy bands approximated within a tight-binding formalism must satisfy a sum rule
that prevents dissipative currents in the valence bands to be produced [99].

The dispersion of the infinitely-extended bands given in Eq. (173) and instantaneous
eigenstates of Eq. (176) are a result of an approximation in momentum space, namely
for electronic states in the vicinity of the Dirac points, where they possess relativistic
properties.

Therefore, the physical current cannot be simply accounted for by Eq. (191), as it
contains unphysical divergences. The current can nonetheless be regularised through
the introduction of a term which acts as an ad-hoc subtraction of the current generated
in the valence band thus:

j ξμ,k(t) = |cξ
+|2〈uξ

+,k| ĵ ξμ|uξ
+,k〉 + |cξ

−|2〈uξ
−,k| ĵ ξμ|uξ

−,k〉︸ ︷︷ ︸
intraband

− 〈uξ
−,k| ĵ ξμ|uξ

−,k〉︸ ︷︷ ︸
valence band current

+ qξ
ke−iω0t 〈uξ

−,k| ĵ ξμ|uξ
+,k〉 + (qξ

k)∗eiω0t 〈uξ
+,k| ĵ ξμ|uξ

−,k〉︸ ︷︷ ︸
interband

.
(195)

The Hamiltonian of Eq. (191) is a low-momentum representation of the carriers, since
it was obtained as a first-order k ·p approximation. A local form of the current density
operator may be found which renders the current density operator valley-dependent.
The full current, which takes in both valley contributions is of course independent of
ξ . For a Cartesian coordinate μ, it is given as:

ĵ ξμ,k = − e

�

∂

∂kμ

H ξ
k , (196)
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resulting in momentum-independent quantities:

ĵ ξx = −(ξevF/�)σx ,

ĵ ξy = −(evF/�)σy .
(197)

In this fashion, the construction of the current in Eq. (195) allows for the separation of
current terms which originate within the same band (intraband) and across different
bands (interband).

〈uξ
λ,k| ĵ ξx |uξ

λ′,k〉 = −ξevF〈uξ
λ,k|σx |uξ

λ,k〉

= −ξevF
2

(
ξeiξθk/2 λe−iξθk/2

) (0 1
1 0

)(
ξe−iξθk/2

λ′eiξθk/2

)

= −evF
2

(
λ′eiξθk + λe−iξθk

)

=
{−λevF cos θk for λ′ = λ (intraband)

λξ ievF sin θk for λ′ = −λ (interband)
,

(198)

where, by parity, cos(ξθk) = cos(θk) and sin(ξθk) = ξ sin(θk).
As for the y component:

〈uξ
λ,k| ĵ ξy |uξ

λ′,k〉 = −evF〈uξ
λ,k|σy |uξ

λ′,k〉

= − ievF
2

(
ξeiξθk/2 λe−iξθk/2

) (0 −1
1 0

)(
ξe−iξθk/2

λ′eiξθk/2

)

= −ξ ievF
2

(
−λ′eiξθk + λe−iξθk

)

=
{−λevF sin θk for λ′ = λ (intraband)

−λξ ievF cos θk for λ′ = −λ (interband)
.

(199)

Importantly, the current elements satisfy the conditions:

〈uξ
λ,k| ĵ ξμ|uξ

λ,k〉 = −〈uξ
−λ,k| ĵ ξμ|uξ

−λ,k〉 (intraband), (200)

〈uξ
λ,k| ĵ ξμ|uξ

−λ,k〉 = 〈uξ
−λ,k| ĵ ξμ|uξ

λ,k〉
∗

(interband). (201)

Inserting the current elements calculated in Eqs. (198)–(199) in Eq. (195) leads to the
microscopic current:

j ξx,k = −evF
(
|cξ

+,k|2 cos θk −
(
|cξ

−,k|2 + 1
)
cos θk

+iξ sin θk

(
qξ
ke−iω0t − (qξ

k)∗eiω0t
))

= −evF
(
cos θk(w

ξ
k + 1) − 2ξ sin θkIm

(
qξ
ke−iω0t

))
(202)

123



360 M. Ornigotti et al.

Similarly for the y component:

j ξy,k = −evF
(
|cξ

+,k|2 sin θk −
(
|cξ

−,k|2 + 1
)
sin θk

−iξ cos θk

(
qξ
ke−iω0t − (qξ

k)∗eiω0t
))

= −evF
(
sin θk(w

ξ
k + 1) + 2ξ cos θkIm

(
qξ
ke−iω0t

))
.

(203)

The valence band current term that has been subtracted is incorporated as a regulari-
sation for the intraband current leading, in a sense, to a reassignment wk �→ wk +1 in
Eqs. (202)–(203), which has been used in [95].With the knowledge of the contribution
from a particular momentum state and valley to the μ component of the current, the
physical photo-generated current is obtained through:

Jμ(t) ≡ Jintraμ (t) + Jinterμ (t)

=
∑

k,ξ

j ξk (t) ≈ gs

dG4π2

∑

ξ

(∫
j ξk (t)d2k

)
,

(204)

where gs = 2 denotes the spin degeneracy (given that the quasirelativistic equations
do not account for spin), d2k ≡ |k| d|k|dφk is the 2D differential in momentum space
and dG = 0.33 nm is the thickness of the monolayer. The macroscopic contributions
from intraband and interband currents may of course be accessed given the explicit
separation in j ξμ,k.

Rather importantly, it must be emphasized that the integration over momentum
must cover the whole space, as opposed to the usual first Brillouin zone, since the
dispersion is not periodic, given the low-momentum approximation.

7.1 A comparison of the DBEs and SBEs

In the same spirit of Sect. 5.10, and to establish the different predictions from both the
DBEs—Eqs. (185)–(186)—and the full-field SBEs—Eqs.(117)–(118)—in the non-
linear regime, both sets of equations were numerically simulated with the same
parameters. As before, a highly accurate Runge–Kutta algorithm was used and, to
this end, the equations were rescaled so all variables are dimensionless.

With a numerical output of the inversion and microscopic polarisation, the micro-
scopic currentsmay be composed as given byEqs. (202)–(203). The final,macroscopic
current, whose definition is found in Eq. (204), is obtained by discretising momentum
space in a reasonably fine mesh. The integration in momentum space is performed
using the trapezoidal rule and, given the formalism that was developed, the space is
parametrised by the polars of each dimensionless momentum state, as before denoted
as k̃ = ||k̃|, φk̃〉.

To ensure that all appropriate contributions are taken, the radial integration is
performed up to a cutoff value. A sensible value for such cutoff was found to be
|k̃| = 2c/(vF�0), which is the point where the electronic momentum starts to dom-
inate the photonic momentum in Eq. (173). For instance, for �0 = 50, the formula
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Fig. 10 Comparison of the macroscopic current Jx between the DBEs and the SBEs, in the full-field
treatment, for a sech pulse of central frequency �0 = 5. a Shows an extreme similarity between the models
since it is obtained in the linear regime. For intense fields, b shows slightly different outputs. These are
crucial in understanding harmonic generation in the sample

would give k̃ � 12, so we have to make sure that we integrate the momenta at least up
to this value to correctly capture the full dynamics of the pulse-graphene interactions.

Finally, the current in time domain is Fourier-transformed so a harmonic analysis
may be performed. The same methodologies apply to the SBEs, where the current
contributions are obtained by setting A(t) = 0 in their DBEs counterparts.

To solidify the claim that the nonlinear regime induces different time dynamics in
the photo-generated current, the SBEs and DBEs were solved in the linear regime, for
a field amplitude E0 = 10−9 and nonlinear regime, for a field amplitude E0 = 1. The
current predicted by both methods is shown in Fig. 10. Firstly, the current only shows
a nonzero component Jy , namely the one in the light polarisation direction, which
was taken to be in x̂ . Consequently, the integrated current component Jy vanishes
identically.

Figure 10a shows a perfect match between both models in the linear regime. How-
ever, a an intense field leads to additional time dependences in the DBEs, which
ultimately make the current output slightly different to the SBEs.

The current formulae dictating its dynamics are dependent on which valley the
excitations take place. It is thus in principle possible to obtain different outputs for each
valley, leading to an asymmetrical contribution of the valleys to the overall current.
However, the valley-dependent currents are the same. Consequently, a degeneracy
factor of 2 may be introduced in the first line of Eq. (204). This degeneracy factor has
also been found in works by Ishikawa [95, 96].

For the simulations that produced Fig. 11, the graphene sheet is pumped with a
normally incident pulse, of duration t0 = 10 fs, central wavelength λ0 = 800 nm,
intensity I = 114 GW/cm2, and at temperature T = 0 ◦K.

Realistic, zero-averaged localised electric and vector potential fields, in order not to
introduce unphysical static electric fields. Their respective dimensionless definitions
are given as:

E(τ ) = E0sech(τ ) cos(�0τ) −
( E0

�0

)
sech(τ )tanh(τ ) sin(�0τ)

a(τ ) = − E0
�0

sech(τ ) sin(�0τ).
(205)
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Fig. 11 Total emission spectra excited by a t0 = 10 fs pulse, normally incident and linearly polarized, with
an input energy I = 114 GW/cm2, at zero temperature. Results are obtained by solving numerically the
DBEs (185–186) (red solid line), and the SBEs (blue dotted line). It is evident that the SBEs predict much
higher amplitudes for the n > 3 harmonics

The output spectra S(ω) = |ωJ(ω)|2 in dB are shown in Fig. 11. The factor ω,
proportional to the density of states in Eq. (48) is added so that the spectrum does not
show decaying harmonic peaks. The solid red line is the result of the DBEs simulation,
while the dotted blue line is obtained using the SBEs. The SBEs predict a much higher
value of the harmonics n > 3, and the amplitudes of those harmonics tend to decrease
quickly to zero when increasing the harmonic order n. The DBEs, on the contrary,
show lower amplitudes for the harmonics, but they tend to reach a plateau even for
large values of n. In conclusion, we have shown that the SBEs are overestimating the
importance of the high-harmonic generation in gapless graphene, and they also give
an incorrect prediction of the general behaviour of such harmonics, stressing the fact
that the dynamical phase induced by the vector potential is crucial for a quantitative
description of gapless graphene.

All the simulations in this Review were carried out by solving the DBEs with a
standard 4th-order Runge–Kutta method [125]. There are two critical parts in the
implementation of our code. The first one is the integration of the polarization and
inversion fields over the momentum (which provide the macroscopic observables such
as the current Jx , polarization Q, etc), which must be performed with high accuracy.
For this we use a Simpson “1/3 rule”, which we find to be excellently suited for
the purpose. Using a lower accuracy rule, like the trapezoidal rule, does not achieve
a good result due to the appearance of unphysical harmonics in the output spectra.
The second critical part is that different value of the momenta have to satisfy the
quantum probability conservation law w2

k + 4|qk|2 = 1 for each value of k, but the
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accuracy of this condition strongly depends on how close one is to the Dirac point.
Far from the Dirac point, the error tolerance is easily satisfied even for a relatively
low temporal sampling of the electric field, while getting closer to the Dirac point
one needs to increase the temporal sampling using a large number of points. For this
reason, to ensure exactly the same error tolerance for all k-points, we use an adaptive
iterative algorithm. The programming language of our choice is Julia, which allows
a very efficient implementation of the parallel computation (using 12 cores) of the
momentum integration, since in the absence of Coulomb interactions all the momenta
are independent. Our code can be downloaded freely, and the link is provided at the
end of this Review.

8 The nonlinear response of graphene in the presence of artificial
gauge fields

The nonlinear susceptibility of graphene in the presence of a strong magnetic field has
been estimated theoretically to be inversely proportional to the applied magnetic field
(a trend corroborated by the results above), and to be of the formχ

(3)
3D � 5×10−9/B(T)

[100]. In the same work, the intensity of the nonlinear signal has also been estimated
to be directly proportional to the magnitude of the magnetic field, i.e., I (3) � B. This
hints at how controlling the magnetic field applied to a flake of graphene would result
in an overall control of the intensity of the emitted nonlinear signal. This feature,
combined with the versatility artificial gauge fields offer in generating and controlling
artificial magnetic fields, hints at the possibility to use real, or artificial, magnetic fields
to boost the nonlinear properties of graphene, reducing the necessary pump intensity
to trigger its nonlinear phenomena and might lead, in the future, to a new generation
of integrated nonlinear devices. Recently, several works on the nonlinear response
of graphene and 2D materials under the action of a magnetic field have appeared,
including the model we are going to present in this Sect. [101], the effect of spin-
orbit coupling [102–106], and tilted cones [107]. Other works, moreover, have put
their attention on investigating the effect of constant, external electric fields on the
structure of Landau levels induced by magnetic fields [108], inducing modulations on
the angular momentum transfer between light and graphene [109], or induce coherent
population transfer [110]. This research field is still new and very active, and, although
the overall effect ofmagnetic fields is seemingly clear, there is still ample room to engi-
neer and control the interplay between artificial gauge fields and the various degrees
of freedom of the impinging electromagnetic field, to create a comprehensive frame-
work, that would allow a complete control of this phenomenon, and the possibility of
utilising it for integrated photonic or spintronic devices.

In this section, we then briefly review how the nonlinear response of graphene is
influenced, and can be therefore controlled, by the presence of artificial gauge fields,
arising from smooth elastic deformations of the crystalline structure of graphene. In
general, these deformations can naturally occur both in-plane and out-f-plane due
to thermal fluctuations, which cause, for example, corrugations in freely suspended
graphene [111] or the existence of intrinsic ripples [112]. Here, however, we are not
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interested in the intrinsic unflattened structure of graphene, but rather on the artificially
induced strain and bending fields, coming from suitable engineering of monolayers
graphene flakes. The application of strain, stress, or bending, in fact, can give rise
to both Abelian artificial gauge fields, such as effective electric and magnetic fields
[113–115] and non Abelian gauge fields [116]. Moreover, here we will only focus on
one particular case of artificial gauge fields, namely those arising from bending of the
graphene flake, which results in an equivalent constant, out-of-plane magnetic field,
and we concentrate on a model first presented by Guinea and co-workers in Ref. [117].
For a deeper insight on the physics of artificial gauge fields in graphene, we then invite
the interested reader to consult the excellent review by Vozmediano et al. [113].

8.1 The connection between strain and gauge fields

To start with, let us consider a modified tight-binding Hamiltonian for the electronic
structure of graphene, where all nearest-neighbour bonds are all different, i.e., the
hopping constants t j are all different. In particular, we can make the so-called weakly
deformed lattice approximation, where we assume that the atomic displacement ξ

of the carbon atoms from the undeformed position ξ0 is small, compared to the lat-
tice constant a. Under this approximation, one can write the change in the hopping
parameter as a function of this deformation as

t j = t + βt

a2 r j
(
ξ j − ξ0

)
, (206)

where r j are the nearest-neighbours vectors, and β = −∂ ln t/∂ ln a � 2 is the
electron Grüneisen parameter [44]. If we repeat the calculations to derive the Dirac
Hamiltonian in the low-energy approximation as done inSect. 2.4, butwith the inequiv-
alent (deformed) hopping constants given by the relation above, we arrive at the
following result

H(k) = �vF σ ·
(
k − iA(g)

)
, (207)

where the vector field A(g) is a U (1) gauge field, whose components are directly
related to the deformation by [114, 118, 119]

A(g)
x =

√
3

2
(t3 − t2) = βt

a

(
ξxx − ξyy

)
, (208a)

A(g)
y = 1

2
(t2 + t3 − 2t1) = −βt

a
ξxy, (208b)

where the second equality is derived from the continuum limit of Eq. (206), i.e.,

ξ j − ξ0 � (r j∇
)
ξ(r), (209)

where ξ(r) is the elastic displacement field [120], and ξμν = ∂μξν + ∂νξμ. Notice that
the artificial gauge potentialA(g) described above, has the correct form to preserve time
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x

y

z

Fig. 12 a Geometry of a bent flake of graphene of length L = 192 nm, and width W = 200 nm. The radii
of curvature of the lower and upper edges are, respectively R and R′, and are connected to the length L and
width W of the flake by the relations R = 5L = 960 nm, R′ = R + W = 1.16 µm. With these parameter
values, taken from Ref. [117], the maximum achievable magnetic field in the central region of the flake is
B = 10 T. b Flattened equivalent geometry of the bent graphene flake in a. The curvature induced by the
bending is replaced with an artificial gauge field, which gives rise to an artificial, constant magnetic field
directed out of plane, i.e., B = Bẑ. Notice that the width w and length � of the flattened flake might extend
to infinity, without compromising the role of the artificial magnetic field in the interaction dynamics

reversal symmetry for the whole graphene flake, even if this symmetry can be locally
broken, i.e., in a single valley. Moreover, A(g) generates an effective magnetic field
according to the standard Maxwell vector potential relation B(g) = ∇ × A(g). Since
the artificial gauge field is time independent, no effective electric field is generated.
However, in the case the displacement field ξ(r) obeys ξxx + ξyy �= 0, an extra scalar
potential V (r) ∝ (ξxx + ξyy) emerges from the deformation. This contributions,
however, can be easily gauged away by choosing a suitable gauge, where the scalar
potential is set to zero, and only the vector potential appears [121].

Choosing different profiles for the components of the displacement field ξ(r)
can therefore lead to different forms of magnetic fields, with different orientations.
Moreover, if the components of the displacement fields depend nonlinearly on the
components of the position vector r, they will generate a spatially dependent, rather
than uniform, magnetic field. In this work, we limit ourselves to consider a particular
kind of deformation, shown in Fig. 12, which consists in bending a rectangular flake
of monolayer graphene. The bending is characterised by a radius of curvature R, and
the correspondent components of the displacement field are given by

ξx = xy

R
, (210a)

ξy = − x2

R
, (210b)

so that the total artificial gauge field generated by such displacement field is given by

A(g) = 2βt

a R
yx̂ ≡ Byx̂, (211)
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which, in turn, induces a constant out-of-plane magnetic field B = ∇ × A(g) = Bẑ.
Notice that for the parameter set displayed in Fig. 12, a magnetic field amplitude of
B = 10 T can be easily reached. In general, however, from the relation above we
can immediately see how the magnetic field amplitude is inversely proportional to
the bending radius R of the flake, i.e., the bigger R is, the smaller the correspondent
artificial magnetic field will be in amplitude. Moreover, one should also take into
account that introducing strain and bending in a flake of graphene also has the effect
of shifting the position of theDirac points (by an amount proportional to themagnitude
of the artificial gauge field generated by the deformation), and also induces a global
anisotropy of the Fermi velocity since, in general, vF = vF0 (I − βu + u), where u
is the strain tensor, connected to the displacement field ξ [122]. For the purpose of
this review, however, we neglect both of these issues, as we assume that at the leading
order in the bending radius R of the flake, their contribution to the nonlinear response
of the graphene flake is negligible.

8.2 Electron dynamics in the presence of amagnetic field

Electron dynamics in graphene flakes in presence of artificial gauge fields can be
studied either in k-space using theHamiltonian described in Eq. (207), or, alternatively,
in position space, by minimally coupling Dirac equation with the artificial gauge field,
i.e., by replacing the spatial derivative ∂μ with the (artificial ) covariant derivative

∂μ+eA(g)
μ , which gives the following evolution equation for electrons in bent graphene

flakes

i�
∂ψ

∂t
= −i�vFσμ

(
∂

∂xμ
+ ie

�
A(g)

μ

)
ψ. (212)

For the case of the bending profile of Fig. 12, for which A(g) = Byx̂, the above
equation reduces to a Landau problem in 1D [123], and its solution can be found
analytically in terms of plane waves in the x direction and Landau oscillator states in
the y direction, i.e.,

ψ±
n (y, t; k) = N e

i
(

kx−En t
�

) (
Sign(n)φ|n|−1(η)

φ|n|(η)

)
, (213)

whereN is a suitable normalisation constant, η = (y + L2
mk)/Lm is the y coordinate

scaled with respect to the magnetic length Lm = √
�/eB, En = Sign(n)�ωc

√|n|
are the Landau eigenvalues (with ωc = vF/Lm being the cyclotron frequency of
graphene), corresponding to the 1D harmonic oscillator eigenstates φ|n|(η). In the
above equation, moreover, ± indicates the Landau states in the valence (−) and con-
duction (+) bands, respectively, and the condition φ−1(η) = 0 is implicitly assumed
[44]. One important feature of the Landau problem in graphene is, that the spacing
of the oscillator spectrum is not constant, but grows as

√|n|. This is in contrast to
the relativistic case, where the spacing remains constant [123]. Moreover, in the case
of graphene we get a set of oscillator states for each of the conduction and valence
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Fig. 13 a Schematic depiction of the band structure of graphene in the vicinity of a Dirac point (red dot) in
the presence of amagnetic field. Landau levels are generated both in the valence (green lines) and conduction
(blue lines) bands, as well as at the Dirac point itself (red line). The energies of these Landau levels are
the same in modulus in the two bands, but have opposite sign, namely positive energy states are located
in the conduction band, while negative energy states in the valence band. The dashed lines represent the
unperturbed structure of the Dirac cones, in absence of magnetic field. b Schematic representation of the
selection rules induced by an incoming linearly polarised electromagnetic pulse

band, as shown pictorially in Fig. 13a. However, since in the absence of magnetic
field the two bands possess a conical intersection (i.e., Dirac points), the two set of
Landau oscillator states are not independent from each other, but share their ground
state, which sits at zero energy, i.e., at the crossing point.

8.3 Interaction of electromagnetic pulses with bent graphene

We describe the interaction of an electromagnetic pulse impinging on bent graphene
in the framework of the electric dipole interaction, as usual [44]. This allows us to add
an extra term in Eq. (212) as follows

i�
∂ψ

∂t
= −i�vFσμ

[(
∂

∂xμ
+ ie

�
A(g)

μ

)
+ eEμ(t)xμ

]
ψ. (214)

We can, without loss of generality, assume that the impinging electromagnetic pulse is
linearly polarised along, say, the x-direction. Themain consequence of this assumption
is, that the polarisation of the impinging pulse will activate a subset of the allowed
transitions between the Landau states in the vicinity of the Dirac points, as depicted
in Fig. 13b. If we choose to work in the Landau gauge, i.e., we se the scalar potential
to zero, we can write the vector potential for the impinging electromagnetic pulse as

A(t) = −
∫

dt E(t) ≡ A(t)e−iωL t , (215)

where ωL is the carrier frequency of the pulse, and A(t) accounts for its temporal
shape, which we assume Gaussian, i.e.,

A(t) = E0τ e
− (t−t0)2

τ2 , (216)
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where τ is the time duration of the pulse, E0 the amplitude of the electric field of the
impinging pulse, ant t0 is an arbitrary temporal reference. Hence, we can collect both
the electromagnetic and the artificial gauge vector potential in a single expression, i.e.,
A(t) = [A(t) + By] x̂, and we can recast Eq. (214) in a more compact form using the
scaled system of coordinates {v f t, x, y}, and introduce the 2D representation of the
gamma matrices as γ 0 = σ z , γ 1 = iσ y , and γ 2 = −iσ x , so that Eq. (214) becomes

i�γ μ

(
∂μ + ie

�
Aμ

)
ψ = 0, (217)

which represents a Lorentz covariant, 2D Dirac equation. In this form, the Dirac
equation for electrons in bent graphene can be solved by means of the method of the
instantaneous eigenstates, as described in detail in Ref. [95]. To do that, however, we
can first further simplify the expression above, with the aim of highlighting the Landau
equation, and therefore its eigenstates and eigenvalues. To this aim, let us first apply
the following phase transformation to the spinor wave function ψ(x, y, t), i.e.,

ψ(x, y, t) =
∫

dk eikx ei F(t)σx φ(y, t; k), (218)

where

F(t) = evF

�

∫ t ′

o
dt ′ A(t ′), (219)

and the integration over k is reminiscent of a Fourier transform along the x-direction,
for which the corresponding momentum still constitutes a good quantum number,
since it is not affected by the presence of the artificial magnetic field (i.e., the artificial
gauge field potential depends only upon the coordinate y and not upon x). Substituting
the expression above into Eq. (217), after some simple algebra we obtain

[
1

vF
γ 0∂t + γ 1

(
−ik − ieB

�
y

)
+ ∂y

]
φ = 0, (220)

which is the Landau eigenvalue problem, whose solution have been presented in the
previous section in Eq. (213).

Notice, that to go from Eq. (217) to Eq. (220) the following matrix representation
for the exponential operator exp [i F(t)σx ] and its derivative might be useful:

ei F(t)σx =
(

cos F(t) i sin F(t)
i sin F(t) cos F(t)

)
(221a)

∂t

[
ei F(t)σx

]
= ∂t F(t)

(− sin F(t) i cos F(t)
i cos F(t) − sin F(t)

)
, (221b)
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and then use the fact that

γ 1ei F(t)σx = − i

vF

(
γ 0∂t e

i F(t)σx
)

, (222)

to be able to collect the terms proportional to the vector potential.
If we then call φ±

n (y, t; k) the Landau eigenstates solutions of Eq. (220), we can
use this set of complete orthonormal states to represent the general time dependent
solution of Eq. (217), namely

ψ(y, t; k) =
∑

n

ei F(t)σx
[
a+

n (t)φ+
n (y, t; k) + a−

n (t)φ−
n (y, t; k)

]
. (223)

If we substitute this Ansatz into Eq. (217), we get a set of coupled mode equations for
the time dependent coefficients a±

n (t), that reads, up to an inessential normalisation
constant, as follows

ia+
m (t) = �R(t)e−iωL t

[
ei�ω−

m−1t a+
m−1(t) + −ei�ω−

m+1t a+
m+1(t)

+
∑

n<0

ei�ω+
n tM−+

mn a−
n (t)

]
, (224a)

ia−
m (t) = −�R(t)e−iωl t

[
e−i�ω−

m−1t a+
m−1 + e−i�ω−

m+1t a+
m+1

+
∑

n<0

e−i�ωn tM+−
mn

]
, (224b)

where

�R(t) = evF

�
A(t), (225)

is the Rabi frequency, �ω±
n = ωm ±ωn , with �ωm = �ωC

√|m| being the eigenvalue
associated to the Landau eigenstate φ±

m (y, t), and

M+−
mn = [M−+

mn

]∗ = δ|n|,|m|−1 + δ|n|,|m|+1, (226)

is the dipole transition matrix element of graphene for the case of impinging linear
(i.e., x-oriented) polarisation.

Equation (224) describe the interaction of an arbitrarily shaped, linearly polarised
electromagnetic pulse with graphene, in the presence of a magnetic field. Notice, that
to derive Eq. (224), no prior knowledge on the nature of the applied magnetic field
is necessary. This means, that these equations are valid both in the case of an actual
externally applied, or artificially generated (through bending or strain, or any other
lattice deformation) magnetic field.
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8.4 Magnetic field induced nonlinear dynamics in bent graphene

Now that we have developed a comprehensive framework to account for the action
of a magnetic field on graphene electrons in the vicinity of Dirac points, we can
investigate the consequences that a magnetic field has on the nonlinear response of
graphene. To do so, we first consider a simplified version of the model derived above,
where the impinging electromagnetic pulse is resonant with one specific transition
between Landau levels. Without loss of generality, we choose this to be the transition
between the levels n = 0 and n = ±1 in Fig. 13, i.e., we choose ωL = ω1 − ω0 =
ω0 − ω−1 = ωC . Under this assumption, the model above simplifies considerably,
since the interaction now only interests three levels, namely the common ground state
at the Dirac point, and the first Landau level in both valence and conduction band (see
Fig. 13b). Equation (224) then reduce to a simple 3-level system scheme, namely

i
d

dt
a(t) =

⎛

⎝
0 �(t) 0

�∗(t) 0 −�(t)
0 −�∗(t) 0

⎞

⎠ a(t), (227)

where a(t) = [a−
1 (t) a0(t) a+

1 (t)
]T

is a vector containing the expansion coefficients
for the three level involved in the dynamics, and �(t) = �R(t) exp (−iωC t). To
solve the above set of differential equations, we use the initial condition a−

1 (0) = 1,
i.e., we assume a populated valence band and an unpopulated conduction band at
the beginning of the interaction. Moreover, we model the impinging electromagnetic
pulse as possessing a vector potential with Gaussian profile in time, with duration τ

and amplitude E0 and central frequency ωl = ωC , so that the Rabi frequency can be
written explicitly as

�R(t) = evF E0τ

�
e
− (t−t0)2

τ2 cos (ωC t) , (228)

where t0 is an arbitrary time reference, that can be chosen conveniently. Notice, that
the above expression of the Rabi frequency contains both the resonant, as well as
the off-resonant terms, and therefore the correspondent solution to Eq. (224) is not
sought within the rotating wave approximation framework. Equation (224) can be
either solved analytically (once the explicit expression of the functions �(t), i.e., of
the impinging electromagnetic pulse, has been determined) or numerically with the
help of standard solvers, such as Crank-Nicolson schemes [124]. Once Eq. (224) have
been solved, we can reconstruct the time-dependent spinor wave function ψ(x, y, t)
using Eqs. (223) and (218), and calculate the electron current induced by the impinging
electromagnetic field, using the standard definition [123]

J(t) =
∫

d2R j(x, y, t) =
∫

d2R ψ†(x, y, t)σψ(x, y, t), (229)

where σ = (σ x σ y) is a vector containing the Pauli matrices σ x,y , for the {x, y}-
component of the current, respectively.
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Fig. 14 Nonlinear signal I (ω), as defined in Eq. (231), as a function of the normalised frequency ω/ωC ,
for the case of a bent flake of graphene, whose bending profile corresponds to an artificial magnetic field
of amplitude B = 10 T. For this plot, we have assumed an impinging electromagnetic pulse with carrier
frequency ωL = ωC = 174 THz, a duration of τ = 60 fs, and an amplitude of E0 = 107 V/m. For the
carrier velocity, we have used the standard value of the Fermi velocity of graphene, i.e., vF = c/300

Notice, that formally the integration runs over the physical dimensions of the flake
of bent graphene. However, we can exploit the bending-gauge field correspondence
to transform the bent sheet of graphene into an unbent one immersed into a constant
magnetic field, and can then extend the integration limits to infinity, since we are
considering only the effect of magnetic field on bulk, rather than edge, states (see
Fig. 12b). By doing so, the spatial integration implicitly accounts for orthogonality
relationships between the various Landau eigenstates appearing in the definition of the
time-dependent spinor wave function ψ(x, y, t), so that, at the end of the calculation,
the current only depends on the time-dependent expansion coefficients a±

n (t). For
the case of the 3-level system described by Eq. (227), the explicit expression of the
components of the current as a function of the expansion coefficients reads

Jx (t) = a∗
0(t)

[
a+
1 (t)e−iωC t − a−

1 (t)eiωC t
]

+ c.c, (230a)

Jy(t) = ia∗
0 (t)

[
a+
1 (t)e−iωC t − a−

1 (t)eiωC t
]

+ c.c. (230b)

Once we have the time-dependent current, the nonlinear response of the system can
be calculated in terms of the nonlinear intensity [95]

I (ω) ∝ ω2 |J(ω)|2 , (231)

where J(ω) is the (vector) Fourier transform of the time-dependent current J(t) defined
above. An example of nonlinear signal, resulting from the interaction of an ultrashort
laser pulse with graphene, is given in Fig. 14, for the case of a 60 fs pulse impinging
on the graphene flake. As it has been pointed out in Ref. [101], long pulses show a
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Fig. 15 Nonlinear signal corresponding to an impinging electromagnetic pulse of amplitude e0 = 107 V/m,
and duration τ = 60 fs, as a function of the magnitude of the artificial magnetic field deriving from a change
in the flake bending, namely a B = 2 T, b B = 10 T, and c B = 18 T. For low values of the magnetic field,
we observe a very high intensity around the 15th harmonic, which indicates efficient transfer of energy
between the impinging field and its 15th harmonic. As the magnitude of the magnetic field grows, the
extend of the harmonic spectrum shrinks, and more peaks acquire high-intensity, signifying the possibility
to efficiently transfer energy from different harmonics of the impinging field. For these plots, ωL = ωC
has been always assumed for each value of the magnetic field, and vF = c/300 has also be assumed, as in
Fig. 14

richer and complicated spectrum. From Fig. 14, in fact, we can see how the spectrum
is quite broad, stretching to the 20th harmonic, and, most interestingly, it contains both
even and odd harmonics. A detailed discussion about the effect of the pulse duration
on the nonlinear response of grpahene in the presence of an artificial magnetic field
can be found in Ref. [101].

If we now modify the bending profile of the flake, i.e., we change the radius of
curvature of the bent flake, we can control the amplitude of the magnetic field, and,
ultimately, the resonance frequency of the Landau system. If we assume to always
work on resonance, i.e., we adapt the central frequency of the impinging pulse to the
new cyclotron frequency every time we change the applied magnetic field, and we fix
all the other parameters, i.e., pulse duration and amplitude, we can study how a change
in the amplitude of themagnetic field affects the nonlinear signal generated by the bent
flake of graphene. The results of this analysis are displayed in Fig. 15. As is can be
seen, for low magnetic fields, i.e., B = 2 T [panel (a)], we observe a high conversion
efficiency (high peak intensity) between the impinging frequency ωL = ωC and its
15th harmonic, corresponding to a wavelength of λ15 � 720 nm. For high magnetic
fields, i.e. B = 18T [panel (c)], instead, we observe the emergence of different high-
harmonic peaks, corresponding, for the parameters chosen in Fig. 15 to the 5th, 7th,
10th, and 12th harmonic of the impinging field. This suggests the possibility to use the
artificial magnetic field amplitude, i.e., the degree of bending of the flake, as a control
knob, to tune the frequency conversion action of the flake itself, from high conversion
to a single wavelength [panel(a)], to versatile source of visible-to-THz conversion of
light [panel(c)].
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9 Conclusions and outlook

In this Review, we provided a detailed treatment and comprehensive framework for
studying the linear and nonlinear light–matter interactions in gapless graphene. To do
so, we have introduced several different, and complementary, tools to describe, from
a theoretical point of view, and with a numerical and computer simulation approach in
mind, the physics of graphene and its interaction with light. First, in Sect. 2, we have
discussed in detail the general machinery commonly used to derive the tight-binding
graphene Hamiltonian from its lattice structure. This served as basis for the continuum
model of electrons in the vicinity of Dirac cones, that, as shown in Sect. 3, reduces
to a massless Dirac equation. With this at hand, we then presented a comprehensive
model for the optical response of graphene, based on the dipole approximation, for
both the linear and nonlinear case, as discussed in Sect. 4. For the latter case, in par-
ticular, we have constructed the so-called Dirac–Bloch equations (DBEs, see Sect. 6),
an adaptation of the traditional Semiconductor Bloch equations (SBEs, see Sect. 5)
applied to pseudo-relativistic, gapless electrons.

The real advantage of using the DBEs, in fact, is when the optical nonlinearity
is considered. The source of the optical nonlinearity is already naturally present in
the DBEs, in the time-dependent dynamical phase, that heavily affects the electron
dynamics in graphene. The comparison between the prediction of the DBEs and the
SBEs for the same parameters, given in Sect. 7, demonstrates how the traditional SBEs
are mostly inapplicable for gapless 2D materials, where the absence of an energy gap
does not fix a scale of energy for the system. In that situation, one must use the DBEs,
since they are able to treat the dynamics of electrons in graphene non-perturbatively,
a feature necessary when dealing with systems that do not possess a reference energy
scale, such as gapless materials.

To complete the picture, we have also explored he novel nonlinear effects arising
from deformed graphene sheets. The deformation is equivalent to applying a pseudo-
magnetic field on the system, which in turn can be described by an artificial gauge
field. This gauge field introduces Landau levels in the dispersion, leading to a plethora
of new powerful nonlinearities that is able to dramatically modify the spectrum of
the input pulse. This, together with a direct, time-domain method to describe electron
dynamics in the presence of artificial gauge fields, based on instantaneous eigenstate
decomposition of the electron wave function, has been presented in Sect. 8.

Wehope that thisReviewwill help researchers to approach the numerical simulation
of graphene with a more structured mindset, and will also spark in the curiosity and
interest of those readers, that are not actively working on this research topic.

To conclude, we would like to point out, that the methods presented here can be
easily generalised to explore, for instance, relativistic 2D media with an energy gap.
Moreover, in the spirit of open science and the creation of a collaborative environment
for its advance, we have decided to open the essential DBEs code used in this Review.
We, in fact, believe, that this will constitute an excellent starting point for anyone
interested in setting up their own simulation code on 2D materials. Our code can be
found at the followingwebaddress: https://www.dropbox.com/sh/gmio8x8wk0vu1r4/
AABfnz7goh2lp_3dA9lofP5ra?dl=0.
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Appendix A: Derivation of Eq. (151)

Let us start by recalling the definition of the Gauss hypergeometric function [93]

2F1(α, β; γ ; t) =
∞∑

k=0

(α)k(β)k

(γ )k

tk

k! , (A1)

where (α)k is the Pochhammer symbol, defined by [93]

(α)k =
k−1∏

j=0

(α + j). (A2)

For the case of resonant two-level systems, δk̃ = 0 (which means s = 1/2) and Eq.
(150) reduces to

q 1
2
(y) = 2iE0 sin φk̃y 2F1

(
1,

1

2
; 3
2
;−y2

)

= 2iE0 sin φk̃

∞∑

k=0

(( 1
2

)
k (1)k( 3
2

)
k

)
(−1)k y2k+1

k! .

(A3)

By recalling that (1)k = k!, the computation of the remaining Pochhammer symbols
yields:

( 1
2

)
k( 3

2

)
k

=
1
2 · 3

2 · 5
2 · · · 2k−1

2
3
2 · 5

2 · 7
2 · · · 2k+1

2

= 1

2k + 1
, (A4)

and the series converges to

∞∑

k=0

(−1)k

(2k + 1)k! y2k+1 =
√

π

2
Erf (y) , (A5)

where Erf(x) is the error function [93]. Substituting this result into Eq. (A3) gives Eq.
(151).

Appendix B: Derivation of Eq. (152)

Let us start by reqriting the expression of theGauss hypergeometric function appearing
in Eq. (150) in terms of the definition of the Gauss hypergeometric function given by
Eq. (A1), i.e.,

2F1(1; s; s + 1;−y2) =
∞∑

k=0

(1)k(s)k

(s + 1)

(−y)2k

k! . (B1)
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The Pochhammer symbols in the equation above can be computed exactly as:

(1)k(s)k

(s + 1)kk! = (s)k

(s + 1)k
= s · (s + 1) · (s + 2) · · · (s + k − 1)

(s + 1) · (s + 2) · (s + 3) · · · (s + k)

= s

s + k
.

(B2)

With this result, the series in Eq. (B1) sums to the Hurwitz–Lerch � Transcendental
[93], i.e.,

∞∑

k=0

(
1

k + s

)
(−1)k y2k = �(−y2, 1, s), (B3)

where the Hurwitz–Lerch � Transcendental is defined as:

�(z, α, β) =
∞∑

k=0

zk

(k + β)α
. (B4)

The next step is to use the following integral identity [94], to express the Hurwitz–
Lerch � Transcendental in terms of less esoteric functions

�(z, s, a) = 1

�(s)

∫ ∞

0

us−1e−au

1 − ze−u
du, (B5)

valid as long as t < 0, Re(s) > 0, Re(a) > 0 and z ∈ C\[1,∞). In our case, this
integral identity allows us to rewrite Eq. (B3) in terms of the incomplete Beta function
as follows

�(−e2t , 1, s) = 1

�(1)

∫ ∞

0

e−su

1 + e2t−u
du

= 1

s
+ (−e2t )−s B(−e2t , s + 1, 0),

(B6)

where the incomplete Beta function is:

B(z, a, b) =
∫ z

0
ua−1(1 − u)b−1du. (B7)
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