
La Rivista del Nuovo Cimento (2021) 44:597–640
https://doi.org/10.1007/s40766-021-00025-8

REVIEW PAPER

Solving the strong-correlation problem in materials

Eva Pavarini1

Received: 24 March 2021 / Accepted: 11 June 2021 / Published online: 14 July 2021
© The Author(s) 2021

Abstract
This article is a short introduction to the modern computational techniques used to
tackle the many-body problem in materials. The aim is to present the basic ideas,
using simple examples to illustrate strengths and weaknesses of each method. We will
start from density-functional theory (DFT) and the Kohn–Sham construction—the
standard computational tools for performing electronic structure calculations. Leaving
the realmof rigorous density-functional theory,wewill discuss the established practice
of adopting the Kohn–Sham Hamiltonian as approximate model. After recalling the
triumphs of the Kohn–Sham description, we will stress the fundamental reasons of
its failure for strongly-correlated compounds, and discuss the strategies adopted to
overcome the problem. The article will then focus on the most effective method so
far, the DFT+DMFT technique and its extensions. Achievements, open issues and
possible future developmentswill be reviewed.Thekeydifferences betweendynamical
(DFT+DMFT) and static (DFT+U ) mean-field methods will be elucidated. In the
conclusion, wewill assess the apparent dichotomy between first-principles andmodel-
based techniques, emphasizing the common ground that in fact they share.

Keywords Many-body problem · Strongly-correlated systems · Transition-metal
oxides · Metal–insulator transition · Static mean-field theory · Dynamical mean-field
theory · DFT · DFT+U · DFT+DMFT
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1 Introduction

Strong electron–electron correlations can give rise to surprising co-operative phenom-
ena, typically very hard to explain and even harder to predict. Paradigmatic examples
are high-temperature superconductivity in the cuprates, other types of unconventional
superconductivity, Mott insulating or heavy fermion behavior, spin and orbital order-
ing, spin and orbital liquid phenomena. Understanding many-body effects in materials
is, by all means, a grand challenge since the early days of quantum mechanics. And
yet, what are, exactly, strong electronic correlations? In principle, one could say that
condensed matter physics is all about electron–electron interactions. Indeed, the gen-
eral electronic Hamiltonian that describes all possible systems, in the non-relativistic
limit and the Born–Oppenheimer approximation, is

Ĥe =
Ne∑

i

(
T̂i +

Nn∑

α

V̂iα

)

︸ ︷︷ ︸
T̂e+V̂en

+ 1

2

Nn∑

α �=α′
V̂αα′

︸ ︷︷ ︸
V̂nn

+ 1

2

Ne∑

i �=i ′
V̂ii ′

︸ ︷︷ ︸
V̂ee

, (1)

where Ne is the number of electrons, Nn the number of nuclei, T̂e the kinetic energy
of the electrons, V̂en the electron–nuclei attraction, V̂nn the nuclei–nuclei repulsion,
and V̂ee the electron–electron repulsion. If the latter could be neglected (V̂ee = 0),
the Hamiltonian would be separable, and the electrons independent. In this case the
solution of the many-body problem would be straightforward. For a single electron,
eigenvalues and eigenvectors could be found solving the equation

Ĥ0
i φn(ri ) = εnφn(ri ), (2)

where

Ĥ0
i = T̂i +

Nn∑

α

V̂iα + 1

2

Nn∑

α �=α′
V̂αα′ . (3)

The many-electron states would then be single Slater determinants, trivially con-
structed from the complete basis {φn(r)} just obtained. For example, in the case of
a half-filled band described by the dispersion relation ε(k) and Bloch states φk↑(r),
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such a Slater determinant has the form

Ψ (r1, r2, . . . , rNe ) = 1√
Ne!

φk1↑(r1) φk1↑(r2) . . . φk1↑(rNe )

φk1↓(r1) φk1↓(r2) . . . φk1↓(rNe )
...

...
...

...

φk Ne
2

↑(r1) φk Ne
2

↑(r2) . . . φk Ne
2

↑(rNe )

φk Ne
2

↓(r1) φk Ne
2

↓(r2) . . . φk Ne
2

↓(rNe )

. (4)

In real materials, however, the electronic Coulomb repulsion is both large and long
ranged, and there is no obvious reason to neglect it. This can be already seen from the
average bare Coulomb energy (Hartree term)

EH = 1

2

∫
dr

∫
dr′ n(r)n(r′)

|r − r′| , (5)

where n(r) is the electron density.1 Even if electronic charges are localized at different
atomic sites (labeled with Rα), i.e., if

n(r) ≈
∑

α

δ(r − Rα), (6)

the integrand still decays as the inverse of the nuclei–nuclei distance. Since the
electron–electron repulsion cannot be neglected, a many-body eigenstate can be, in
principle, a combination of infinite Slater determinants. It is thus remarkable that,
de facto, for understanding several phenomena, Hamiltonian (1) can be replaced to a
good approximation with an effective non-interacting model for quasi electrons

Ĥe → H̃0
e =

Ne∑

i

H̃0
i , (7)

whose eigenstates are single Slater determinants. The independent-electron approxi-
mation is, e.g., sufficient to explain the key differences between transition metals (Ni,
Cu, Ag, …), alkali metals (Li, Na, K,…), semiconductors (Si, Ge, GaAs, …) and
band insulators (diamond,…). It is so successful that modern solid-state physics text
books still devote a substantial volume to results obtained starting from it. Remark-
ably, an independent–electron model is also used in a different context. This is the
Kohn–Sham (KS) construction in density-functional theory (DFT), the most popular
tool for electronic-structure calculations. In DFT, the KS Hamiltonian is, however,
merely an auxiliary model, instrumental in obtaining the exact ground-state energy
and density—it has, in principle, no physical meaning. Nevertheless, the practice of
using it as an effective model has proven successful for entire categories of systems
and problems. The KS band-structure is thus an established tool for studying, under-
standing and predicting the electronic properties of materials. In the light of such an

1 Here and in the rest of the manuscript we adopt Hartree atomic units.
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unexpected success, stepping outside the rigorous principles of DFT, one could view
also the KS Hamiltonian as a (very effective) mean-field mapping of type (7).

Mapping a complicated many-body Hamiltonian into a simpler effective auxil-
iary problem has by and large proven a powerful technique in physics. Mean-field
approaches capture, e.g., essential features of magnetic broken symmetry phases,
although the problem of quantum magnetism is vastly more complex. It is thus tempt-
ing to conclude that, if the mapping in Eq. (7) is an excellent approximation in many
cases, it should work for all systems, once we found the correct non-interacting effec-
tive particles. Strong correlation phenomena are those for which such an Ansatz
epically fails, and a simple effective non-interacting model is not expected to be found
for reasons of principle.

The article is organized as follows. First we will briefly discuss the nature of the
strong correlation problem.We will then recall the basics of density-functional theory,
the standard method used to perform electronic structure calculations in materials. In
this context wewill discuss the Kohn–Sham construction and, leaving aside the princi-
ples of DFT, the strength and the advantages of the Kohn–Sham picture. We will stress
the fundamental reasons for its failure for strongly-correlated compounds, illustrating
the two main strategies used for overcoming the problem. The first consists in improv-
ing the approximation of the exchange–correlation functional—even if at the price
of introducing ad hoc corrections or free parameters, and thus operating outside the
strict principles of density-functional theory. This scheme is used, e.g., in the DFT+U
approach. The limitations of such a tactic will be emphasized. The second strategy
consist in using the KS orbital as a basis for building materials-specific many-body
models. This is the most effective strategy so far, and the one used in the DFT+DMFT
approach. Successes and open problems will be reviewed. The differences between
static (DFT+U ) and dynamical (DFT+DMFT) mean-field methods will be elucidated.
Towards the end of the article we will take a glimpse to extensions of the DFT+DMFT
approach and future developments.

2 The quantummany-body problem

In the reductionist viewpoint, knowing the fundamental interactions, here given in
Eq. (1), is alone sufficient to reconstruct the behavior of any system. There is no doubt
that reductionism led to crucial advances in science. It also harbors a key misunder-
standing, however, as Anderson pointed out in thewell-known articleMore is different.
[1]. Taking it to the extreme, reductionism implies that solving the many-body prob-
lem described by Hamiltonian (1) is a mere exercise, perhaps a complicated one, an
enterprise however from which nothing fundamentally new can be learned. If this was
true, phenomena like superconductivity should have been predicted, rather that found
experimentally, to be understood only several decades later. Even more, in the era of
supercomputers, all phenomena in chemistry and condensed matter physics would be
unraveled. Saying it with Anderson [1]

The constructionist hypothesis breaks down when confronted with the twin dif-
ficulties of scale and complexity. The behavior of large and complex aggregates
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Fig. 1 The dimension D of the
Hilbert space for a Nn -sites
chain with 4 states per site
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of elementary particles, it turns out, is not to be understood in terms of a sim-
ple extrapolation of the properties of a few particles. Instead, at each level of
complexity entirely new properties appear, and the understanding of the new
behaviors requires research which I think is as fundamental in its nature as any
other.

In fact, only problems involving a very small number of particles can be solved
exactly in an exhaustive manner. Exact diagonalization becomes quickly impractica-
ble increasing the system size, since the Hilbert space grows combinatorially. This can
be already understood by assuming that the Hilbert space of a single atom is merely
made by 4 states, the vacuum, the two single-electron states, and one two-electron
state, given below with their energy, E(Ne)

|0〉 E(0) = 0
|1, σ 〉 = c†dσ |0〉 E(1) = εd

|2〉 = c†d↑c
†
d↓|0〉 E(2) = 2εd +U .

For a chain made by Nn of such atoms, the dimension is D = 4Nn ; the faster than
exponential increase of D as a function of Nn is shown in Fig. 1. In the last decades,
exploiting the advances in algorithms and supercomputers, quantum chemistry made
humungous progress in finding efficient ways of studying the ground-state properties
of systems for which a very large numbers of Slater determinants is needed, thanks,
e.g., to coupled-cluster theory or full configuration interaction quantum Monte Carlo
[2–5]. The density-matrix renormalization group [6–8] is also becoming a powerful
tool in this respect [9–12]. Despite the impressive progress, the thermodynamic con-
vergence remains slow, however. Staying with our toy model, in the thermodynamic
limit a Hamiltonian matrix of dimension D = 4Nn cannot be stored on any classical
supercomputer, not to speak about diagonalizing it and using the eigenvectors after-
wards to calculate interesting properties. The problem becomes obviously even harder
in real materials, where the Hilbert space of the atomic building blocks is not limited
to four states. Truncations of the basis can lead to large finite size errors and/or, in
the worse case, to entirely miss phenomena whose description requires high accuracy
in specific energy windows. While quantum computers might change the game in the
future, the second fundamental problem with the growing size of the Hilbert space
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is that it becomes rapidly impossible to make sense of the results. Indeed, the final
aim of all simulations is not to merely reproduce experiments, but to give us answer
to the truly interesting questions. Why does a systems behave the way it does? With
an exponentially large number of degrees of freedom, even if we had the means of
obtaining the exact solution, we might be left with an ocean of information impossible
to disentangle. Having the solution would then not necessary lead to real scientific
progress. An example of this paradox comes from the classical gravitational N -body
problem. In this case, an exact solution in terms of power series has been obtained.
First it was done for the three-body problem [13] and later on it was extended to the
N -body case [14]. Nevertheless, limited progress in understanding the N -body prob-
lem comes from power-series solutions themselves. This is due to the fact that they
converge slowly and simulations can become quickly impossibly long [15]. In a sim-
ilar way, most progress in unravelling the quantum many-body problem in materials
comes from methods which construct minimal effective models capturing the essence
of a given phenomenon with sufficient degree of sophistication, and from solutions
of such models, perhaps approximate, but allowing us to answer to essential “why”
questions. This category includes a whole range of techniques, from those for solving
paradigmatic models (describing only the generic features of a given phenomenon)
all the way, I will argue, to the so-called first-principles methods, discussed in the next
section.

3 The standardmodel: density-functional theory

Density-functional theory [16,17] has revolutionized the way we deal with the many-
electron problem. For this reason, DFT can be to some extent viewed as the standard
model of condensed-matter physics. Given such a status, there aremany reviews and/or
books devoted to DFT, covering the principles, the applications, the history, or all of
this together. A selection—definitely non-exhausting—can be found in Refs. [18–24].
Here I will merely recall the aspects most relevant for strongly-correlated systems.
DFT shifts the focus from the electronic wave-function, which depends on Ne three
dimensional coordinates, Ψ (r1, . . . rNe ), to the electron density n(r), a function of a
single coordinate. This changes completely the perspective. For this reason, in 1998,
in his Nobel lecture [18], Walter Kohn described the most important contributions of
DFT starting as follows

[..] The first is in the area of fundamental understanding. Theoretical chemists
and physicists, following the path of the Schrödinger equation, have become
accustomed to think in a truncated Hilbert space of single particle orbitals.
The spectacular advances achieved in this way attest to the fruitfulness of this
perspective. However, when very high accuracy is required, so many Slater
determinants are required (in somecalculations up to∼ 109) that comprehension
becomes difficult. DFT provides a complementary perspective. It focuses on
quantities in the real, three-dimensional coordinate space, principally on the
electron density n(r) of the ground state. [..] These quantities are physical,
independent of representation and easily visualisable even for large systems.
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Solving the strong-correlation problem in materials 603

Decades later this conclusion remains unchallenged. Still, the rise of DFT as the
state-of-the art approach for describing actual materials is to a large extent due to
a second step, the Kohn–Sham construction. In practical implementations, the elec-
tronic ground-state density n(r) is typically calculated by mapping the many-body
Hamiltonian onto an auxiliary non-interacting KS Hamiltonian, ĤKS

e , with the same
electronic ground-state density,

n(r) = n0(r) =
occ∑

l

|φKS
l (r)|2.

Here {φl(r)} are Kohn–Sham orbitals; the associated Kohn–Sham eigenvalues are
Lagrange multipliers, obtained solving the equation

ĥ0e(r) φKS
l (r) = ( − 1

2
∇2 + vKS(r)

)
φKS
l (r) = εlφ

KS
l (r) (8)

with effective potential given by

vKS(r) = −
∑

α

Zα

|r − Rα|
︸ ︷︷ ︸

ven(r)

+
∫

dr′ n(r′)
|r − r′|︸ ︷︷ ︸

vH(r)

+ δExc[n]
δn(r)︸ ︷︷ ︸
vxc(r)

. (9)

In this expression the first term (ven(r)) is the external potential, the second and third
are the Hartree (vH(r)) and the exchange-correlation (vxc(r)) potential; Exc[n] is the
exchange-correlation functional. The exact ground-state energy of the system can be
expressed as

EG[n] =
occ∑

l

εl − EH [n] + Exc[n] −
∫

dr
δExc[n]
δn(r)

n(r), (10)

where

EH [n] = 1

2

∑

ll ′

∫
dr1

∫
dr2 φKS

l (r1)φKS
l ′ (r2)

1

|r1 − r2|φ
KS
l (r1)φKS

l ′ (r2) (11)

= 1

2

∫
dr

∫
dr′ n(r)

1

|r − r′|n(r′). (12)

is theHartree energy.Themaindifficulty is tofindgoodapproximations to the unknown
functional Exc[n]. One of the best known is the local-density approximation (LDA),
in which Exc[n] is replaced by its expression for a homogeneous interacting electron
gas (HEG) with electron density equal to n(r)

Exc[n] ∼
∫

dr εHEGxc (n(r)) n(r). (13)
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Fig. 2 The KS band structure
(LDA) of the insulating
perovskite LaMnO3. The Mn d
bands are yellow. In the KS
picture, the system not is only
metallic, but also is in the
electronic configuration t42g ,

instead than t32ge
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The interacting electron gas problem has been solved numerically via quantumMonte
Carlo (QMC) [27], and analytical expressions of εHEGxc (n(r)), obtained fitting the
numerical data, are known [28]. Beside the LDA, a large number of alternative func-
tionals are used in practice, often devised to cure shortcomings of the LDA in specific
areas. In fact, the LDA has been placed at the bottom of Jacob’s ladder of density
functional approximations [29,30]. For strongly-correlated system, however, none of
the known functionals solve the key problems,2 as we will discuss later; hence we will
refer often to the LDA as representative functional.

The Kohn–Sham construction is in principle only a scheme for calculating the
ground-state energy and density. To the general surprise, in the early days of DFT, it
became quickly clear that the Kohn–Sham eigenvalues are in many cases excellent
approximations to the actual eigenenergies of a given material. Since then, Kohn–
Sham Hamiltonians have been very successfully used for studying and explaining
all kind of properties and systems. Together with the successes, problems emerged.
There are entire classes of materials for which this practice fails qualitatively due
to strong local electron–electron repulsion effects. An example is shown in Fig. 2.
Many transition-metal oxides have phases in which they behave experimentally as
a paramagnetic insulator, but they are instead metallic in the Kohn–Sham picture, if
the Kohn–Sham bands are calculated with the LDA, the GGA or similar functionals.
An insulator is only obtained in the magnetically ordered phase, i.e., if spin-polarized
calculations are performed. The origin of this failure of the KS picture is fundamental
in nature. It is the same reason why a partially filled band, if no interaction breaks
Kramers degeneracy, always describes a metallic system, no matter what the shape of
the band is.

Strictly speaking, it should not be a surprise that the KS picture fails in some cases,
since the KS eigenvalues were never supposed to be interpreted as elementary exci-
tations. The purist approach, in this situation, consists in returning to the foundations
of DFT, viewing the Kohn–Sham eigenvalues as the Lagrange parameters they are,
and focusing on the total energy and other quantities that can indeed be calculated
exactly, if the exact exchange-correlation functional is known. While this is a fully
valid approach, it also limits the type of problems that can be addressed to those that

2 DFT functional developments typically aim to improve the total energy, not the auxiliary KSHamiltonian.
Instead, approaches for strongly-correlated materials typically use the KS Hamiltonian as a starting point.
The latter differs overall little if, e.g., GGA instead of LDA is used, everything else staying the same.
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Solving the strong-correlation problem in materials 605

can be solved by calculating the total energy and electron density of the ground state.
Thus this strategy will not be discussed further in this article.

Here we will focus instead on less rigorous but more flexible methods. The beauty
and simplicity of the KS picture and its great successes create indeed hope that the
KS eigenvalues and eigenvectors represent a good starting point, even when they are
not sufficient alone. In this view, it should be possible to describe the missing effects
as corrections of some kind. Which, however? There are two different strategies that
can be adopted to make progress. The first consists in finding, even stepping outside
the rigorous principles of DFT, corrections to the exchange-correlation functional, for
example in order to obtain a KS gap in Mott insulators; this approach is adopted,
e.g., to the DFT+U technique, which we will discuss in Sect. 6. This choice has the
advantage that the mapping to an effective one-electron model, with all its simplicity,
is preserved. If it works, it is very effective. Unfortunately only some aspects of strong
correlations can be recast into an independent quasi-electron problem. The second
strategy consists in interpreting the KS orbitals as an optimal basis for constructing
the general many-body Hamiltonian. The crucial step is building from it minimal
many-body models, approximate but as realistic as possible, that can be solved with
state-of-the-art many-body methods.3 This is the viewpoint taken in the DFT+DMFT
method and its extensions, illustrated in Sects. 8 and 13.

4 Strongly-correlated compounds

In his Lectures on Physics [31], Feynman writes

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only
one sentence passed on to the next generations of creatures, what statement
would contain the most information in the fewest words? I believe it is the
atomic hypothesis (or the atomic fact, or whatever you wish to call it) that all
things are made of atoms–little particles that move around in perpetual motion,
attracting each other when they are a little distance apart, but repelling upon
being squeezed into one another. In that one sentence, you will see, there is an
enormous amount of information about the world, if just a little imagination and
thinking are applied.

Atoms are not only one of the crucial discoveries in science, but also the simplest
systems in which strong correlations play a fundamental role. The non-interacting
hydrogen-like atomic problem can be solved analytically, and this is sufficient to
explain the main trends in the periodic table, progressively filling the atomic shells.
This is not the full story, however. The electronic Hamiltonian for an atom, in the
non-relativistic limit, reads

Ĥe =
∑

Lσ

εLc
†
Lσ cLσ + 1

2

∑

σσ ′

∑

LL ′L ′′L ′′′
ULL ′L ′′L ′′′c†Lσ c

†
L ′σ ′cL ′′′σ ′cL ′′σ . (14)

3 In this article we will not discuss methods based on many-body perturbation theory, such as the GW
technique, since, alone they are not sufficient for describing strongly-correlated materials.
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Here L = nlm is a shortcut for the quantum numbers n (principal) and l,m (angular
momentum), εL = −Z2/2n2, where Z is the atomic number, and ULL ′L ′′L ′′′ is the
Coulomb interaction tensor

ULL ′L ′′L ′′′ =
∫

dr1

∫
dr2 φL(r1)φL ′(r2)

1

|r1 − r2|φL ′′(r1)φL ′′′(r2). (15)

The latter gives rise to different effects. The average static mean-field Coulomb inter-
action merely modifies the Coulomb potential and hence the energy levels εL . This
has an interest of its own, because it can break the “accidental” O(4) symmetry of
the hydrogen atom, so that s and p levels with the same principal quantum number
n can have different energies, unlike in the case of hydrogen. It does not change the
overall picture, however. The qualitative new aspect brought in by the Coulomb inter-
action is the formation of multiplet states. The latter, if we neglect relativistic effect,
are characterized by a specific total angular momentum LT and a specific total spin
ST, and can be labeled as 2ST+1LT. Consequences of the Coulomb interaction (15)
are, e.g., the first and second Hund’s rule determining the ground multiplet. The exis-
tence of atomic/ionic ground multiplets is essential to many co-operative phenomena
in strongly-correlated lattices, from magnetic and orbital order to the metal–insulator
transition and the Kondo effect. The emergence of local spins can be seen already in
the case of an idealized one-level atom

Ĥe = εd
∑

σ

c†dσ cdσ +Un̂d↑n̂d↓, (16)

where εd is the on-site energy, which we can take as the energy zero for simplicity,
and U the Coulomb repulsion. This Hamiltonian can be rewritten as

Ĥe = εd
∑

σ

c†dσ cdσ +U

(
− Ŝ2z + N̂ 2

e

4

)
, (17)

where Ŝz = (n̂d↑ − n̂d↓)/2 is the total spin and N̂e = n̂d↑ + n̂d↓ is the total number
of electrons operator. This shows clearly that at half filling (Ne = 1) such an idealized
atom behaves as an effective spin 1/2.

Strongly-correlated materials are typically systems which retain the complexity of
atomic (or molecular) physics in the crystalline state. As a rule of thumb, this happens
when the building blocks are ions with localized open shells (usually f and d, some-
times p), and the crystal structure is such that the bands stemming from these shells are
narrow. There are different families of strongly-correlated materials. The first group
includes 4 f and 5 f electron compounds exhibiting either heavy fermion or Kondo
behavior [32–38]. These systems can host fermionic quasi-particles orders of mag-
nitude heavier than in conventional metals [32]. They can present quantum critical
points and non-Fermi liquid behavior [39], and can become unconventional super-
conductors at low temperature [40]. Examples are CeAl3, CeCu2Si2, CeCu6−xAux ,
YbRh2Si2, UBe13 and UPt3. The second group includes 3d, 4d, and sometimes
5d compounds with partially occupied d bands. The most well known systems in
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this class are high-temperature superconducting cuprates. Other representative cases
are titanates, manganites, cuprates, and ruthenates, among which LaTiO3, LaMnO3,
KCuF3 and Sr2RuO4. Additional systems of this kind are iron-based superconduc-
tors, iridates and nichelates. All these materials exhibit fingerprints of Mott physics,
ranging from enhanced quasi-particle masses to a fully blown Mott insulating phase
[41–44]. They can show in addition Hund’s metal behavior, spin, charge and orbital
order, spin and orbital frustration, spin- and orbital-liquid phenomena. Finally, a third
group of correlated systems collects molecular crystals, such as C60 compounds [45];
here the narrow bands stem from the small inter-molecular hopping integrals. The
three families of systems just described have in common the fact that their unexpected
electronic properties arise from the competition between hopping integrals, favoring
electron delocalization, and on-site Coulomb interaction, fostering atomic-like behav-
ior. The anomalous properties of correlated materials are usually very sensitive to
small changes in external parameters, such as temperature and pressure. In the rest of
the article we will focus on the representative class of transition-metal compounds.

5 It is not all about the gap

Aclassical example of strong-correlation effects is theMottmetal–insulator transition,
characteristic feature of many transition–metal compounds. From the point of view
of the mechanism, the Mott transition is well captured by the single-band Hubbard
model

Ĥe = −
∑

σ

∑

i i ′
t i,i

′
c†iσ ci ′σ +U

∑

i

n̂i↑n̂i↓, (18)

where t i,i
′
are the hopping integrals andU is the on-site Coulomb term. At half filling,

for U = 0, this model describes a conventional metal with band-width W . Increasing
the ratio U/W , the system becomes a strongly-correlated electron liquid. When the
on-site Coulomb repulsion U is large with respect to W the electrons tend to stay
as far apart as possible and the expectation value of double occupations, 〈ni↑ni↓〉,
correspondingly decreases. Eventually, for U larger than a critical Uc, the system
becomes an insulator. When W=0, the model describes an insulating collection of
decoupled atoms.

Since the most remarkable effect described by (18) is the formation, for U >

Uc and at half filling, of a paramagnetic insulating state in a system which, in the
independent-electron picture, should be metallic, the focus of the discussion often
goes to the gap in the spectral function. The emphasis on the charge gap can be,
however, misleading. Indeed, the gap is only one of the very surprising electronic
properties characterizing a system described by Hamiltonian (18). At half filling,
the list includes low-energy quasi-particles with enhanced masses and short lifetimes,
alongwith their co-existencewithHubbard bands. It extends to local-moment behavior
and low-temperature super-exchange-driven magnetic order, and the presence of both
atomic and delocalized electron signatures in response functions. Away from half-
filling, a dopedMott insulator is ametallic systemwith unusual transport andmagnetic
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Fig. 3 The Born–Mayer repulsion is key for understanding the orbitally-ordered structure of KCuF3. Sym-
bols indicate structures at specific temperatures, pressures or for different cations. The figure shows the
change in total energy as a function of the short Cu–F bond (s) for structures with different lattice constants
a. The minimum smin is practically independent of the temperature so that the experimentally observed
increase in Δ = (l − s)/2, where l is the long Cu–F bond, is merely an effect of thermal expansion.
Reprinted figure with permission from Sims et al. [46]. Copyright (2017) by the American Physical Society

properties, it can exhibit superconductivity, Nagaoka-like ferromagnetism, and much
more. Although we cannot solve (18) in the general case, we know from approximate
solutions in specific regimes and/or limit cases that the complex behavior emerging
from it is quite different from the one expected for a simple band metal or from a
conventional doped band insulator.

The properties of real correlated systems are, of course, in general not captured by
the simple version of the Hubbard model given in Eq. (18). First, in a given mate-
rial there can be more than one strongly correlated band. Second, other interactions
beside the on-site Coulomb repulsion can play an important role. The behavior actu-
ally observed in experiments is typically the result of the interplay of several of them:
electron–lattice coupling, crystal-field splittings, spin–orbit interaction, just tomention
a few. This is of course not a surprise—it is true for any material, independently on the
degree of correlation. For weakly correlated systems, such a complexity can typically
be taken into account and disentangled in full, however, exploiting the Kohn Sham pic-
ture. In a correlated system, where the Kohn Sham picture fails at the qualitative level,
it is instead often very tricky to identify the true causes of a specific phenomenon and/or
to explain a given observation. A metal–insulator transition could, for example, arise
from a pure Mott mechanism, but could also be driven by lattice distortion reducing
the symmetry, or could be the co-operative effect of all this together. An example is the
case of single layered ruthenates [47–49]. Often chicken-and-egg problems arise, as
in the case of orbital-ordering. For the latter, it was long debated if the ordering arises
from the electron–lattice interaction (Jahn–Teller coupling) or from a purely electronic
many-body super-exchange mechanism. This riddle was solved only recently, after
decades of hot discussions [25,46,50–52]. It was shown that super-exchange yields a
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Fig. 4 Quasiparticles and Hubbard bands in the doped 2D Hubbard model (square lattice) with dispersion
ε(k) = −2t(cos kx + cos ky) + 4t ′ cos kx cos ky , obtained with the dynamical mean-field theory approach
[53,54]. The special points are Γ = (0, 0, 0), X = (0, π/a, 0), M = (π/a, π/a, 0), and Z = (0, 0, π/a).
Left panels: t ′/t = 0.2. Right panels: t ′/t = 0.4. Calculations were performed for U = 7 eV, t = 0.4 eV,
290 K. The quantum impurity solver adopted is the Hirsch–Fye quantum Monte Carlo [55] method in the
implementation of Ref. [53]. The number of holes is indicated with x

large transition temperature, but is not sufficient to explain alone the persistence of
distortions till very high temperatures; in the case of ionic systems such as KCuF3,
a new mechanism was identified [46], with the Born–Mayer repulsion playing a key
role in determining the actual experimental structure (Fig. 3). Given this complexity,
the classification of a system as strongly correlated is justified not by a single obser-
vation, e.g., the mere existence of a Mott-like gap, but via a series of experimental
results which coherently fit within the phenomena described by the Hubbard model or
its generalizations. It is this coherent picture, built, e.g., collecting strong-correlation
fingerprints in families of similar compounds or in different energy and temperature
regimes, which makes it clear that it is necessary to take the local Coulomb interaction
explicitly into account—not the fact that one specific isolated experiment in a specific
system does not agree with calculations based on the KS Hamiltonian. This makes
also clear that descriptions trying to circumvent the introduction of the Hubbard U ,
in order to become valid alternatives, must, of course, satisfy the same requirements,
and capture the global picture.

The complexity ofHubbard-U effects is illustrated, e.g., in Fig. 4 for the single-band
Hubbard model. The figure shows the evolution of the k-resolved spectral function
as a function of hole doping for the 2-dimensional square lattice. The non-interacting
dispersion adopted is

εk = −2t(cos kx + cos ky) + 4t ′ cos kx cos ky . (19)
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This is a good approximation of the generic x2− y2 band stemming fromCuO2 planes
in high-temperature superconducting cuprates [56,57]. The figure shows the effect of
introducing x holes in the CuO2 planes. For x 
 1 the spectral function shows a quasi-
particle band close to the Fermi level as well as Hubbard bands at higher energy; the
latter lose intensity with increasing x . The finite lifetime of quasi-particles is reflected
in the intensity of the lines.

Going back to rigorous DFT, the theory gives in principle the exact ground-state
gap, the difference between ionization energy and electron affinity

Egap = E(Ne + 1) + E(Ne − 1) − 2E(Ne), (20)

if the exact exchange-correlation functional is used. The Kohn–Sham picture does not,
however. The KS gap is defined as

EKS
gap = εγ+1(Ne) − εγ (Ne), (21)

where γ labels the highest occupied Kohn–Sham orbital and γ + 1 the lowest unoc-
cupied Kohn–Sham orbital. It has been shown long ago [58,59] that the KS gap can
differ sizably from the exact value, due to the discontinuities in the reference potential.
In fact

Egap = EKS
gap + δExc

δn

∣∣∣∣
Ne+δ

− δExc

δn

∣∣∣∣
Ne−δ︸ ︷︷ ︸

ΔVxc

. (22)

The extra term ΔVxc is large in semiconductors [60], and can be the dominant contri-
bution in strongly correlated systems, as it was shown explicitly for, e.g., a chain of
idealized hydrogen atoms [61] or the two-site Hubbard model [62]. A characteristic of
Mott insulators is that EKS

gap = 0 in the LDA, the GGA, or similar approximations. The
gap is zero even for the exact exchange-correlation functional –if Kramers degeneracy
is not broken in the ground state. In discussing the KS gap, it is in fact important to
remember that Mott insulators have typically a magnetically ordered ground state. In
broken symmetry phases, a finite KS gap, even if often too small, is typically already
obtained in calculations based on the local-spin-density approximation (LSDA) or
other spin-density functionals, and thus it is likely to be obtained also with the exact
functional. Hence, if one focuses on the broken symmetry ground-state only, the KS
Hamiltonian, calculated with a well chosen or corrected functional, can give an insu-
lator; this is the basis of the success of the DFT+U approach, discussed in the next
section. In order to understand the complex electronic properties of Mott insulators
this is not sufficient, however. In the KS description the gap is present only in the bro-
ken symmetry phase; furthermore the effects of hole/electron doping are the same as
in regular band insulators and the magnetic excitation spectrum is qualitatively wrong.
The real problem is thus the fact that the Kohn–Sham description fails to provide the
global picture; the absence of a gap in the paramagnetic phase is not the only issue, it
is merely a paradigmatic example of this failure, the one to which is perhaps simpler
to point to.
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6 Static mean-field theory and the DFT+U approach

The DFT+Umethod [63–67] is one of the approaches based on the strategy of improv-
ing the effective Kohn–Sham potential, given in Eq. (9). The correction is based on
the physical insight that the shortcomings of the KS Hamiltonian, calculated with
LDA, its spin-polarized extension, LSDA, or similar functionals arise from the inad-
equate treatment of the local Coulomb interaction, the Hubbard U . In this view, the
KS Hamiltonian ĤKS

e should be augmented by a Hubbard-like correction

ĤKS
e −→ ĤKS

e + ΔĤU
e (23)

where ΔĤU
e is a Hubbard-like augmentation operator. Assuming for simplicity that

the latter acts only on the electrons with quantum numbers m in, e.g., shell d,

ΔĤU
e = 1

2
U

∑

i

∑

mσ �=m′σ ′
n̂imσ n̂im′σ ′

︸ ︷︷ ︸
ĤU

−
∑

i

Ĥ i
DC. (24)

The term ĤDC is a double-counting (DC) correction, subtracting the effects of ĤU

already included in ĤKS
e via the Hartree and exchange-correlation potential. Here, for

simplicity, we approximate it with the fully localized limit (FLL) expression

Ĥ i
DC ∼ 1

2
UNd N̂id − μAT N̂id , (25)

where N̂id = ∑
mσ n̂imσ yields Nd , the number of d electrons at site i , μAT = U/2

is the atomic chemical potential at half filling and the expectation value 1
2UNdNd is

the Hartree energy.
In DFT+U , the many-body Hubbard term in Eq. (23) is approximated with an

effective single-electron operator, i.e., a modification of the parameters of the KS
Hamiltonian. This is done via static mean-field decoupling.4 The static mean-field
Hamiltonian obtained from Eqs. (23) and (24) in this way is

ĤMF
e = ĤKS

e +
∑

imσ

Δεimσ n̂imσ , with Δεimσ = U

(
1

2
− 〈n̂imσ 〉

)
. (26)

In ĤMF
e the original levels εimσ are shifted by Δεimσ , and

Δεimσ =
{

−U
2 if 〈n̂imσ 〉 = 1

+U
2 if 〈n̂imσ 〉 = 0.

(27)

4 The expression static mean field decoupling indicates here the replacement of the two-body operator
n̂i↑n̂i↓ with the single-body operator n̂i↑〈n̂i↓〉 + n̂i↓〈n̂i↑〉-〈n̂i↑〉〈n̂i↓〉.
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Assuming that one spin state is empty and the other full, the associated shifts corre-
spond to the poles of the atomic Green function at half filling

E(N )−E(N−1) − μ = −U/2 (28)

E(N+1)−E(N ) − μ = +U/2, (29)

and thus to the center of the Hubbard bands. The modified (U -dependent) total energy
“functional” giving Eq. (26) is

ELDA+U[n] = ELSDA[n] +
∑

i

⎡

⎣1

2
U

∑

mσ �=m′σ ′
〈n̂imσ 〉〈n̂im′σ ′ 〉 − EDC

⎤

⎦ , (30)

where

EDC = 1

2
UNd(Nd − 1). (31)

One can verify with Janak’s theorem [68] that indeed

εLDA+U
imσ = ∂ELDA+U

∂〈n̂imσ 〉 = εLSDAimσ +U

(
1

2
− 〈n̂imσ 〉

)
= εLSDAimσ + Δεimσ . (32)

SinceU is a parameter, not determined univocally by the density, calculations based on
the DFT+U approach are not fully ab initio and do not follow rigorously the principles
of DFT. The correction yields however a better KS description of the magnetic ground
state of Mott insulators, with respect to the one obtained via more rigorous DFT-based
approaches. In DFT+U the gap calculated from the eigenvalues of themodified Kohn–
Sham Hamiltonian (26) increases linearly with U as in the exact solution in the large
U/W limit; thus the term ΔVxc in Eq. (22) is less relevant. The DFT+U approach
has been generalized to account for additional elements of the Coulomb-interaction
tensor, e.g., the Hund’s rule coupling J or the coupling between first neighbors, V .
Furthermore, different types of DC corrections are used in different regimes/situations
[69–75]. Hence, in practice, the name DFT+U collects a plethora of different Hartree–
Fock-like corrections to the LSDA or similar functionals, all sharing however the
principles just outlined.

The main strength of DFT+U , the ability of taking into account key effects of
the local Coulomb repulsion via a mere modification of the parameters of the KS
Hamiltonian, is also its main limit. The correction corresponds to a static mean field
treatment of the Hubbard U . Thus, while it well describes the magnetic ground state
of correlated materials, is not suitable for studying the metal-insulator transition itself.
This failure can be understood in a simple way. In the absence of static local spin and
orbital polarization, i.e., if

〈n̂imσ 〉 = ni
2Nd

, (33)

123



Solving the strong-correlation problem in materials 613

the DFT+U correction is merely a level shift, identical for all d electrons. Hence, if
the original KS Hamiltonian describes a metal, everything else remaining the same
(in particular space group, magnetic group and primitive cell), so does the DFT+U
Hamiltonian. Conversely, when an insulating state is obtained in DFT+U , it is of
Slater- (and not of Mott) type. It requires a reduction of symmetry, e.g., via spin or
charge disproportionation, and/or, dependingon the system, orbital disproportionation,
long-range spin and orbital order or, generalizing, spin-glass-like behavior.

As we have already pointed out, Mott insulators have typically a magnetically
ordered ground state; it is perfectly justified to use DFT+U to describe it. Problems
arise if the approach is used to analyze the behavior of a Mott insulator above the
magnetic transition temperature, usually a paramagnetic insulating phase. An (ideal)
local-moment paramagnet is a system in which local magnetic moments fluctuate in
time. Hence 〈Siz〉 = 〈Six 〉 = 〈Siy〉 = 0 at each site, but at the same time 〈Si · Si 〉 ∼
S(S+1); the latter is the local moment appearing, e.g., in the expression of the Curie-
Weiss susceptibility. A static potential, even if orbital, site and spin dependent, fails
to capture this behavior (and several associated phenomena). In fact, a paramagnetic
insulator is very different from, e.g., a system characterized by spatial fluctuations of
〈Siz〉 in a supercell (nomatter how large this cell is or howquasi-random the fluctuations
are).5 This remains true even if

∑
i 〈Siz〉 = 0 for the unit cell.6 Furthermore, an ideal

paramagnet and an ideal disordered spin system can be distinguished experimentally.
While disordered systems do exist also among strongly-correlated materials, in order
to capture the correct behavior of a paramagnetic insulator one needs a method which
can explicitly account for dynamical fluctuations.

Let us now examine the interplay between the DC correction and charge self-
consistency. In order to keep it simple, always with transition-metal oxides in mind,
we consider a toy model with two sites, the first representing a transition metal ion
and the second an oxygen ion. The model is

Ĥe =Ĥ0 + ĤU

Ĥ0 =εd
∑

σ

c†dσ cdσ + εp
∑

σ

c†pσ cpσ − tpd
∑

σ

(c†dσ cpσ + c†pσ cdσ )

ĤU =Und↑nd↓ (34)

with εp = εd − Δpd . The difference Δpd > 0 is the charge-transfer energy. For three
electrons the exact ground doublet of this Hamiltonian is

|G, σ 〉 = a1 c
†
dσ c

†
p↑c

†
p↓|0〉 + a2 c

†
d↑c

†
d↓c

†
pσ |0〉, (35)

5 This representation is adopted, e.g., in polymorphous DFT calculations. See, e.g., J. Varignon, M. Bibes
and A. Zunger, Nat. Comm. 10, 1658 (2019).
6 A trivial example is the ideal antiferromagnet in a bipartite lattice.
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where a22 + a21 = 1 and

a21 = t2pd

t2pd +
(

Δpd+U
2 −

√(Δpd+U
2

)2 + t2pd

)2 . (36)

Its energy is

EG(3) = 3εd − 2Δpd + Δpd +U

2
−

√(
Δpd +U

2

)2

+ t2pd , (37)

and the total number of d electrons is

nd = 1 +

(
Δpd+U

2 −
√(Δpd+U

2

)2 + t2pd

)2

t2pd +
(

Δpd+U
2 −

√(Δpd+U
2

)2 + t2pd

)2 . (38)

ForU = 0, the total number of d electrons takes the value n0d = 1+ x0, where x0 is a
positive number, which can be determined by setting U = 0 in right term in Eq. (38);
for U → ∞, we find instead n∞

d = 1.
Let us now analyze the effect of the DC correction in a mean-field treatment of the

Coulomb term. In the first step we calculate the KS Hamiltonian. For simplicity we
assume that this yields εd −→ εKSd = εd + UKS nd . When UKS = U , the correction
is the Hartree term for the Hubbard model. From Eq. (38) one may see that, ifU = 0,
the exact ground state density for finite U is recovered by merely replacing εd with
εd + U ; indeed, this N = 3 electron problem is an uncorrelated system in the hole

representation. In the second step, we augment ˆHKS
e with Δ ˆHU∗

e = ĤU∗
e − ĤDC,

and solve the problem in the static mean-field approximation; we replace U with U∗,
since, in general, we do not know the exact value of U included in the Hartree term.
Thus

Δpd −→Δ∗
pd(nd) = Δpd +Und + U

2

∗
(nd − n∗

d). (39)

The choice of n∗
d defines the DC correction. The self-consistent condition for the

number of d electrons is obtained setting U = 0 in Eq. (38) and replacing Δpd with
Δ∗

pd via Eq. (39). In the FLL limit, i.e., when the double-counting energy is given
by Eq. (31), for nd > 1 we obtain nd < n∗

d ; hence, the double-counting term tends
to slightly increase the self-consistent value of nd . The opposite happens if, e.g., we
set n∗

d = 1. The example shows that the largest effect can arise, however, from the
uncertainty in the value of U∗, rather than from the specific choice of n∗

d .
Besides DFT+U , there are many attempt to address the problem of strong

correlation by correcting the functional [28,76–84]. Examples are, e.g., the self-
interaction-correction approach [28,77,78] or the hybrid functional method [79–84].
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Other approaches try instead to propose schemes alternative to the Kohn–Sham con-
struction, such as the strictly-correlated-electron approach [85,86] and/or focus on the
total energy [87].

7 Model Hamiltonians

In this section, we will discuss the second family of approaches, the one that uses
the Kohn–Sham states as the optimal one electron basis for constructing many-body
models. The Hamiltonian (1), with all terms explicitly written, has the form

Ĥe = −1

2

∑

i

∇2
i −

∑

i

∑

α

Zα

|ri−Rα| +
∑

i> j

1

|ri−r j | +
∑

α>α′

ZαZα′

|Rα−Rα′ | , (40)

where {ri } are electron coordinates, {Rα} nuclear coordinates and Zα the nuclear
charges.Using a complete one-electron basis {φa(r)}, where {a} are quantumnumbers,
we can rewrite it in second quantization as

Ĥe = −
∑

ab

tabc
†
acb

︸ ︷︷ ︸
Ĥ0

+ 1

2

∑

aa′bb′
Uaa′bb′ c†ac

†
a′cb′cb

︸ ︷︷ ︸
ĤU

.

The hopping integrals are given by

tab = −
∫
dr φa(r)

(
−1

2
∇2 −

∑

α

Zα

|r−Rα|
︸ ︷︷ ︸

ven(r)

)
φb(r),

while the elements of the Coulomb tensor are

Uaa′bb′ =
∫
dr2

∫
dr2 φa(r1) φa′(r2)

1

|r1−r2| φb′(r2) φb(r1).

All complete one-electron bases are of course equivalent in theory. In practice,
since, in the general case, we cannot solve the Ne-electron problem exactly, some
bases are better than others. In this spirit, the Kohn–Sham orbitals {φKS

a (r)} have
many advantages, since they provide KS spectra reasonably in line with experiments
for weakly correlated systems. Even for strongly-correlated systems, they are often
sufficiently accurate for empty and fully occupied states. In order to use theKS orbitals
as a basis, we first rewrite ven(r) in terms of the effective KS potential, vKS(r). The
latter differs from ven(r) via the Hartree term vH(r) and the (approximate) exchange-
correlation contribution, vxc(r)

ven(r) = vKS(r) − vH(r) − vxc(r). (41)
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Fig. 5 (Color online) NMTO
Wannier functions showing
orbital-order in TbMnO3, as
obtained by LDA+DMFT
calculations. Reprinted figure
with permission from Flesch et
al. [51]. Copyright (2012) by the
American Physical Society

We thus introduce the Kohn–Sham hopping integrals

t̃ab = −
∫
dr φKS

a (r)
(
−1

2
∇2 + vKS(r)

)
φKS
b (r). (42)

With this definition, the total Hamiltonian, in the KS basis, is

Ĥe = −
∑

ab

t̃ab c
†
acb

︸ ︷︷ ︸
Ĥ0=ĤKS

e

+ 1

2

∑

aba′b′
Ũaa′bb′ c†ac

†
a′cb′cb − ĤDC

︸ ︷︷ ︸
ΔĤU

, (43)

where ĤDC is the double-counting correction. TypicallyΔĤU is a short range operator
since long-range effects are already well captured by the KS potential, and strong
correlation effects are a manifestation of a large local U .

The key step for studying correlation effects in materials is building, starting from
the general Hamiltonian (43), minimal material-specific models containing all essen-
tials degrees of freedom and interactions. This was made possible by the development
of methods for constructing Kohn–Sham localized Wannier functions spanning spe-
cific bands [88,89] and/or projection schemeswith similar capabilities.7 An example of
aWannier-like state is shown in Fig. 5. These approaches yield single-electron Hamil-
tonians which very accurately reproduce the Kohn–Sham bands in specific energy
windows. A quite different story is the estimate of screened Coulomb integrals. Cal-
culating exact screening effects is in principle as hard as solving the full many-body

7 The more localized the Wannier functions, the more short range ΔĤU is expected to be. Although
different localization schemes have been explored [88,89], the results obtained are very similar. A way for
working with substantially more localized functions is to use, instead ofWannier functions, orbitals defined
in an atomic sphere. The latter are however ill defined and do not build a complete one-electron basis. In
fact, alone, they do not even span the bands. Wannier functions remain therefore the basis of choice.
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Fig. 6 LDA+DMFT spectral function for the single band systems VOMoO4 (left) and Li2VOSiO4 (right)
at 380 K and for 1 < U < 5 eV. The linewidth increases with increasing U in steps of 1 eV. Rearranged
from Ref. [53]

Hamiltonian. Commonly adopted schemes are the constrained local-density approx-
imation (cLDA) [90,91], linear-response methods [67,92,93], and the constrained
random-phase approximation (cRPA) [94,95]. They have been successfully used for
building models and understanding the properties of several families of correlated
materials. Still, screened Coulomb parameters are only known within relatively large
error bars.

It is important to underline that the model construction is not a mechanical proce-
dure.Althoughmodern techniques provide the tools, identifying the relevant degrees of
freedom and interactions remains bound to our physical understanding of the problem
and system analyzed. A model is typically a work in progress, a compromise between
what one would like to include and what can be included in actual calculations. It
evolves with time, when new facts come to light. For most transition-metal oxides,
typical low-energy starting models, augmented with Coulomb corrections, have the
form Ĥe = ĤKS

e + ΔĤU of a generalized Hubbard Hamiltonian, with

ĤKS
e = −

∑

i i ′

∑

σ

∑

mm′
t i,i

′
mσ,m′σ ′ c

†
imσ ci ′m′σ ′ (44)

ΔĤU = 1

2

∑

i

∑

σσ ′

∑

mm′

∑

pp′
Umpm′ p′ c†imσ c

†
i pσ ′cip′σ ′cim′σ − ĤDC, (45)

with m belonging to the d shell or to a subset of crystal-field states.

8 DMFT and DFT+DMFT

The essential step forward for the theoretical description of the Mott metal-insulator
transition in the Hubbard model came with the development of the dynamical mean-
field theory (DMFT) [96–103]. The central idea consists in mapping the Hubbard
Hamiltonian onto an auxiliary quantum-impurity model. The latter can be solved
exactly, differently from the original lattice model. A typical QIM is the Anderson
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Fig. 7 Left: correlated band structure of VOMoO4 and Li2VOSiO4 for a realistic U = 5 eV, calculated at
∼ 200 K. The dots are the poles of the Green function and yield the energy dispersion. Right: corresponding
real-axis self-energyΣ(ω). Reprintedfigurewith permission fromKiani andPavarini [53].Copyright (2016)
by the American Physical Society

Hamiltonian

ĤQIM =
∑

kσ

εskn̂kσ

︸ ︷︷ ︸
Ĥbath

+
∑

kσ

(
V s
k c

†
kσ cdσ + h.c.

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ +Un̂d↑n̂d↓
︸ ︷︷ ︸

Ĥimp

.

It describes a single correlated d impurity in a bath of non-interacting electrons s.
The Anderson model was originally introduced to describe the Kondo effect in diluted
metallic alloys [104–106]. Solution methods, approximated and numerically exact,
were therefore already available when DMFT was introduced. The main difference
with respect to the single-impurity case is that inDMFT the parameters of the quantum-
impurity model are not known from the start, but obtained via the self-consistency
condition, requiring that the quantum impurity self-energy is as close as possible to
the local self-energy of the original model. Non-local self-energy terms are neglected.
DMFT is exact for U = 0, in the atomic limit, in the single-impurity limit, and, most
remarkably, in the infinite coordination number limit [96–99]. For realistic three-
dimensional lattices it is an excellent approximation.

The success ofDMFT relies on the fact that it describes theMott paramagneticmetal
to paramagnetic insulator transition, differently from all static mean-field approaches.
This is shown in a representative case in Fig. 6 for two systems well described by
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Fig. 8 Schematic representation of theDFT+DMFT approach. Upper boxes: model building. Central boxes:
map to quantum impurity model and quantum impurity solver (QIS). Lower boxes: self-consistency check
and calculation of one and two-particle local Green functions. The figure is from Ref. [107], ch. 7

the single-band Hubbard model. For small U/W , where W is the band width, the
spectral function is characterized by a central quasi-particle peak and two Hubbard
bands. Increasing U/W the central peak becomes more narrow; at the same time the
effective mass of the quasi-electrons increases, and their lifetime shrinks. Eventually
the central peak vanishes and the systembecomes a paramagnetic insulator. In the large
U/W limit, the Mott gap in the spectral function is approximately equal to U − W .
The paramagnetic Mott phase is characterized by a self-energy which diverges in the
gap, and not by a static site-dependent potential which has the effect of reducing the
symmetry, as in static mean-field theory. This is shown, for the same systems of Fig. 6,
in the right panels of Fig. 7.

In the last decades, three crucial advances made the application of DMFT to mate-
rials a reality. The first is the fact that techniques to build system-specific models
became available, as discussed in the previous section. The second is the development
of new flexible quantum-impurity solvers, such as continuous-time quantum Monte
Carlo [108], enabling us to study always more realistic quantum impurity models.
The third is the (so-far increasing) power of massively parallel supercomputers, which
made actual calculations possible in practice. All this gave birth to the DFT+DMFT
approach [41,75,101,107,109–113], described in a schematic way in Fig. 8.

The initial step of a DFT+DMFT calculation consists in model building (green
boxes in Fig. 8). This involves the choice of the states for which the local Coulomb
interaction in Eq. (43) is explicitly taken into account. The second step consist in
mapping the lattice model to a quantum impurity model (QIM). The third its solution
via a quantum impurity solver. Last comes the self-consistency loop. ForQMCsolvers,
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Fig. 9 Orbital polarization p (left) and occupied state |θ〉 (right) as a function of temperature, calculated
with LDA+DMFT. These calculations were instrumental for solving the problem of the origin of orbital
ordering in LaMnO3. Reprinted figure with permission from Pavarini and Koch [25]. Copyright (2010) by
the American Physical Society

the most flexible so far, the quantum impurity model is defined via the associated bath
Green function, Gσ (iνn); since QMC solvers all work on the imaginary axis, we
express the latter as a function of the fermionic Matsubara frequency νn . Solving the
QIM yields the impurity Green function Gσ

QIM(iνn). From the local Dyson equation
for the QIM we can calculate the impurity self-energy

Σσ
QIM(iνn) = (

G0σ
QIM(iνn)

)−1 − (
Gσ

QIM(iνn)
)−1

.

The self-energy of the original Hubbard model is then set equal to the impurity self-
energy, so that the local Green function is given by

Gσ
i,i (iνn) = 1

Nk

∑

k

1

iνn + μ − εk − Σσ
QIM(iνn)

,

where Nk is the number of k points. The local Dyson equation is used once more,
this time to calculate a new bath Green function Gσ (iνn), which in turn defines a new
QIM. This procedure is repeated until self-consistency is reached, i.e., till a fixed point
for the self-energy is found. At the end of the self-consistency loop, further quantities,
such as two particle Green functions, can be calculated.

The successes of theDFT+DMFTapproach in describing the properties of strongly-
correlated materials are beyond doubt. The technique has been instrumental to shed
light on many open problems. Thanks to it, one could explain the nature of the metal–
insulator transition in representative families of systems [47,88,114,115] or clarifying
the origin of orbital ordering [25,46,50–52]. Other times new categories of systems
were identified, such as Hund’s metals [116–119]. Along the years the DFT+DMFT
method has been extended to calculate properties beyond simple spectral functions, to
the study of phase transitions [102,120–122], total energies and phonons [123,124],
superconductivity [125–130] or spin-orbit effects [48,49,131]. The type of systems
to which it can be applied has been extended from transition–metal oxides to het-
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erostructures and f electron compounds. A representative, although not exhaustive,
list of success stories can be found, e.g., in Refs. [41,101,107,110–113]. As an exam-
ple we show in Fig. 9 the super-exchange induced-orbital order transition in LaMnO3,
a calculation instrumental to clarify the origin of orbital ordering in rare-earth man-
ganites [25].

Before concluding this section it is important to analyze the relation between the
DFT+DMFT and the DFT+U method.8 The latter can be seen a special case of
DFT+DMFT, in which, instead of solving the quantum-impurity problem exactly, we
solve it in the Hartree–Fock (HF) approximation. For the single-band Hubbard model
at half filling, approximating the DC correction in the FLL limit, the corresponding
local self-energy is

Σσ
HF(iνn) = U

(
ni−σ − ni + 1

2

)
= U

(
1

2
− niσ

)
(46)

This yields the DFT+U level shift, Eq. (27) and to the HF bands shown in Fig. 10. In
DMFT, the HF self-energy is merely the large frequency limit of Σσ (iνn), however.
We can then distinguish two cases. In the paramagnetic phase, where the DMFT self-
energy is strongly frequency dependent, the difference is qualitative. This may be seen
for a representative case in Fig. 11. The situation changes completely in the magnetic
phases. Here the HF term is a leading contribution in the DMFT self-energy, and the
difference between HF and DMFT are correspondingly much smaller. Still, although
ground state and spectral function are, in this situation, reasonably well described in
HF, and hence in DFT+U , response functions are not, as we will see later.

8 Minor additional differences arise from the fact that in practical implementations, DFT+U calculations
are not always performed in a Wannier basis. Instead, atomic-like functions defined in an atomic sphere are
adopted.
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9 Quantum-impurity solvers

A crucial aspect of the LDA+DMFT technique is the method employed to solve the
quantum impurity problem, the so-called quantum impurity solver. Quantum impurity
solvers can be grouped in two major categories. The first consists of numerically exact
ones and the second of all the rest.

Numerically exact solvers include exact diagonalization and Lanczos [134–136],
various renormalization groupmethods [6–8,137–146] and techniques based on quan-
tum Monte Carlo [55,108,147,148]. Approximate solvers encompass a variety of
different approaches. They range from Hubbard approximations and rotationally-
invariant slave fermions [149], to hybridization-expansion techniques, e.g., the
non-crossing [150–154], and the one-crossing approximation [155]. A simple and
successful approximate solver is the iterative perturbation theory [156–159]. The
main advantage of approximate techniques is that they are typically computation-
ally not too demanding. The disadvantage is that crucial many-body effects might
not be captured. Furthermore, usually, approximate methods work well only within
certain limits. Adopting approximate solvers, even powerful and flexible ones, implies
that ultimately results have to be checked against numerically exact methods. In this
article, to avoid confusion, I therefore adopt the labels DMFT and DFT+DMFT only
when I refer to calculations performed with numerically exact solvers.

It is crucial to underline that even numerically exact solvers are not universal
tools. Typically, each of them works well for specific classes of problems. Neverthe-
less, remarkable progress has been achieved to expand their regime of applicability,
combining algorithmic advances with the growing performance of massively par-
allel supercomputers. The most general purpose solvers are based on QMC. They
include the Hirsch–Fye method [55], the interaction-expansion [108,148] and the
hybridization-expansion continuous-time QMC technique [108,147]. The bottleneck
of allQMCapproaches is that the computational time canbecomequickly prohibitively
long with increasing the number of degrees of freedom and lowering the tempera-
ture. A representative scaling plot for Hirsch–Fye and the hybridization-expansion
continuous-time QMC solvers is given in Fig. 12. Furthermore, due to the infamous
sign problem, depending on the case, QMC solvers can be limited in the number
of orbitals/sites, the type of interactions included in the model, and the lowest tem-
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perature that can be reached. Finally, they work on the imaginary axis; comparing
with experimental data requires the analytic continuation of the results, an ill-posed
problem. This has boosted the search for efficient analytic continuation approaches
that can work for noisy data. Among these we find the maximum-entropy technique
[160–164], stochastic approaches of various kind [165–167], and the recently devel-
oped average-spectrummethod [168–170]. Complementary to QMC solvers are exact
diagonalization and Lanczos [134–136]. Here, the bottleneck is not the computa-
tional time but the actual size of the Hilbert space, which grows very rapidly with
the number of sites/orbitals. The advantage is that these approaches provide results
on the real axis directly, and yield the T → 0 limit, typically not easily accessible
with QMC solvers. Other methods that can work on the real axis are renormalization
group techniques, such as the numerical renormalization group (NRG) [137–140], best
designed to describe physics at the Kondo energy scale; more recently, the density-
matrix renormalization group (DMRG) [6–8] was added to the powerful tools for
solving the quantum impurity problems in materials [7,143–146].

10 Lessons from a toymodel: the two-site Hubbardmodel

The simplest model that can be studied to explain the DMFT approach is the two-site
Hubbard model

Ĥ = εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σ c2σ + c†2σ c1σ

)
+U

∑

i

n̂i↑n̂i↓, (47)
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with i = 1, 2. For N = 2 electrons (half filling) the ground state of this Hamiltonian
is the singlet

|G〉H = a2(t,U )√
2

(
c†1↑c

†
2↓ − c†1↓c

†
2↑

)
|0〉 + a1(t,U )√

2

(
c†1↑c

†
1↓ + c†2↑c

†
2↓

)
|0〉 (48)

The prefactors are given by

a21(t,U ) = 1

Δ(t,U )

Δ(t,U ) −U

2
, a22(t,U ) = 4t2

Δ(t,U )

2

Δ(t,U ) −U
, (49)

where

Δ(t,U ) =
√
U 2 + 16t2. (50)

The associated ground-state energy is

EG(2) = 2εd + 1

2

(
U − Δ(t,U )

)
. (51)

The eigenvalues for Ne = 1 and Ne = 3 electrons are instead

E±(1) = εd ± t

E±(3) = 3εd ± t +U

In the T → 0 limit, the local Matsubara Green function for spin σ (see Fig. 13 for the
associated spectral function) is then the sum of four terms

Gσ
i,i (iνn)=

w+
iνn − (EG(2) − E−(1)−μ)

+ w−
iνn − (

EG(2) − E+(1)−μ
)

+ w−
iνn−

(− EG(2)+E+(3)−μ
)+ w+

iνn−
(− EG(2)+E−(3)−μ

) , (52)
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where νn = π(2n+1)/β are fermionic Matsubara frequencies, the chemical potential
is μ = εd +U/2, and

w± = 1 ± w(t,U )

4
(53)

w(t,U ) = 2a1(t,U )a2(t,U ). (54)

This can be rewritten as the average of the Green function for the bonding (k = 0)
and the anti-bonding (k = π) state, i.e.,

Gσ
i,i (iνn) = 1

2

(
1

iνn + μ − εd + t − Σσ (0, iνn)︸ ︷︷ ︸
Gσ (0,iνn)

+ 1

iνn + μ − εd − t − Σσ (π, iνn)︸ ︷︷ ︸
Gσ (π,iνn)

)
.

(55)

The k-dependent self-energy is given by

Σσ (k, iνn) =U

2
+ U 2

4

1

iνn + μ − εd − U
2 − eik 3t

. (56)

The local self-energy is, by definition, the k-average

Σσ
l (iνn) = Σσ

i,i (iνn) = 1

2

(
Σσ (π, iνn)+Σσ (0, iνn)

)

= U

2
+U 2

4

iνn + μ − εd − U
2

(iνn + μ − εd − U
2 )2 − (3t)2

. (57)

The difference

ΔΣσ
l (iνn) = 1

2

(
Σσ (π, iνn)−Σσ (0, iνn)

)

= U 2

4

3t

(iνn + μ − εd − U
2 )2 − (3t)2

, (58)

is the non-local part of the self-energy. The local Green function can then be expressed
in the form

Gσ
i,i (iνn) = 1

iνn + μ − εd − Fσ (iνn) − Σσ
l (iνn)

, (59)

where

Fσ (iνn) =
(
t + ΔΣσ

l (iνn)
)2

iνn + μ − εd − Σσ
l (iνn)

(60)
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is the hybridization function. For U = 0 it becomes

Fσ
0 (iνn) = t2

iνn
. (61)

The local Green function satisfies a local Dyson equation

Σσ
l (iνn) = 1

Gσ
i,i (iνn)

− 1

Gσ
i,i (iνn)

, (62)

where

Gσ
i,i (iνn) = 1

iνn + μ − εd − Fσ (iνn)
. (63)

So far we discussed the exact solution of the Hubbard dimer. Next, we map the
Hubbard dimer into an auxiliary two-site Anderson model

ĤA = εs
∑

σ

n̂sσ − t
∑

σ

(
c†dσ csσ + c†sσ cdσ

)
+ εd

∑

σ

n̂dσ +Un̂d↑n̂d↓, (64)

where d labels the correlated impurity and s the uncorrelated bath site. The parameters
of this quantum-impurity model have to be chosen such that the impurity self-energy
equals the local self-energy of the original model. The first constraint is that the
ground state of the Anderson molecule has the same occupation numbers of the 2-
site Hubbard model; at half filling, nd = ns = 1. This self-consistency condition is
satisfied if εs = μ = εd +U/2. The ground state of the Anderson molecule is then

|G〉A = a2(t,U/2)√
2

(
c†d↑c

†
s↓−c†d↓c

†
s↑

)
|0〉 + a1(t,U/2)√

2

(
c†d↑c

†
d↓+c†s↑c

†
s↓

)
|0〉,
(65)
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temperature limit for increasing U/t from 0 to 4 in equal steps. In the right panel, the solution of the
Hubbard dimer in the DMFT approximation is also shown (dark blue lines). Figure rearranged from Ref.
[107], ch. 7

where the coefficient are the same functions defined in Eq. (49). The impurity Green
function is then given by

Gσ
d,d(iνn) = w′+

iνn − (E0(2) − E−(1) − μ)
+ w′−
iνn − (E0(2) − E+(1) − μ)

+ w′−
iνn − (E+(3) − E0(2) − μ)

+ w′+
iνn − (E−(3) − E0(2) − μ)

, (66)

where

E0(2)−E±(1) − μ= −
(
E±(3) − E0(2) − μ

)

= −1

4

(
2Δ(t,U/2) ± Δ(t,U )

)
, (67)

and

w′± = 1 ± w′(t,U )

4
, w′(t,U ) = 1

2

32t2 −U 2

Δ(t,U )Δ(t,U/2)
. (68)

This can be recast into the simpler expression

Gσ
d,d(iνn) = 1

iνn + μ − εd − Fσ
0 (iνn) − Σσ

A(iνn)
. (69)

One can verify that the impurity self-energy equals the local self-energy of theHubbard
dimer is

Σσ
A(iνn) =U

2
+ U 2

4

iνn
(iνn)2 − (3t)2

.
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The non-interacting hybridization function is given by

Fσ
0 (iνn) = t2

iνn
.

The impurity Green function thus satisfies the impurity Dyson equation

Σσ
A(iνn) = 1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

. (70)

By comparing the expressions, one can see that the exact impurity Green function
Gσ

d,d(iνn) is not equal to Gσ
i,i (iνn), the local Green function of the Hubbard dimer in

the local self-energy approximation. The deviation, however, arises in very large part
from the non-local self-energy,which does not appear inGσ

d,d (iνn). If we could neglect
it (local self-energy approximation), there would still be a remaining discrepancy, but
this is now merely a small correction. It arises from

ΔFl(iνn) = Fσ
l (iνn) − Fσ

0 (iνn) = t2 p2
(

− 2

iνn
+ 1

iνn − εa
+ 1

iνn + εa

)

where p2 = U 2/8ε2a and εa = √
9t2 +U 2/4. This can be seen in Fig. 14.

There are several important lessons to learn from this toy model. The first is that
DMFT is a method for solving a many-body lattice problem.9 It is exact in infinite
dimension, and it is an excellent approximation for real correlated system. This is
because in materials the co-ordination number is high, and hopping integrals do not
decay fast with the distance. For a dimer, or small molecules with few correlated sites,
it is instead not a good approximation, in particular at low energy. This is shown in
Fig. 14. The second lesson is that, when the local-self-energy approximation is a good
approximation, as it happens for correlated materials, the auxiliary Anderson model
reproduces excellently the spectral function. This can be seen in Fig. 14, right panel.
The third lesson is that this success is not limited to a specific range of parameters, as
Fig. 15 clearly shows. This allows us to study phase transitions. Finally, leavingDMFT
nowaside, each of the two toymodels discussed capture different aspects of the physics
of an actual correlated lattice with infinite sites (thermodynamic limit). The Hubbard
dimer captures the evolution of the Hubbard bands in a correlated lattice; the latter
move far apart with increasing U . The Anderson molecule captures the evolution of
the central “quasi-particle” peak in the spectral function a strongly-correlated lattice;
the latter becomes progressively more narrow with increasing the Coulomb repulsion,
and vanishes at the metal-insulator transition.

9 Sometimes in the literature the name DMFT is also used for indicating the solution of real single-impurity
problems (see, e.g., Ref. [171]). This can be misleading, since for a real single impurity there is no actual
mapping from a lattice of correlated sites to an auxiliary quantum impurity model. Such a mapping is the
essence of DMFT, however.
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Fig. 16 Spectral function of the
Hubbard dimer (H) in the zero
temperature limit for increasing
V /t from 0 to V /t = U/t = 3
in equal steps. Left: total local
spectral function. Right:
k-resolved spectral function  0
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11 Non-local Coulomb terms

The bare Coulomb interaction is strong and long ranged, as can be seen from the
expression of the Hartree term. Nevertheless, in many systems, the effects of the long-
range part of the Coulomb interaction are, to a large extent, well described already
in the KS Hamiltonian, thanks to the effective KS potential. What is not captured
are mostly the peculiar effects of the local Coulomb interaction, the Hubbard U in
the example of the Hubbard dimer. The reason can be grasped reconsidering once
more the Hubbard dimer, including this time, in addition toU , the inter-site Coulomb
interaction, which we label with V . The Hamiltonian is

Ĥ =εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σ c2σ + c†2σ c1σ

)
+U

∑

i=1,2

n̂i↑n̂i↓ + V
∑

σσ ′
n̂1σ n̂2σ ′

For Ne = 1 and Ne = 3, thismodel has the same eigenvectors as in the V = 0 case. For
Ne = 2, the form of the eigenvectors is also identical, provided that U −→ U − V .
Thus we can obtain the T → 0 Green function from Eq. (52) with the following
transformations

E±(Ne = 1,U ; V ) = E±(Ne = 1,U ; 0)
E±(Ne = 3,U ; V ) = E±(Ne = 3,U ; 0) + 2V

EG(Ne = 2,U ; V ) = EG(Ne = 2,U−V ; 0) + V

μ(U ; V ) = μ(U ) + V

w(t,U ; V ) = w(t,U−V ; 0)

The result is shown inFig. 16. IncreasingV makes the spectra closer to a non-correlated
system with only two central peak, but an effectively enhanced hopping integral.
This example illustrates that a hypothetical system in which the Coulomb interaction
strength is independent on the distance between sites (here U=V ) is likely to be well
described, at least in first approximation, via an effective non-interacting Hamiltonian.
Obviously, in real materials, the effects of long-range Coulomb integrals can be more
complex than in the two-site model just discussed, but the general considerations
made here remain qualitatively true.10 The smaller the difference between U and

10 For example, in Ref. [172] for describing the properties of NbS2, a U − V Hubbard-Holstein model
with U = 1.8 eV and V = 1 eV was studied via the dual-boson method. The final result of these heavy
calculations is a correlated spectrum very close to the original LDA one (Fig. 2), however.
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longer range terms, the less strongly-correlated the system is. V-type Coulomb terms
can be taken into account in DMFT, e.g., via the E-DMFT extension [173,174].

12 Linear response functions

Linear response functions can be obtained in DFT+DMFT in two steps. First the local
susceptibility χ(iωm) is calculated solving the quantum-impurity problem. This can
be done at the end of the self-consistency loop, as shown in Fig. 8. Calculating χ(iωm)

is a much harder task than calculating single-particle Green functions, in particular
because one needs to compute the full three-frequency tensor χ(iωm; iνn, iνn′). Once
this is done, the Bethe–Salpeter (BS) equation has to be solved

χ(q; iωm) = χ0(q; iωm) + χ0(q; iωm)Γ (q; iωm)χ(q; iωm). (71)

TheBS equation is known from standardmany-body perturbation theory. InDMFT the
“bubble” term χ0(q; iωm) is obtained however using the DMFT Green function as the
propagator. The next step consist in finding approximations for the vertex Γ (q; iωm),
which is unknown. In the infinite coordination limit, the vertex can however be replaced
by a local quantity [102,103,175]

Γ (q; iωm) −→ Γ (iωm).

This leads to the modified BS equation

χ(q; iωm) = χ0(q; iωm) + χ0(q; iωm)Γ (iωm)χ(q; iωm). (72)

By solving Eq. (72) we find, formally

χ−1(q; iωm) = χ−1
0 (q; iωm) − Γ (iωm). (73)

The local vertex can be obtained from Eq. (73), however replacing all quantities with
their local counterparts

Γ (iωm) = χ−1
0 (iωm) − χ−1(iωm). (74)

Despite its apparent simplicity, solving the BS equation, even in the local vertex
approximation, is a delicate task in practice. It involves the inversion of, in principle,
infinite-dimensionmatrices. This can be seen from the analytic formula of themagnetic
susceptibility of the Hubbard model in the atomic limit [53,176,177]

χzz(iωm; 0) =
∑

σσ ′
σσ ′ χn,n′

iσσ,iσ ′σ ′(0)

= Mn′
dMn

dy
+ Mn

dMn′

dy
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− βn(y)

[
δn,n′ + δn,−n′

]
dMn

dy
+ βn(−y)MnMn′

− 1

y

{
Mn′ − β

[
n(y)δn,−n′ − n(−y)δn,n′

]}
Mn (75)

where

Mn = 1

iνn − y
− 1

iνn + y
, (76)

and n, n′ are fermionic Matsubara frequencies. The expression (75) evidences the
slow decay in the fermionic frequencies, in particular along the diagonals n = n′ and
n = −n′. Only summing up all fermionic Matsubara frequencies one recovers the
expression

χzz(iωm) = δm,0
n(−U/2)

4kBT
(77)

where n(x) is the Fermi distribution function. To complicate thematter, in actual mate-
rials the susceptibility tensor depends on the flavors (spin, site, orbitals) associated
with the four (creation and annihilation) operators entering the expression of the gen-
eralized correlation function [176]. It is thus important to exploit symmetries and find
compact representations, in order to reduce both truncation errors and computational
time. More compact representation are based on polynomial expansions, for example
Legendre polynomials [178].

In order to better explain how susceptibilities are calculated in DMFT we make
further use of the toy model previously introduced, the two-site Hubbard model, and
calculate themagnetic susceptibility in this case. For simplicity we perform in advance
all sums over fermionic Matsubara frequencies, so that only the bosonic frequency
ωm remains. The site-dependent components, defined in imaginary time as

χ
i j
zz(τ ) =〈T Siz(τ )S j

z (0)〉 − 〈T Siz(τ )〉〈T S j
z (0)〉, (78)

where T is the time-ordering operator and τ the imaginary time. The total magnetic
susceptibility is

χzz(q; iωm) = 1

Ns

∑

i j

∫ β

0
dτeiωmτ χ

i j
zz(τ )e−iq·(Ri−R j ) (79)

whereRi are vectors identifying the Ns = 2 atomic sites; the only possibleq values are
here 0 andπ , as we have already seen. The first step consists in calculating the impurity
susceptibility for the (self-consistent) auxiliarymodel, theAndersonmolecule. For this
is necessary to consider not only the ground state, Eq. (65), but also the excited triplet
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states, with energy ET . They are given by

|1, 0〉A = 1√
2

[
c†d↑c

†
s↓ − c†d↓c

†
s↑

]
|0〉 (80)

|1, 1〉A =c†d↑c
†
s↑|0〉 (81)

|1,−1〉A =c†d↓c
†
s↓|0〉. (82)

At sufficiently low temperature higher energy states can be neglected. We define the
energy difference ET = EG + EX with

EX = −1

4

[
U − 2Δ(t,U/2)

]
= U

4

[
− 1 +

√
1 + 16ΓSE

U

]
. (83)

For sufficiently small ΓSE/U one then finds

χzz(iωm) ∼ 1 − e−βEX

4Z

(
1

iωm + EX
− 1

iωm − EX

)
+ δm,0β

e−βEX

2Z

where Z ∼ 1 + 3e−βEX . At high temperature this becomes

χzz(0) ∼ 1

4
βδm,0, (84)

which is the atomic limit susceptibility. Next we have to calculate the DMFT bubble
term. The latter can be written as

χ0
zz(q; iωm) = −(gμB)2

1

4

∑

σ

1

β

∑

n

1

Nk

∑

k

Gkσ (iνn)Gkσ (iνn + iωm), (85)

where Gkσ (iνn) is the DMFT Green function. Decomposing all the products of poles
in sums of single poles, this can be recast into [53,176,177,179]

χ0
zz(iωm;q) = (gμB)2

1

2

1

Nk

∑

k

(
− I++

k,q − I−−
k,q + I+−

k,q + I−+
k,q

)
. (86)

The addends are defined as

I αγ

k,q = Eα
k E

γ

k+q

(E+
k − E−

k )(E+
k+q − E−

k+q)

n(Eα
k ) − n(Eγ

k+q)

Eα
k − Eγ

k+q + iωm
. (87)

The energies are

E±
k = 1

2
εk ± 1

2

√
ε2k +U 2, (88)
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with ε0 = −t and επ/a = +t . Thus

χ0
zz(iωm; 0) ≈ − (gμB)2

4

1

Nk

∑

k

U 2
√

ε2k +U 2

1

(iωm)2 − (ε2k +U 2)

χ0
zz(iωm;π) ≈ − (gμB)2

4

1

Nk

∑

k

(
εk +

√
ε2k +U 2

)3

ε2k +U 2

1

(iωm)2 −
(

εk +
√

ε2k +U 2

)2 .

For small ΓSE/U the static local term is then

χ0
zz(0) ∼ (gμB)2

4U

(
1 − ΓSE

4U

)
. (89)

In the last step we solve the simplified Bethe–Salpeter equation

1

χzz(iωm;q)
= 1

χ0
zz(iωm;q)

− 1

χ0
zz(iωm)

+ 1

χzz(iωm)
. (90)

In the high-temperature regime this leads for the static susceptibility to the Curie–
Weiss expression

χzz(0;q) = (gμB)2

4

1

kBT − ΓSE(q)/4
, (91)

where ΓSE(0) = −ΓSE/2 and ΓSE(π) = +ΓSE/2. Few observations are in place.
First, the DMFT bubble term is dominated by the energy scale U , and therefore it
has poles for spin excitations at incorrect positions. Instead, the local susceptibility
from the quantum impurity problem and the finalq-dependent susceptibility are rightly
controlledby the scaleΓSE,which is the energy scale of spin excitations.This alsoholds
when the results are extended to the lattice [53,176,177]. Second, the bubble term is
weakly temperature dependent. The Curie–Weiss temperature behavior arises entirely
from the local susceptibility of the quantum-impurity problem. The χ0

zz(iωm;q) term
is thus a poor approximation of the actual magnetic response function.

The example illustrates why one cannot obtain the correct response function using
the Kohn–Sham eigenenergies calculated with DFT+U , even in the magnetic phase,
i.e., when in the self-energiy are similar inDFT+DMFTandDFT+U . This corresponds
to taking into account only the “bubble” term χ0

zz(iωm;q). Instead, DMFT provides
a good description. It can be used to calculate the susceptibility above and below the
critical temperature, as well as bosonic excitations. This may be seen, e.g., in Figs. 17
and 18, taken from Ref. [180].
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Fig. 17 Spin waves in the t − t ′
Hubbard model at half filling,
calculated with DMFT. The
white lines is the standard linear
spin-wave dispersion obtained
from the associated Heisenberg
model (large t/U limit of the
Hubbard model). Reprinted
figure with permission from
Musshoff et al. [180]. Copyright
(2021) by the American Physical
Society
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Fig. 18 The transition to an antiferromagnetic phase in the DMFT solution of the t − t ′ Hubbard model at
half filling. It shows that DMFT approximately yields the mean-field solution of the associated Heisenberg
model. Reprinted figure with permission from Musshoff et al. [180]. Copyright (2021) by the American
Physical Society

13 Methods for non-local correlations

In the last decades, the LDA+DMFT approach has become the state of the art for
strongly-correlated systems. Its success has been striking in describing trends, explain-
ing experiments and highlighting new phenomena in correlated materials. It is also
obvious where its main limitation lie. We have already met them when discussing the
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toy model, the two-site Hubbard model. Non-local correlations are not captured by a
local self-energy. Still, here one should make a distinction. Long-range ordered phases
themselves can be well described in single-site DMFT, simply using supercells. A dif-
ferent story is the description of non-local effects in phase transitions. In such a case,
DMFT gives basically the static mean-field critical exponents, i.e., the Curie–Weiss
law. This is shown for a representative case in Fig. 18. Straightforward extensions
that go beyond DMFT are cellular dynamical mean-field theory and the dynamical
cluster approximation [122].With cluster approaches it is possible to recover the exact
critical behavior, but the cluster size required might be very large, depending on the
problem analyzed and the type of clusters used. This is shown in Refs. [122,181] for
the two-dimensional Hubbard model. The example chosen is an extreme case since
the exact TN is zero due to the Mermin–Wagner theorem, while at the same time the
co-ordination number is relatively small. Still, even in three-dimensional materials a
large cluster sizemight be necessary, depending on the case, for accurately reproducing
the details of phase transitions. Alternatives to cluster approaches are diagrammatic
methods, such as the GW+DMFT approach [182], the dynamical-vertex approxima-
tion [183,184], or the dual-fermion technique [185–187].

14 Conclusion

In this short article, I introduced some of the modern methods for studying strong
correlations in materials. I emphasized successes and shortcomings of the current
state-of-the art approaches, and briefly discussed developments that could play an
important role in the future. The article is a personal view of a field in evolution, of
which snapshots have been captured. More detailed descriptions of specific aspects,
solvers and applications can be found, e.g., in Refs. [41,107,108,110–113,122].

In this conclusion, I would like to underline few points. The impressive progress
achieved in the last decades in the description of correlation effects in materials relies
on schemes which, instead of solving the full many-body Hamiltonian, solve low-
energy materials-specific models. The latter are built to capture both the essence of
the mechanisms at play and the key specific characteristics which distinguish a sys-
tem from the others. Furthermore, these models are solvable, if not exactly within
very good approximations. This successful strategy combines the best of many-body
physics and ab-initio approaches—overcoming the historical dichotomy between the
two. Anderson, had once coined the ironical expression “the great solid-state physics
dream machine” when referring to DFT-based first principlesmethods [24]. The main
criticism was that, in a many-body system, it is extremely hard to predict truly novel
emergent properties—and indeed it rarely happens. Methods like DFT+DMFT and
its extensions, although not fully ab-initio, give us the impression that eventually
reductionism could win.

Even in the best case scenario, this will always be true only in a limited sense,
however. Traditional ab-initio methods show us the nature of the restriction. Using
Kohn–Shameigenvalues for interpreting experiments implies a stark assumptionon the
form of the model and on the type of phenomena described. State-of-the-art methods
for correlated systems allow us to study a vast variety of new systems and phenomena,
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and have been instrumental to clarify several open problems. They are becoming
progressively more powerful, slowly but steadily approaching predictive power. Still,
they suffer from the same core problem—they do not exhaust all the possibilities
in a many-electron system. If something truly new is found, we have to return to the
basics—trying first to guess and solve the basicmodel, and only thenmake itmaterials-
specific. In fact, despite all progress, even old fundamental problems remain unsettled,
not least the nature of superconductivity in cuprates.

Finally, we have seen that together with theoretical progress and algorithmic
advances, the advent of massively parallel supercomputers was crucial to study real-
istic models in practice. And yet, the exponential growth of the Hilbert space poses
limit on what can be done with a classical computer. In the future, quantum computers
hold the promise to bring a new revolution for the description of strongly correlated
systems. If this promise is realized, we will be able to tackle always more complex
problems. Still, numerical calculations alone will never be sufficient. A simulation
that exactly reproduce the world will not give us, alone, more information then exper-
iments themselves. The final frontier will always be the understanding, disentangling
the crucial aspects from all the rest. In that respect, the many-body problem and its
emergent phenomena should keep us busy for a long time to come.
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